

SLAC-PUB-10488
June 2004

Parallel Extreme Pathway Computation for Metabolic Networks*

Lie-Quan Lee
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Jeff Varner

Genencor International, Inc, 925 Page Mill Rd, Palo Alto, CA 94304

Kwok Ko
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Abstract

We parallelized the serial extreme pathways algorithm presented by Schilling et al., in J. Theor.
Biol. 203 (2000) using the Message Passing Interface (MPI). The parallel algorithm exhibits
super-linear scalability because the number of independence tests performed decreases as the
number of MPI nodes increases. A subsystem of the metabolic network of Escherichia coli with
140 reactions and 96 metabolites (without preprocessing) is used as a benchmark. The extreme
pathways of this system are computed in under 280 seconds using 70 2.4 GHz Intel Pentium-IV
CPUs with Myrinet interconnection among the dual-CPU nodes of the Linux cluster.

*Work supported by Department of Energy contract DE-AC03-76SF00515

Contributed to the 2004 IEEE Computational Systems Bioinformatics Conference,
8/16/2004 - 8/19/2004, Stanford, CA, USA

 2

Parallel Extreme Pathway Computation for Metabolic Networks

Lie-Quan Lee
 Stanford Linear Accelerator Center

liequan@slac.stanford.edu

Jeff Varner
Genencor International, Inc

jvarner@genencor.com

 Kwok Ko
Stanford Linear Accelerator Center

kwok@slac.stanford.edu

Abstract

We parallelized the serial extreme pathways

algorithm presented by Schilling et al., in J. Theor.
Biol. 203 (2000) using the Message Passing Interface
(MPI). The parallel algorithm exhibits super-linear
scalability because the number of independence tests
performed decreases as the number of MPI nodes
increases. A subsystem of the metabolic network of
Escherichia coli with 140 reactions and 96
metabolites (without preprocessing) is used as a
benchmark. The extreme pathways of this system are
computed in under 280 seconds using 70 2.4 GHz Intel
Pentium-IV CPUs with Myrinet interconnection
among the dual-CPU nodes of the Linux cluster.

1. Introduction

Extreme pathways are systemically independent
vectors that describe steady-state metabolic flux
distributions. Metabolic network analysis using
extreme pathways or the closely related elementary
modes is a promising approach [1-4]. However, the
combinatorial complexity [5] of extreme pathway
algorithms limits their application to only small-scale
problems. In this paper, we present an MPI-based
parallel extreme pathways algorithm that addresses
some of the computational challenges in solving larger
networks.

We review the underlying concept of an extreme
pathway and then present the serial extreme pathways
algorithm. This is followed by a description of the
parallel algorithm and a discussion on its performance.

2. Extreme Metabolic Pathways

A metabolic network is a set of coupled chemical
reactions and transport processes that serve to
replenish and/or drain the concentration of network
components which are the metabolites. The
connectivity of a metabolic network is encoded in the
stoichiometric matrix S. At steady-state, the flow
through the network is described by:

0=⋅ vS , ii ∀≥ 0v

where S denotes the m × n array of stoichiometric
coefficients. The rows in S represent network
metabolites whereas the columns correspond to
chemical reactions or transport processes. The vector
v denotes the set of network flows termed the flux
vector. Because all fluxes are constrained to be non-
negative (reversible fluxes are separated into forward
and reverse components.), the solution space
containing all permissible steady-state flux vectors is
convex. The basis vectors spanning the convex
solution space are referred to as the extreme pathways.
Every steady-state flux distribution can then be written
as a non-negative linear combination of the extreme
pathway vectors {pi}:

0≥=� i
i

ii αα pv

3. Extreme Pathways Algorithm

The extreme pathways algorithm of Schilling et
al. [3] consists of three steps:

Step I: Initialization. A tableau T is formed by
appending an n×n identity matrix I to the transpose of
the stoichiometric matrix ST. Reversible reactions are
separated into forward and backward fluxes while the
stoichiometric coefficients of backward fluxes are
scaled by -1. T is then modified by transferring
unconstrained external fluxes to a temporary matrix
TE. Lastly, the algorithm identifies the set of all
metabolites {M} that do not have an external flux
associated with them.

Step II: Main Calculation Loop. The algorithm
processes through all metabolites in {M} and balances
the fluxes. In the ith iteration, the tableau Ti is formed
by copying all rows from Ti-1 containing a zero in the
column of ST that correspond to the metabolites in
{M}. This column is referred to as the pivoting
column. Of the remaining rows in Ti-1, all possible
combinations that contain values of the opposite sign
in the pivoting column are made. If r1 and r2 are two
rows with opposite sign in the pivoting column, a new
row is formed:

 rnew = r1*|r2,p| + r2*|r1,p|

 3

This new row is tested for systemic independence with
existing rows in Ti. It is added to Ti only if it is
systemically independent.

Step III: Balance External Metabolites. First, TE

is appended to the resulting T of the previous step.
Starting in the first nonzero column in ST, add the
corresponding non-zero row from TE to each row and
create zeros in the entire upper portion of the column.
When finished, remove the row in TE corresponding to
the exchange flux for the metabolite just balanced. All
rows formed are tested for systemic independence and
added to T only if they are independent. Repeat this
procedure until all the external metabolites are
balanced. The resulting T contains the extreme
pathway in place of the identity matrix at the initial
step.

4. Parallelization using MPI

We have parallelized the extreme pathways algorithm
just presented using the Message Passing Interface
(MPI). In the parallel implementation, the tableau
consisting of the transpose of the stoichiometric matrix
and the pathway matrix is partitioned row-wise onto
the MPI nodes. In each iteration the algorithm
determines the pivoting column by selecting the
column that produces the least number of new rows. A
set of new rows is formed from the local and remote
tableau in the MPI node. The local and remote rows
are checked, in a distributed manner, for systemic
independence. The remote MPI node involved in
forming new rows is then rotated to form all possible
combinations. Communication among MPI nodes is
drastically reduced using a bit representation for the
pathway matrix, and by exchanging the systematically
independent rows instead of the newly formed rows in
the independence check. The parallel implementation
for each of the three steps in Schilling et al algorithm
are as follows::

Step I: The initial tableau T, composed of the
transpose of the stoichiometric matrix ST and the
pathway matrix (initially the identity matrix) I, is
partitioned row-wise. A bit-representation of the
pathway matrix B is constructed (the zero and nonzero
coefficients in matrix I correspond to 0’s and 1's in
B, respectively.) The data structure of B is a vector
of BITStruct. An instance of BITStruct consists of a bit
array, two integers (i, and j), and a short integer
(pid). An instance of BITStruct is used to represent a
new row formed from row i and j in the previous
tableau. Row i is always in the local tableau. If pid
is a nonnegative number, row j resides in the remote
MPI node whose rank is pid. Otherwise, row j is a
local row. The BITStruct representation is an
important concept since we use it to form
combinations without explicitly constructing the

pathway row (represented by a vector of type double.)
Both the communication among MPI nodes and
memory usage are drastically reduced using the bit
representation. A bitmap structure was also used only
for the purpose of reducing search space in a parallel
out-of-core algorithm by Samatova et al. [7] .

Step II: The implementation is separated into two
stages. First, the bit-representation of the pathway
matrix B is used to form new rows and test systemic
independence. Second, the pathway matrix for matrix
B containing only the systemically independent rows
is reconstructed.

The total number of new rows is directly related
to the overall performance of the algorithm. Thus, it is
important to select a good pivoting column; the natural
ordering typically dramatically increasing the number
of new rows. In the first stage, the pivoting column is
selected to produce the least number of new rows.
Then the load in each MPI node is balanced by
repartitioning the T and B matrices and by migrating
rows. The following is the pseudo-code of this stage,
where P is the total number of MPI nodes, and
myrank the MPI rank of a node. For simplicity, only
the case when P is an odd number is shown. When P
is even, step V needs to be modified so all possible
rows are formed:

At iteration i,
 I. select the pivoting column

II. balance the load
III. In each MPI node, create the new rows R from

local tableau Bi-1, Bi is formed by copying all
rows from local Bi-1 which contain zero in the
pivoting column of ST.

IV. check_independence(R, Bi)
V. for each j from 0 to (P-1)/2, do

 to = (myrank+j+1)%P;
 from = (myrank+P-j-1)%P;
 send local Bi-1 to rank to.
 receive remote Bi-1

from from rank from.
 form the rows R from local Bi-1 and Bi-1

from

 check_independence(R, Bi)

In selecting the pivoting column, we compute the
number of possible combinations for each remaining
column and choose the column that produces the least
number of combinations. In load balancing, rows are
transferred among different MPI nodes so that the
number of local positive, negative and zero rows is
approximately the same. Positive rows are defined as
rows with a positive value at the pivoting column.
Similarly, negative and zero rows are defined as rows
with a negative or zero values at the pivoting column.
Step III, IV, and V together form all possible rows and
perform the necessary independence tests.

 The routine check_independence(R,B) is

 4

used to test the systemic independence of rows in all
the R’s against the existing rows in all the B’s in a
distributed manner. Note that R’s and B’s in different
MPI nodes are different:

 check_independence(R, B)

I. check_local(R)
II. check_local(R, B)
III. for each j from 0 to P, do

 to = (myrank+P-1)%P;
 from = (myrank+1)%P;
 send local B to rank to
 receive remote Bfrom from rank from
 if (j != P-1)
 check_local(R, Bfrom)

IV. for each j from 0 to P, do
 to = (myrank+P-1)%P;
 from = (myrank+1)%P;
 send local R to rank to
 receive remote Rfrom from rank from
 if (j != P-1)
 check_local(R, Rfrom)

 V. Merge local R to local B.

where routine check_local(R)is used to check the
systematic independence among rows in R and
check_local(R,B) is used to check the systemic
independence between rows in R and B. In either
routine, a row is dropped if found to be dependent.

We could directly rotate R’s among different
MPI nodes in step III, thereby, negating the need for
step IV. However, the size of R is typically much
larger than B, thus, it is beneficial to rotate B first in
order to cut down the communication volume. Once
step III is completed, the size of R has been drastically
reduced (there are usually a large number of
systemically dependent rows existing in R.) Therefore,
we rotate R’s to check systematic independence
between the rows in local and remote R's. This scheme
dramatically decreases the communication and is
crucial to the high performance of the parallel
algorithm.

Step III: The task of balancing the external
metabolites is separated into two phases: (1) the
systematic independence tests for new rows and (2)
the reconstruction phase for systemically independent
rows. In each iteration of Step III, we use the same
strategy used in Step II for load balancing. The data
structures and routines for Step II are also reused.
5. Performance Evaluation and Discussion

A subsystem of Escherichia Coli metabolism
composed of 140 reactions and 96 metabolites
(without preprocessing) was used as a benchmark for
the new parallel algorithm. The subsystem considers

aerobic growth on glycerol. In addition to biomass and
CO2, lactate, acetate, ethanol, formate can also be
produced. Greater than 10K (10,960) extreme
pathways were found for this system The computation
was performed on a Linux cluster of 2.4 GHz Intel
Pentium-IV CPUs using Myrinet interconnection
among the dual-CPU nodes.

Figure 1. The number of combinations in

each iteration.

Figure 1 shows the number of combinations
versus iteration during the computation of the
Escherichia Coli extreme pathways. The advantage of
parallelism is shown in Figure 2 which plots the wall-
clock execution time versus the number of processors
used. With 70 CPUs, all the extreme pathways of this
Escherichia Coli subsystem were computed in less
than 280 seconds. The parallel performance (defined
as the inverse of the execution time) versus the
number of processors is shown in Figure 3. Linear
speedup is also shown as a reference. We found that
the execution time decreased faster than the rate of
increase in the number of processors, exhibiting super-
linear speedup for the parallel algorithm implemented.
 The super-linear speedup is due to the decrease in
the number of independence tests performed as the
number of MPI nodes increases. In the routine
check_independence(R,B), matrices R and B
in each MPI node are rotated among different MPI
nodes. The dependent rows in R or B are dropped
before they rotate to another MPI node. As the number
of MPI nodes increases, the dependent rows are more
likely found and dropped earlier in the iteration. Thus,
the number of independence tests associated with
dependent rows may decrease as the number of MPI
nodes increases. For example, if 4 new rows need to
be tested against 4 existing rows and each new row is
dependent on one existing row, Figure 4 (a) shows that
it takes 10 independence tests in the serial algorithm.
In comparison, it takes only 1 simultaneous test on 4
MPI nodes (Figure 4 (b)) resulting in an actual
speedup of 10 instead of the linear speedup of 4.

 5

100

1000

10000

100000

0 20 40 60 80

Number of Processors

E
xe

cu
ti

on
 T

im
e

(s
ec

on
d)

Figure 2. The execution time versus the

number of processors used for the same
problem.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 20 40 60 80

Number of Processors

P
er

fo
rm

an
ce

 (
1/

se
co

nd
)

Actual performance Linear speedup

Figure 3. The super-linear speedup of the

parallel algorithm.

Figure 4. The illustration of the number of
independence tests for serial and parallel

runs assuming each new row is dependent on
one existing row. (a) 10 independence tests

for the serial run. (b) Only 1 simultaneous test
for a parallel run with 4 MPI nodes.

6. Conclusions

We have parallelized the extreme pathways

algorithm of Schilling et al. [3] using the Message
Passing Interface (MPI). The parallel algorithm
exhibits super-linear scalability because the number of
independence tests required decreases as the number
of MPI nodes increases. A subsystem of Escherichia
coli metabolism which considers aerobic growth on

glycerol, composed of 140 reactions and 96
metabolites, is used as a benchmark. Greater than 10K
(10,960) extreme pathways were computed in under
280 seconds using 70 2.4 GHz Intel Pentium-IV CPUs
with Myrinet interconnection among the dual-CPU
nodes of the Linux cluster. The algorithm for
computing elementary flux modes [6] is closely
related so that similar parallelization strategy is
expected to apply also.

Acknowledgments

The authors wish to acknowledge Kunal Shah for his
work on the serial and parallel codes and Randy Melen
and coworkers for the technical support of the Linux
cluster. This work was supported by Genencor
International, Inc pursuant to CRADA 251 with
SLAC, and by the U.S. Department of Energy under
contract number DE-AC03-76SF00515.

References:

[1] C.H. Schilling, S. Schuster, B.O. Palsson, and R.
Heinrich, “Metabolic Pathway Analysis: Basic Concepts and
Scientific Applications in the Post-genomic Era”,
Biotechnol. Prog., 1999, 15, pp. 296-303.

[2] J.A. Papin, N.D. Price, S.J. Wiback, D.A. Fell, and B.O.
Palsson, “Metabolic Pathways in the Post-genome Era”,
Trends in Biochemical Sciences, 2003, 28, pp. 250-258.

[3] C.H. Schilling, D. Letscher, and B. Palsson, “Theory for
the Systemic Definition of Metabolic Pathways and their use
in Interpreting Metabolic Function form a Pathway-Oriented
Perspective”, J. Theor. Biol., 2000, 203, pp. 229-248.

[4] J. Stelling, S. Klamt, K. Bettenbrock, S, Schuster, and
E.D. Gilles, “Metabolic Network Structure Determines Key
Aspects of Functionality and Regulation. Nature, 2002, 420,
pp. 190-193

[5] S. Klamt and J. Stelling, “Combinatorial Complexity of
Pathway Analysis in Metabolic Networks”, The 10th
Meeting of the International Study Group of
Biothermokinetics, Bordeaux-Arcachon, France, Sepember,
2002.

[6] T. Pfeiffer, I. Sanchez-Valdenebro, J.C. Nuno, F.
Montero, and S. Schuster, “METATOOL: for Studying
Metabolic Networks”, Bioinformatics, 1999, 15, pp. 251-257

 [7] N.F. Samatova, A. Geist, G. Ostrouchov, and A.
Melechko, “Parallel Out-of-core Algorithm for Genome-
Scale Enumeration of Metabolic Systemic Pathways”, IEEE
International Workshop on High Performance
Computational Biology, 2002.

