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Abstract 

 
We parallelized the serial extreme pathways 

algorithm presented by Schilling et al., in J. Theor. 
Biol. 203 (2000) using the Message Passing Interface 
(MPI). The parallel algorithm exhibits super-linear 
scalability because the number of independence tests 
performed decreases as the number of MPI nodes 
increases. A subsystem of the metabolic network of 
Escherichia coli with 140 reactions and 96 
metabolites (without preprocessing) is used as a 
benchmark. The extreme pathways of this system are 
computed in under 280 seconds using 70 2.4 GHz Intel 
Pentium-IV CPUs with Myrinet interconnection 
among the dual-CPU nodes of the Linux cluster.  
 
1. Introduction 
 

Extreme pathways are systemically independent 
vectors that describe steady-state metabolic flux 
distributions. Metabolic network analysis using 
extreme pathways or the closely related elementary 
modes is a promising approach [1-4]. However, the 
combinatorial complexity [5] of extreme pathway 
algorithms limits their application to only small-scale 
problems. In this paper, we present an MPI-based 
parallel extreme pathways algorithm that addresses 
some of the computational challenges in solving larger 
networks.  

We review the underlying concept of an extreme 
pathway and then present the serial extreme pathways 
algorithm. This is followed by a description of the 
parallel algorithm and a discussion on its performance.   
 
2. Extreme Metabolic Pathways 
 
A metabolic network is a set of coupled chemical 
reactions and transport processes that serve to 
replenish and/or drain the concentration of network 
components which are the metabolites. The 
connectivity of a metabolic network is encoded in the 
stoichiometric matrix S. At steady-state, the flow 
through the network is described by:  

0=⋅ vS ,   ii ∀≥ 0v  

where S denotes the m × n array of stoichiometric 
coefficients. The rows in S represent network 
metabolites whereas the columns correspond to 
chemical reactions or transport processes.  The vector 
v denotes the set of network flows termed the flux 
vector. Because all fluxes are constrained to be non-
negative (reversible fluxes are separated into forward 
and reverse components.), the solution space 
containing all permissible steady-state flux vectors is 
convex. The basis vectors spanning the convex 
solution space are referred to as the extreme pathways. 
Every steady-state flux distribution can then be written 
as a non-negative linear combination of the extreme 
pathway vectors {pi}: 

0≥=� i
i

ii αα pv  

 
3. Extreme Pathways Algorithm 
 

The extreme pathways algorithm of Schilling et 
al. [3] consists of three steps:  

Step I: Initialization. A tableau T is formed by 
appending an n×n identity matrix I to the transpose of 
the stoichiometric matrix ST. Reversible reactions are 
separated into forward and backward fluxes while the 
stoichiometric coefficients of backward fluxes are 
scaled by -1. T is then modified by transferring 
unconstrained external fluxes to a temporary matrix 
TE. Lastly, the algorithm identifies the set of all 
metabolites {M} that do not have an external flux 
associated with them.  

Step II: Main Calculation Loop. The algorithm 
processes through all metabolites in {M} and balances 
the fluxes.  In the ith iteration, the tableau Ti is formed 
by copying all rows from Ti-1 containing a zero in the 
column of ST that correspond to the metabolites in 
{M}. This column is referred to as the pivoting 
column. Of the remaining rows in Ti-1, all possible 
combinations that contain values of the opposite sign 
in the pivoting column are made. If r1 and r2 are two 
rows with opposite sign in the pivoting column, a new 
row is formed: 

          rnew =  r1*|r2,p|  + r2*|r1,p|  
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This new row is tested for systemic independence with 
existing rows in Ti.  It is added to Ti only if it is 
systemically independent.  

Step III: Balance External Metabolites.  First, TE 

is appended to the resulting T of the previous step. 
Starting in the first nonzero column in ST, add the 
corresponding non-zero row from TE to each row and 
create zeros in the entire upper portion of the column.  
When finished, remove the row in TE corresponding to 
the exchange flux for the metabolite just balanced. All 
rows formed are tested for systemic independence and 
added to T only if they are independent. Repeat this 
procedure until all the external metabolites are 
balanced. The resulting T contains the extreme 
pathway in place of the identity matrix at the initial 
step.   
 
4. Parallelization using MPI 
 
We have parallelized the extreme pathways algorithm 
just presented using the Message Passing Interface 
(MPI). In the parallel implementation, the tableau 
consisting of the transpose of the stoichiometric matrix 
and the pathway matrix is partitioned row-wise onto 
the MPI nodes. In each iteration the algorithm 
determines the pivoting column by selecting the 
column that produces the least number of new rows. A 
set of new rows is formed from the local and remote 
tableau in the MPI node. The local and remote rows 
are checked, in a distributed manner, for systemic 
independence. The remote MPI node involved in 
forming new rows is then rotated to form all possible 
combinations. Communication among MPI nodes is 
drastically reduced using a bit representation for the 
pathway matrix, and by exchanging the systematically 
independent rows instead of the newly formed rows in 
the independence check. The parallel implementation 
for each of the three steps in Schilling et al algorithm 
are as follows:: 

Step I: The initial tableau T, composed of the 
transpose of the stoichiometric matrix ST and the 
pathway matrix (initially the identity matrix) I, is 
partitioned row-wise. A bit-representation of the 
pathway matrix B is constructed (the zero and nonzero 
coefficients in matrix I correspond to 0’s and 1's in 
B, respectively.) The data structure of B is a vector 
of BITStruct. An instance of BITStruct consists of a bit 
array, two integers (i, and j), and a short integer 
(pid). An instance of BITStruct is used to represent a 
new row formed from row i and j in the previous 
tableau. Row i is always in the local tableau. If pid 
is a nonnegative number, row j resides in the remote 
MPI node whose rank is pid. Otherwise, row j is a 
local row. The BITStruct representation is an 
important concept since we use it to form 
combinations without explicitly constructing the 

pathway row (represented by a vector of type double.) 
Both the communication among MPI nodes and 
memory usage are drastically reduced using the bit 
representation.  A bitmap structure was also used only 
for the purpose of reducing search space in a parallel 
out-of-core algorithm by Samatova et al. [7] . 

Step II:  The implementation is separated into two 
stages. First, the bit-representation of the pathway 
matrix B is used to form new rows and test systemic 
independence.  Second, the pathway matrix for matrix 
B containing only the systemically independent rows 
is reconstructed.  

The total number of new rows is directly related 
to the overall performance of the algorithm.  Thus, it is 
important to select a good pivoting column; the natural 
ordering typically dramatically increasing the number 
of new rows. In the first stage, the pivoting column is 
selected to produce the least number of new rows. 
Then the load in each MPI node is balanced by 
repartitioning the T and B matrices and by migrating 
rows. The following is the pseudo-code of this stage, 
where P is the total number of MPI nodes, and 
myrank the MPI rank of a node. For simplicity, only 
the case when P is an odd number is shown. When P 
is even, step V needs to be modified so all possible 
rows are formed:  
 
At iteration i, 
      I.   select the pivoting column 

II. balance the load 
III. In each MPI node, create the new rows R from 

local tableau Bi-1, Bi is formed by copying all 
rows from local Bi-1 which contain zero in the 
pivoting column of ST. 

IV. check_independence(R, Bi)  
V. for each j from 0 to (P-1)/2, do   

     to    = (myrank+j+1)%P; 
  from = (myrank+P-j-1)%P; 
  send local Bi-1  to rank to.  
  receive remote Bi-1

from from rank from. 
     form the rows R from local  Bi-1 and  Bi-1

from 

     check_independence(R, Bi) 
 
In selecting the pivoting column, we compute the 
number of possible combinations for each remaining 
column and choose the column that produces the least 
number of combinations.  In load balancing, rows are 
transferred among different MPI nodes so that the 
number of local positive, negative and zero rows is 
approximately the same.  Positive rows are defined as 
rows with a positive value at the pivoting column. 
Similarly, negative and zero rows are defined as rows 
with a negative or zero values at the pivoting column.  
Step III, IV, and V together form all possible rows and 
perform the necessary independence tests.   

  The routine check_independence(R,B) is 
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used  to test the systemic independence of rows in all 
the R’s against the existing rows in all the B’s in a 
distributed manner. Note that R’s and B’s in different 
MPI nodes are different: 
 
 check_independence(R, B) 

I. check_local(R) 
II. check_local(R, B) 
III. for each j from 0 to P, do   

     to    = (myrank+P-1)%P; 
  from = (myrank+1)%P; 
  send local B  to rank to 
  receive remote Bfrom from rank from 
     if ( j != P-1 ) 
      check_local(R, Bfrom)  

IV. for each j from 0 to P, do   
     to  = (myrank+P-1)%P; 
  from = (myrank+1)%P; 
  send local R to rank to 
  receive remote Rfrom from rank from 
     if ( j != P-1 ) 
        check_local(R, Rfrom) 

       V.  Merge local R to local B. 
 
where routine check_local(R)is used to check the 
systematic independence among rows in R and  
check_local(R,B) is used to check the systemic 
independence between  rows in R and  B. In either 
routine, a row is dropped if found to be dependent. 

We could directly rotate R’s among different 
MPI nodes in step III, thereby, negating the need for 
step IV. However, the size of R is typically much 
larger than B, thus, it is beneficial to rotate B first in 
order to cut down the communication volume.  Once 
step III is completed, the size of R has been drastically 
reduced (there are usually a large number of 
systemically dependent rows existing in R.) Therefore, 
we rotate R’s to check systematic independence 
between the rows in local and remote R's. This scheme 
dramatically decreases the communication and  is 
crucial to the high performance of the parallel 
algorithm.  

Step III: The task of balancing the external 
metabolites is separated into two phases: (1) the 
systematic independence tests for new rows and (2) 
the reconstruction phase for systemically independent 
rows. In each iteration of Step III, we use the same 
strategy used in Step II for load balancing.  The data 
structures and routines for Step II are also reused.  
5. Performance Evaluation and Discussion 
 
A subsystem of Escherichia Coli metabolism 
composed of 140 reactions and 96 metabolites 
(without preprocessing) was used as a benchmark for 
the new parallel algorithm. The subsystem considers 

aerobic growth on glycerol. In addition to biomass and 
CO2, lactate, acetate, ethanol, formate can also be 
produced. Greater than 10K (10,960) extreme 
pathways were found for this system  The computation 
was performed on a Linux cluster of 2.4 GHz Intel 
Pentium-IV CPUs using Myrinet interconnection 
among the dual-CPU nodes.  

 
Figure 1.  The number of combinations in 

each iteration. 
 

Figure 1 shows the number of combinations 
versus iteration during the computation of the 
Escherichia Coli extreme pathways. The advantage of 
parallelism is shown in Figure 2 which plots the wall-
clock execution time versus the number of processors 
used. With 70 CPUs, all the extreme pathways of this 
Escherichia Coli subsystem were computed in less 
than 280 seconds.  The parallel performance (defined 
as the inverse of the execution time) versus the 
number of processors is shown in Figure 3. Linear 
speedup is also shown as a reference. We found that 
the execution time decreased faster than the rate of 
increase in the number of processors, exhibiting super-
linear speedup for the parallel algorithm implemented.  
       The super-linear speedup is due to the decrease in 
the number of independence tests performed as the 
number of MPI nodes increases. In the routine 
check_independence(R,B), matrices R and B 
in each MPI node are rotated among different MPI 
nodes. The dependent rows in R or B are dropped 
before they rotate to another MPI node. As the number 
of MPI nodes increases, the dependent rows are more 
likely found and dropped earlier in the iteration. Thus, 
the number of independence tests associated with 
dependent rows may decrease as the number of MPI 
nodes increases. For example, if 4 new rows need to 
be tested against 4 existing rows and each new row is 
dependent on one existing row, Figure 4 (a) shows that 
it takes 10 independence tests in the serial algorithm.  
In comparison, it takes only 1 simultaneous test on 4 
MPI nodes (Figure 4 (b)) resulting in an actual 
speedup of 10 instead of the linear speedup of 4.  
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Figure 2. The execution time versus the 

number of processors used for the same 
problem. 
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Figure 3. The super-linear speedup of the 

parallel algorithm. 
 

 
 

Figure 4.  The illustration of the number of 
independence tests for serial and parallel 

runs assuming each new row is dependent on 
one existing row.  (a) 10 independence tests 

for the serial run. (b) Only 1 simultaneous test 
for a parallel run with 4 MPI nodes. 

 
6. Conclusions 

 
We have parallelized the extreme pathways 

algorithm of Schilling et al. [3] using the Message 
Passing Interface (MPI). The parallel algorithm 
exhibits super-linear scalability because the number of 
independence tests required decreases as the number 
of MPI nodes increases. A subsystem of Escherichia 
coli metabolism which considers aerobic growth on 

glycerol, composed of 140 reactions and 96 
metabolites, is used as a benchmark. Greater than 10K 
(10,960) extreme pathways were computed in under 
280 seconds using 70 2.4 GHz Intel Pentium-IV CPUs 
with Myrinet interconnection among the dual-CPU 
nodes of the Linux cluster. The algorithm for 
computing elementary flux modes [6] is closely 
related so that similar parallelization strategy is 
expected to apply also.  
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