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Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of
familiar charge units – electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few
simple assumptions all these effects may be described using a generalized version of charge renormalization for locally
conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes
nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental

solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description
is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the
vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological
charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional
values of B-L for electrically charged elementary particles. [J. Math. Phys. 44, 3607 (2003), corrected and sharpened]

1. INTRODUCTION

The ascendancy of fundamental particles in think-
ing about microscopic physics began with atoms and
molecules, followed by electrons, photons, and nuclei,
then nucleons and neutrinos, quarks, gluons, and W and
Z bosons. The pattern of a hierarchy of length scales,
with the particles of one scale being compounds of new
fundamental particles at a shorter scale, has replayed
itself several times over. There is no direct evidence
indicating whether this pattern terminates eventually.
However, string theory and its developments raise the
prospect that at sufficiently short scales the fundamental
objects are not particles, but rather extended entities, so
that the pattern might indeed come to an end.

A reason to worry about the universal validity of the
particle description at currently accessible scales has
come from theoretical and experimental discoveries of
fractional charge. If at the beginning of microscopic
physics all kinds of different charges had been observed,
with no rational relation among them, progress in un-
derstanding would have been impeded seriously indeed.
We know that did not happen, but in principle the re-
cent discoveries might herald an era where precisely such
chaos in the pattern of charges could emerge. The pur-
pose of this work is to present some simple definitions
and theorems, based on minimal assumptions, which im-
ply that fractional charge fits into the familiar framework
of charge renormalization, and consequently is so tightly
constrained that any threat of ‘charge chaos’ is precluded.

In the standard model of strong and electroweak inter-
actions there are three isolable, quantized charges observ-
able in vacuum at zero temperature that may be locally
conserved, electric charge Q, measured in units of the

electron charge e, spin ~S, whose projection onto a fixed
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axis has integer or half-integer values in units of h̄, and
the difference between baryon and lepton charge B-L,
usually assumed to have the value 1 for a proton or neu-
tron, and -1 for an electron or neutrino. Despite an expo-
nentially small effect associated with electroweak instan-
tons, which ’t Hooft [1] recognized would produce baryon
decay through the Adler-Bell-Jackiw chiral anomaly [2],
and possible additional interactions associated with very
high energy scales, B+L also may be treated as conserved
in many contexts. If electroweak effects and the differ-
ence of light quark masses may be ignored, so that at-
tention is focused exclusively on the strong interactions,

then also isospin ~I may be treated as conserved. Even
if electromagnetic interactions are included, still I3, as
well as flavor charges of higher generations of quarks –
strangeness, charm, bottom, and top – are conserved.

Thus, many isolable, quantized charges observable in
the laboratory are exactly or at least quite accurately
conserved. It should be noted that besides these charges
there are the continuous (i.e., nonquantized), locally con-
served charges corresponding to energy and momentum,
which precisely because they have a continuum of allowed
values need not concern us further here.

At this point it may be worthwhile to discuss a bit
more what is meant by the concept ‘charge’. Of course,
the prototype example is electric charge, whose conser-
vation follows from the Maxwell equations. Already in
classical physics it was understood that the existence of
a conserved charge could be deduced from a symmetry
of the dynamics. In quantum physics, this is expressed
in terms of a unitary (or in the case of time reversal
symmetry, antiunitary) operator which commutes with
the Hamiltonian. If that symmetry be continuous, then
the generators of the symmetry must be self-adjoint op-
erators. In certain cases, such as the generators of the
rotation group in three space dimensions, which are iden-
tified as the angular momentum or spin of a system under
study, the commutation relations among the generators
lead directly to the quantization of the allowed values of
the charge. However, for electric charge such a deduc-
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tion has not yet been possible, and for B-L there is not
even a known framework to discuss the symmetry be-
yond the statement that phenomenologically established
couplings conserve the charge, i.e., the phenomenological
Lagrangian is invariant under the unitary transforma-
tion generated by the operator B-L. Thus, in terms of
current knowledge, symmetries imply conservation and
sometimes even quantization of observable charges, but
there is at this point no assurance that all cases of appar-
ently conserved and quantized charges are consequent to
symmetries which can be identified in any way other than
by recognizing that the charges seem to be conserved.

In relativistic physics, a conserved charge whose local
density is defined must be locally conserved. That is,
if the charge in some volume changes, the immediately
surrounding volume must experience an equal and oppo-
site change in charge, or expressed differently, the rate of
change of the charge in a volume is equal and opposite
to the net current flowing out of the volume. The reason
is easily found by assuming the contradiction to this as-
sertion: If in one inertial frame a conserved charge disap-
peared in one place and reappeared instantly at a distant
place, then in different frames of reference boosted by ve-
locity shifts from the original frame the total charge at
certain times either would vanish or would be double the
original value, evidently violating charge conservation.

How may charges be measured or observed? Again,
the prototype is electric charge, which may be measured
through the electromagnetic interaction, either by deter-
mining the influence on a particle of a specified electro-
magnetic field (thus measuring the Lorentz-force charge),
or by using test particles with known charges to measure
the electric flux coming out of the particle (thus measur-
ing the Gauss-law charge). In the quantum context, these
two may be called the Aharonov-Bohm charge and the
local charge, respectively [3]. For other types of charge
(i.e., not coupled to gauge fields), one must use more
indirect methods, such as counting different spin states
of an object. To help understand the conceptual struc-
ture, one may introduce hypothetical abelian gauge fields
weakly coupled to any conserved, localizable charge one
wishes to measure.

Are there any circumstances in which fractional values
of charges may be found, and if so, what are the precise
conditions for this to occur? Let us turn to that issue.

2. DEFINITIONS AND THEOREMS

Def. 1 (Fundamental particle): A particle is called
fundamental if it has no discernible internal structure.
This means that at the shortest distance scales such
particles correspond to local fields appearing in the La-
grangian, with only perturbative interactions whose ef-
fects can be estimated accurately.

Remarks: Under this criterion, the established funda-
mental particles are the photon, the gluon, the W+ and
Z bosons, along with two leptons, the electron and the

neutrino, and two quarks, the up and the down quark,
plus their antiparticles (the photon and Z certainly, and
the neutrino possibly, are their own antiparticles). In
the standard model, copies of the leptons and the quarks
appear again in two more families.

While quarks and gluons are not isolable in vacuum,
the fact that quantum chromodynamics (QCD) exhibits
asymptotic freedom [4], meaning weak coupling at short
distance scales, implies that at those scales they may be
detected and (for quarks) their electric charge measured.
As the term “fundamental” suggests, the charges of all
known particles in vacuum can be constructed from those
of the fundamental particles. In addition to these known
fundamental particles there may be other, more massive
ones, and also fundamental solitons as discussed below.

Def. 2 (Fundamental soliton): A fundamental soli-
ton may be described (with well-controlled quantum cor-
rections) as a classical field configuration with localized
energy, where the long-range field pattern implies that
no process with finite action could dissolve it.

Description of fundamental solitons: The kink in d = 1
may be described by a classical scalar field which has
equal potential energy density minima for two or more
distinct values of the field. Thus the field can go asymp-
totically to one value as x → +∞ and another value as
x → −∞. No finite-action process could destroy this
structure, which nevertheless possesses a finite, localized
energy in the region between the two asymptotic zones.
Consequently the kink has a conserved topological charge,
and so there would be no contradiction if it carried frac-
tional values of other charges.

In d = 2, a vortex can be described by a complex scalar
field which rotates in phase by 2nπ at large distances
from its center as the radial direction rotates by 2π, while
the field magnitude approaches a fixed value with in-
creasing radius, again to minimize the field’s potential
energy density. In the Abelian Higgs model for such a
vortex, gradient energy is kept finite through coupling of
the scalar field to a gauge field, which makes the covari-
ant azimuthal gradient negligible at large distances, and
implies a magnetic flux stored near the center. There is
an alternate description of the asymptotic fields, in which
the scalar field goes to a fixed constant and the gauge field
(pure gauge) corresponds to an Aharonov-Bohm phase
factor e2πinq/Q relating the phase of a charged parti-
cle wave function at, e.g., azimuthal angles φ = 0 and
φ = 2π, where Q is the charge of the scalar field and q
is the charge of a particle which experiences a nontrivial
Aharonov-Bohm effect upon diffraction around the flux.
Again, no finite-action process could destroy the vortex.

In d = 3, a configuration again containing a gauge field
along with one or more other classical fields generates a
long-range magnetic monopole field, which cannot be de-
stroyed with finite action, regardless of the precise details
of the monopole interior.

Def. 3 (Elementary particle): In a given medium,
an isolable particle is called elementary if it is funda-
mental or if any fundamental constituents could not be
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isolated in ordinary vacuum. If the particle carries con-
served charges, it can be destroyed only by processes
conserving all those charges, e.g., annihilation with its
antiparticle.

Remarks: Because quarks and gluons cannot be iso-
lated, they are represented in the list of elementary par-
ticles by composite objects, of which the lightest are the
(B=0) π mesons and the (B=1) nucleons (proton and
neutron). It is significant that protons, and hadrons in
general, exhibit strong short-range interactions, so that
they really are isolable only at long distance scales. Still,
in nuclear matter it possible to make an accurate de-
scription of the dynamics including quasiparticles with
the same charges as neutrons and protons, suitably rede-
fined so that the “nucleon quasiparticles” interact weakly.
It is a useful perspective to consider these quasiparticles
as nucleons whose effective interactions are renormalized
by the strong, short-range interactions of the nuclear
medium: Each quasinucleon may be viewed as having
a nucleon kernel surrounded by a cloud of medium polar-
ization. A very similar approach has been most success-
ful in describing electron quasiparticles in many different
condensed-matter systems. Thus, while the definition of
an elementary particle may be medium-dependent, there
often is a simple correspondence between sets of elemen-
tary particles in different media.

Because all elementary particles either are fundamen-
tal or have charges which may be constructed from those
of the fundamental particles and solitons, these objects
may be considered the building blocks for everything else.
Def. 4 (Fractional charge): An object carrying only
a portion of the charges of finite combinations of elemen-
tary particles may be said to carry fractional charge.

Remarks: In principle, such a particle might have, for
example, the same spin as the electron, but an electric
charge which is an irrational fraction of e. There is no
known instance like this for particles in vacuum, but
in any insulating medium exactly such a phenomenon
is found, and in the accepted interpretation this frac-
tional value is treated as a renormalization of the electron
charge from its value in vacuum.

By this definition, the electric charges of quarks are
examples of fractional charge, but the fractional values
arise trivially, because these fundamental particles carry
a smaller unit of charge than any (isolable) elementary
particle.

Some thought experiments may illuminate the defini-
tion. First, imagine a massive particle such as a proton
slowly entering an insulating medium. As it enters, its
local charge is reduced and, by the time it has pene-
trated far inside, the extra charge is found on the surface
of the insulator. Thus, total charge is locally conserved
throughout the process, but it ends up fractionated be-
tween the charge localized on the particle and the charge
on the surface. A second experiment, even in vacuum,
invokes a slow increase from zero in the value of α, the
electromagnetic coupling. As this occurs, the electric
field measurable at some distance from a charged par-

ticle increases in strength, but not quite proportionally
to α, because vacuum polarization increasingly screens
the field. Again, charge is locally conserved, because as
the coupling increases there is an outward flow of current,
with the current density proportional to the electric field
at each point.

As mentioned already, the charge which is fractionated
is the local charge, while the AB charge remains invari-
ant. This is illustrated by another thought experiment.
Imagine a capacitor stuffed with dielectric and set at volt-
age V . Then an electron of charge −e passing through
the capacitor will acquire from the electric field a net en-
ergy −eV , regardless of the magnitude of the dielectric
response. Of course, the presence of the dielectric im-
plies an increase in the amount of surface charge on the
capacitor plates to achieve the same V as for the plates
in vacuum, but once this V is established the effect on
the electron is not further modified by the dielectric.

Def. 5 (Breakup): On passing from one medium to
another, a particle may undergo charge breakup, meaning
that on the other side there are several particles instead
of one, each with only a portion of the set of charges
carried by the one particle in the original medium.

Remarks: Breakup evidently is an intrinsically nonadi-
abatic process, as the (integer) number of mobile degrees
of freedom changes discontinuously. Note that charge
breakup may occur when, for example, a fast electron
enters a conventional insulator, knocking loose a number
of electrons each of which penetrates far into the medium.
As a result, very little charge may be left on the surface.
Nevertheless, there is a big distinction between such a
case and one where the surface simply cannot take up
charge at all, as occurs when an electron enters from
above a two-dimensional layer exhibiting the fractional
quantum Hall effect.

Now we are ready for the first theorem.
Theorem 1 (Conservation of particles with frac-
tional charge): An isolable particle that has part of
the conserved charge(s) of previously identified elemen-
tary particles in its medium must itself be an elementary
or fundamental particle (or soliton) of that medium. (As
indicated above, a particle may carry fractional charge
with respect to particles in different media, as a conse-
quence of medium-dependent charge renormalization.)

Proof: This statement follows directly from the defi-
nition of an elementary particle, because the conserved
fractional charge(s) cannot be reproduced by any finite
assembly of particles carrying integer values of the same
charge(s).

Remarks: Any of the three fundamental solitons po-
tentially would be able to carry charges which are pieces
or fractions of those carried by other elementary parti-
cles in the same medium. From the above argument,
no other solitons can carry fractional charge, a fact al-
ready understood for nontopological solitons [5]. A type
of nontopological soliton much discussed recently is the
‘Q ball’ [6], [7], a configuration of a charged scalar field
which carries a very large electric charge, stabilized by
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the attractive self-interaction of the scalar field. Such a
system evidently can be made to disintegrate, and there-
fore could not carry a fraction of elementary charges.

Perhaps the most famous topological soliton which ac-
cording to the above criterion is not fundamental is the
skyrmion, described in the nonlinear sigma model by a
4-component scalar field with fixed magnitude. The soli-
ton corresponds to a map from R3 (with spatial infinity
treated as a single point) to S3. The winding number of
the map is an exactly conserved integer, which Skyrme
proposed should be identified with baryon number [8].
However, in its coupling to light fermions, the skyrmion
must have effects equivalent to those of a similar object in
the linear sigma model, where a fourth-order polynomial
potential density is minimized for a specified magnitude
of the Skyrme field. For this structure the topological
quantum number could be destroyed with finite action
by temporarily creating a zero in the Skyrme field at the
center of the skyrmion, and then allowing the topological
charge to flow into the zero and disappear.

MacKenzie and Wilczek [9] and D’Hoker and Gold-
stone [10] each computed flows of baryon current involved
in the adiabatic creation of a skyrmion, and found integer
baryon number, but implicitly left open the possibility
that some exotic circumstance might produce a fractional
result instead. Their construction works exactly the same
way for the original skyrmions or for the almost-stable
objects in the linear sigma model, and therefore the ar-
gument here shows that one never could obtain fractional
charge for this system. There is one apparent way out:
Insist that the high-energy behavior indeed is governed
by the strict nonlinear sigma model, with fixed magni-
tude of the Skyrme field. The trouble now is that this
theory is well-known to be nonrenormalizable, so that
this option is undefined – one only may use the theory
with an energy cutoff, which is equivalent to replacing the
model with a linear sigma model. Stated differently, us-
ing the nonlinear sigma model implies particular behav-
ior at arbitrarily high energies of what should be only an
effective field theory. This would be tantamount to intro-
ducing new particles associated with those high energies.

Theorem 2 (Fractional charge from conventional
renormalization): For a fractional charge to be associ-
ated with conventional renormalization, the particle must
be an electric charge or a magnetic monopole in d = 3, or
a kink in d = 1. Otherwise (in particular for the vortex
in d = 2), the fractional charge must be intrinsic to the
structure of the particle or fundamental soliton.

Proof: For conventional renormalization, as some cou-
pling parameter changes adiabatically, there must be a
current flow of the relevant charge into or out of the par-
ticle in question. Far away from the d = 3 electric charge,
or the magnetic monopole, there is a radial 1/r2 field.
Thus, a local current density proportional to that field
and to the time rate of change of some scalar or pseu-
doscalar parameter would provide a steady net current
into the particle. Clearly the long-range field is necessary
to give direction as well as the correct radial dependence

to the current density. In one space dimension, the differ-
ent asymptotic behaviors of the field to right and left of
the kink can determine locally the sign and magnitude of
a current, again proportional to the time rate of change
for some suitable coupling parameter.

Remarks: Thus, in these cases the possibility of creat-
ing fractional charge by continuous variation of a suitable
parameter is open, while for other isolable objects it is
not. Note that electrically charged particles in d = 1 or
d = 2 are not isolable, because the energy for a particle-
antiparticle pair diverges with separation. In all cases
except the two in d = 3 and the one in d = 1 just de-
scribed, the renormalization cannot be accomplished by
a flow from infinity, and therefore must be intrinsic to the
structure of the particle. For description of such intrinsic
fractional charge as due to discrete renormalization to be
meaningful, it must be possible to identify some ‘core’ of
the particle, with its characteristic conserved charge, to
which the medium polarization (leading to net fractional
charge) is attached. That turns out to be possible, and
so at least a useful perspective, for all known cases.

We have seen that among solitons only the funda-
mental ones (stabilized by long-range physics) can nucle-
ate fractional charge. The obvious corollary is that the
only other possible ‘kernels’ are those elementary par-
ticles which can be taken as given (i.e., determined by
short-range physics). Blankenbecler and Boyanovsky [11]
have presented another perspective which leads to the
same conclusion as the one here for the case of fractional
fermion charge induced by topology. They argue that the
high-energy coupling of fermions carrying integer values
of such a charge is influenced by the asymptotic field of
the soliton, and this directly determines the fractional
part of the charge localized on the soliton.

3. ILLUSTRATIONS AND COMMENTS

Before going on, it is important to emphasize that the
above theorems give necessary conditions for fractional
charge – they do not demonstrate that it occurs. Such
demonstrations were the important content of works to
be cited below.

It has been shown here that the only solitons whose
topological charges could have a conventional renor-
malization to produce fractional values of certain other
charges are kinks and monopoles, the two types of object
first found by Jackiw and Rebbi [JR] [12] to carry frac-
tional charge – to be precise, fermion number F = 1/2.
Their results were verified elegantly using adiabatic flow
methods by Goldstone and Wilczek [13] and by Seiberg
and Witten [14]. These methods can be implemented in
such a way that the soliton remains intact, while varia-
tion of certain couplings ‘decorates’ the object with frac-
tional F and perhaps also fractional electric charge.

Fractional local charges are significant only if they are
eigenvalues rather than expectation values; they must
be locally conserved sharp quantum observables. For



A.S. Goldhaber Fractional Charge Definitions and Conditions 5

charges to be sharp, in one space dimension spatial
smearing of the corresponding charge density operator
is required [15], while in higher dimensions temporal
smoothing is needed as well [16], [3].

Perhaps the most dramatic observation of fractional
charge is associated with the fractional quantum Hall ef-
fect discovered by Tsui, Störmer, and Gossard [17]. Here
Laughlin [18] concluded that the quasiparticles carry a
simple fraction of an electron charge, so that an elec-
tron entering the medium could break up into several
quasiparticles (something dramatically different from the
breakup into reduced quasiparticle charge and remnant
surface charge when an electron enters a conventional
insulator). This result was vindicated in several experi-
ments, by Goldman and Su, de Picciotto et al., Semina-
dayar et al., and successive works [19].

Jain’s composite-fermion description [20] of odd-
denominator FQHE states identifies the composite
fermions as electrons whose strong repulsive mutual cor-
relations renormalize their charges to the observed frac-
tional values associated with the quasiparticles, so that
it is natural to identify the quasiparticles as electrons
dressed by the medium. In that perspective, the AB
charge of a quasiparticle should be the same as that of
an electron, but it is accepted that the force on the par-

ticle due to a Maxwell electric field ~E parallel to the Hall
plane may be obtained by using precisely the fractional
local charge already mentioned. In the dressed-electron
picture, this is understood as resulting from an induced
Chern-Simons field in the Hall plane which partly comen-
sates the effect of the Maxwell field [21]. The large
conceptual advantage of this perspective, embodied in
composite-fermion theory [20], is that it not only uni-
fies the description of different FQHE regimes, but also
provides a close correspondence with familiar condensed-
matter systems, and their quasielectron excitations.

The original description of a quasihole for simple Hall
fractions was given by Laughlin [18] in terms of a funda-
mental soliton in the form of a special type of vortex –
a vortex in the many-body ground-state wave function.
This vortex requires neither Higgs nor gauge field, but
only has been realized under the special conditions for
which the Laughlin ansatz gives the ground state wave
function. Now one describes the quasihole as a soliton
with local charge and AB charge both equal to the same
fraction. The ability to describe a quasiparticle either as
a fundamental soliton or a dressed particle is not unique.
Possibly the earliest example of such dual descriptions
of a particle comes in the (d = 1) duality between the
Thirring model with its fermionic excitations and the
sine-Gordon model with its solitons [22]. However, the
two descriptions of FQHE quasiparticles may be the first
or even the only case where such duality applies to a
particle with fractional charge. Whether one chooses
the vortex or the dressed-electron description, the local
charge is the same fraction, but the AB charge either has
fractional or unit value. In these terms, the experiment
of Goldman and Su mentioned above was a measurement

of fractional effective AB charge, while the other exper-
iments measuring shot noise were sensitive to fractional
local charge. Of course, all observables are identical for
the case where the two descriptions coincide, namely,
quasiholes in simple Laughlin states, a truly remarkable
duality. However. for quasiparticles in these states, and
both holes and particles of all other (odd-denominator)
Hall fractions, there is no successful soliton prescription,
while the composite-fermion description has been worked
out in full detail, exhibiting excellent quantitative agree-
ment with all known experimental and theoretical tests
[23]. This dressed-electron picture differs from familiar
renormalization because the correlations producing it are
quantized by the requirement of single-valuedness of the
many-body wave function, so cannot be achieved by con-
tinuous wave-function deformation.

After JR, and following the independent work of Su,
Schrieffer, and Heeger [SSH] on kinks in polyacetylene
[24], there were a number of studies confirming and elabo-
rating on the original finding that solitons can carry frac-
tional charge. Shankar and Witten [25] used bosoniza-
tion to put fermions and bosons on the same footing in
the kink system, taking account of possible back-reaction
by fermion on boson degrees of freedom, and confirm-
ing the JR result. Su and Schrieffer [26] found exam-
ples of kinks in condensed matter models with other ra-
tional fractions. Earlier, Witten [27] showed that mag-
netic monopoles could have fractional electric charge de-
termined by the vacuum angle (or equally well by a
crossed electric-magnetic susceptibility like that for a
medium with dipolar molecules carrying both electric
and magnetic moments). Sikivie [28] put this in the con-
text of conventional insulator behavior, showing that if
a monopole passes through a domain wall between dif-
ferent values of the vacuum angle θ, then the change in
electric charge of the monopole is exactly compensated
by a change in the surface charge spread over the wall.

The work of Witten [27] had two parts. First was a
demonstration that the very gauge transformation which
has a compact U(1) action on conventional charged par-
ticles with quantized electric charge can have a noncom-
pact action on a magnetic monopole, allowing fractional
electric charge on the monopole. [For an extended treat-
ment of this point see [29].] This discussion complements
the method of Theorem 3 above, based on the long-range
monopole magnetic field. The noncompact action of the
electric-charge gauge transformation on the dyon is con-
sistent with gauge invariance because in the mutual in-
teraction of two dyons there is besides the normal gauge
interaction an extra term, gauge-variant but not con-
tributing to the equations of motion for the pair [30],
[31].

The second part of Witten’s work was a direct con-
struction of the fractional charge from the vacuum angle.
Thus he found both necessary and sufficient conditions
for the monopole to carry fractional electric local and AB
charge. Note that the latter clearly is not conserved when
the monopole passes through a domain wall, because AB
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charge is not defined for the (effectively immobile) wall.

As mentioned, Goldstone and Wilczek [GW] [13] devel-
oped an adiabatic flow analysis showing that F for the JR
monopole must change by ∆F = 1

2
as the fermion mass is

chirally rotated from isoscalar to isovector, a shift which
preserves the electric charge of the monopole, as well as
reflection symmetry between positive and negative elec-
tric charge, but violates fermion charge-conjugation sym-
metry. Callan [32] considered fermions light even com-
pared to the Coulomb energy required to confine a unit of
electric charge within a monopole radius, finding F = 1

2

appears in a natural way. Over a long period, the no-
tions of electric-magnetic duality, supersymmetry, and
JR fermion zero modes were locked together, mutually
reinforcing all three [33], [14]. In particular, Seiberg and
Witten [SW] [14] used an adiabatic flow analysis com-
plementary to that of GW, which allowed them to follow
the change of F and electric charge Q as the isoscalar
part of the fermion mass is lowered from infinity, where
the fermion is totally decoupled (meaning any fractional
part of F must vanish), to a point where the net mass of
one member of the fermion isodoublet goes through zero.
This gives F = 1/2, with electric charge also changing by
1/2 as vacuum angle changes by π/2, preserving fermion
charge-conjugation symmetry and the double degener-
acy of the monopole ground state (but violating electric-
charge reflection symmetry), and putting into clear per-
spective the case in [32]. The GW and SW analyses to-
gether confirm remarks in [12],[34] that not all classical
symmetries of the fermion-monopole system can be pre-
served under quantization. F = 1/2 is a robust result,
but vacuum angle and hence fractional electric charge
are affected by the way in which the fermion Yukawa
coupling to the Higgs field is generated.

This subject of adiabatic flow brings attention to the
beautiful thought experiment of Laughlin [18], who imag-
ined piercing a Hall layer with an infinitely thin tube of
flux, gradually increased from zero to one flux quantum.
Through the Faraday effect and the Hall effect this as-
sures the localization of a fractional charge, immediately
showing that the quasiparticles of this system must have
fractional charge, with respect to electrons in a different
medium – free space. Note that the fractional value is
not a surprise, in view of the behavior of normal insula-
tors. However, if we imagine inserting an electron into
the layer from above, there is no surface in which to leave
part of its locally conserved electric charge, so that the
charge instead must be deposited on several quasiparti-
cles. This breakup into many particles was a new and
theoretically unanticipated phenomenon.

The concept of fractional soliton charge was at least
implicit in the work of Skyrme [8], who argued that his
classical field configuration could be quantized with half-
integer isospin and spin (a possibility shown consistent
with the usual spin-statistics connection in [35]). Half-
integer values would allow the skyrmion to be identified
with the nucleon, but by Theorem 2 are impossible with-
out elementary or fundamental isospinor fermions: Mod-

ification of the short-distance, high-energy part of the
Skyrme action (e.g., replacing the nonlinear constraint in
his sigma model with a quartic action in the chiral field)
could destabilize the skyrmion, so that its ‘topological’
charge would be ‘unwound’ in a process with finite ac-
tion, and therefore in principle not absolutely conserved.
Microscopic analyses agree, indicating that the spin and
isospin of the skyrmion will be integer or half-integer as
the number of colors of up and down quarks is even or
odd [36], and therefore integer if there are no quarks.

These considerations may be put more dramatically.
The fact that the skyrmion is in a class of objects some of
which are not conserved immediately implies that there
must be some underlying structure to account for spin
and isospin charge values that are fractional with respect
to the meson charges of the sigma model. Thus at best
the skyrmion could be a useful description for reason-
ably low-energy and long-distance properties of the nu-
cleon. That indeed is the case, but this simple reasoning
could have been made at any time after Skyrme’s origi-
nal work. Perhaps an intuitive appreciation of this point
contributed to initial resistance to his model. Paradox-
ically, if the model had been embraced, it might have
slowed down the approach to quarks and QCD which
now gives an intellectual basis for the skyrmion’s success
in the appropriate domain.

Skyrme’s model describes the nucleon entirely in terms
of an SU(2) matrix function U(r, t), while in a ‘hybrid’
model the U function is used outside a chosen ‘bag’ radius
R, and inside are free quarks with boundary condition
at the bag wall parameterized by the chiral angle asso-
ciated with U(|r| = R) [37]. Goldstone and Jaffe [38]
showed that the simple boundary condition guessed in
[37] meets the requirement of net integer baryon number
B. Thus, for the nucleon it becomes possible to inter-
polate smoothly between (nonfundamental) soliton and
(fundamental) particle (quark) descriptions, and there-
fore neither can involve intrinsically fractional charges.

An analogous interpolation has been found for FQHE
quasiparticles, which for ν = 1/(2n+1) can blow up into
arbitrarily spread-out ‘baby skyrmions’ when the Zeeman
splitting between the two possible electron spin orienta-
tions becomes negligible. Thus, adjusting the Zeeman
splitting allows interpolation between microscopic quasi-
particles and macroscopic solitons. Of course, the charges
of the soliton and the quasiparticle are the same. This
theoretical result for FQHE follows well-established re-
sults for skyrmions of the integer quantum Hall effect
with small Zeeman splitting [39].

The SSH kink analysis [24] shows that in one space di-
mension ‘spinons’ with spin 1

2
but no charge and ‘holons’

with charge ±e but no spin can travel independently.
Kivelson et al. [40] proposed that such objects might play
a role in the planar dynamics which appears to be critical
in high TC superconductivity. Detailed studies suggested
that if so, either these fractional objects are connected
by strings [41] or are able to move only along certain
lines in the plane [42]. However, Senthil and Fisher [43]
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observed that a dynamics leading to vortices in some ef-
fective gauge field could make the string connecting a
spinon and a holon simply a gauge artifact, exhibiting
zero tension. Hence it becomes imaginable that the two
types of particle could move freely in the plane.

The uniqueness of magnetic monopoles among solitons
in d = 3 as possible carriers of fractional particle charge
is connected with other special properties, such as the
ability to convert the dynamics of the lowest fermion par-
tial wave into a one-dimensional problem on a half-line.
This is an example of the fact that the chiral anomaly
for electrodynamics with d = 3 may be written as the
product of a magnetic-field contribution which reduces
the problem to d = 1, and an electric-field contribution
just like that for QED in d = 1 [44]. The same long-
range magnetic field is responsible for the unique possi-
bility of creating an object with half-integer spin [45] and
Fermi-Dirac statistics [46] from bosons in a world with no
fundamental fermions, a possibility not available to the
skyrmion, contrary to some statements in the literature.

An interesting example of fractional charge is the
Higgs-Chern-Simons vortex in abelian 2+1 D gauge
theory, a soliton which carries a conserved topological
charge, the quantized magnetic flux. There is a locally
conserved Gauss-law electric charge Q = κΦ + qH , with
κ the Chern-Simons [CS] coupling [47], Φ the quantized
magnetic flux, and qH the Noether charge of the Higgs
field. Evidently Q vanishes by the Gauss law, but of
course qH does not, and is not even conserved if κ varies.
Indeed, with the gauge kinetic term F 2 omitted, the re-
sulting ‘self-dual’ vortex [48] has vanishing Q density ev-
erywhere! This system manifestly violates electric charge
conjugation symmetry, and generates fractional values
for qH . The fact that qH would vary if κ changed implies
that κ must be constant if one is to interpret qH as a con-
served fractional charge. With this assumption, one sees
that a given value of κ, crucial to the soliton dynamics,
indeed enforces an intrinsic relation between the charge
and the soliton structure, maintaining consistency with
Theorem 3. For nonabelian CS theory, there must be
quantization of κ [49], but for the abelian case relevant
here there may be some flexibility in the allowed values.
The self-dual vortex has been proposed, though without
explicit identification as such, to be the charge-carrying
quasiparticle of the ν = 5/2 FQHE state.

As in all FQHE phenomena one has here an interest-
ing dimensional hybridization: The dynamics of the Hall
layer, including a long-range ‘statistical’ or pure-gauge
interaction with for the 5/2 case both nonabelian [50] and
abelian [51] contributions, is in d = 2. Meanwhile, the
dynamics of the Maxwell field remains in d = 3, so that
electric charge is isolable even though it would not be so
in a fully d = 2 system. Such dimensional hybridization
has been discussed in string-inspired brane theory, with,
for example, gauge fields propagating in the brane and
gravity propagating in the ‘bulk’, i.e., the entire space
[52].

Up to now we have not considered fractional spin in

this discussion. Of course, in d = 1 spin is not defined,
while in d = 3 the nonabelian character of the rotation
group assures spin quantization. However, in d = 2 the
logical possibility of fractional spin is open. Paranjape
[53] realized that such spin indeed could be induced by
magnetic flux; Boyanovsky and Blankenbecler [54] gave
a simple exposition of the mechanism. That the familiar
connection between spin and statistics holds in d = 2
for fractional spin and fractional statistics follows from
elementary conservation laws [55],[21]: To be precise, if
one defines se = (s+ s̄)/2, the part of the spin symmetric
under particle↔antiparticle, with 0 < |se| < 1

2
, then

there is a contribution to the phase factor on exchange
of two indistinguishable particles given by e−2πise .

The one example of fractional charge by conventional
renormalization that remains to be discussed is that
of the familiar electrically charged elementary particles
mentioned at the beginning, the proton and the elec-
tron. Suppose we say that the neutron has B − L = 1,
and the neutrino has B − L = −1. What is the value
of B − L for the charged particles? In first approxima-
tion, one may neglect all contributions to QED vacuum
polarization except that of electron loops. As a result,
the proton is accompanied by a tenuous cloud of elec-
tron vacuum polarization, and so has still B = 1, but
L = ε. Meanwhile, charge renormalization of the elec-
tron implies that it has L = 1 − ε. Thus, B − L for
the proton is 1 − ε, and B − L for the electron is ε − 1.
For neutron decay, this gives initial B − L = 1, and fi-
nal B − L = (1 − ε)p + (ε − 1)e + 1ν̄ = 1. In principle,
it would be consistent to introduce a new gauge field,
weakly coupled to B − L. This would allow direct ob-
servation of the different values for the neutral and the
electrically charged particles. However, the main point
to make here is that if there is some locally conserved
charge carried by some particle, then it can consistently
generate a fractional shift in another charge carried by
that particle. The fact that in some cases this fractional
shift is quantized, while in others it can be varied con-
tinuously, is important, but the parallelism between the
two types of case may be even more important.

A complementary perspective emerges from consider-
ing the B − L gauge-field coupling between neutron and
proton. What was discussed already shows that the neu-
tron would see a somewhat weaker field due to electron
vacuum polarization. Alternatively, if one considers the
influence of the neutron on the proton, the neutron’s
B − L field mixes with the electromagnetic field due to
the same vacuum polarization, so that it couples to the
combination of AB charges B − εQ. The AB charges do
not change, but the field acting on them is modified in
a nontrivial way. Of course, in line with the principle
of reciprocity, either way of calculating the interaction
between neutron and proton gives the same answer.
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4. CONCLUSION

Results of this codification and development of the lit-
erature on fractional charge include:

(1) Gauge charge, which in the case of a charge coupled
to a local gauge field is the Lorentz-force charge of a par-
ticle in classical mechanics or the Aharonov-Bohm charge
in quantum mechanics, is a fundamental, quantized at-
tribute of a fundamental particle or an elementary par-
ticle built of fundamental particles, never renormalized
or fractionated by change in medium, scale, or coupling
strength. Gauge charge is not necessarily conserved; for
example, there may be processes conserving local charge
while allowing excitation of the vacuum to mobilize pre-
viously latent particles carrying gauge charge. For a fun-
damental soliton, there may be a fractional gauge charge
compared to the unit found on elementary particles in
the same medium, if so with the fraction equal to the
corresponding value for local or Gauss-law charge.
(2) The (locally conserved) local charge of a particle with
specified gauge charge may have a fractional value in one
medium or at one scale, with respect to its value in a
different medium or at a different scale.
(3) In a given medium an isolable particle may carry a
fraction of the local charge(s) of other, elementary par-
ticles only if the first one is itself elementary, which in-
cludes the possibility that it is a fundamental soliton.
(4) Fractional charge may result from conventional, con-
tinuous flow if the particle is a d = 1 kink, or a d = 3
electric charge or magnetic monopole. For a d = 2 vortex
fractional charge can only arise from intrinsic structure.

The considerations about elementary particles and fun-
damental solitons show a striking (and typical) duality.
The particles and their constituents are established in
the dynamics of the smallest distance and highest energy
scales, while the stability of the solitons is assured by the
dynamics of the largest distance and lowest energy scales.

It is interesting to wonder about possible extensions
of this analysis. There may well be novel charges for
d > 3, and in certain circumstances fractional values of
these charges. Even within the domain d ≤ 3, there
is a class of issues that remain a matter of art rather
than systematic deduction, namely, the determination of
the discrete renormalizations which by definition are not
directly susceptible to the well-developed techniques used
for conventional, continuous renormalization. Perhaps
consistency relations of the type developed by Su [56] for
FQHE would help.

This article has almost no equations, and deals as well
with solitons which do and ones which do not exhibit ex-
act integrability, the latter evidently violating the origi-
nal definition of the term by Zabusky and Kruskal [57].
Mathematical physics uses the notion of exactness in dif-
ferent ways. Emphasized in this journal issue are exactly
soluble systems, used to infer generic properties that may
be compared with real systems whose dynamics generally
are not exactly soluble. On the other side are systems
which may not be fully soluble, but because of local con-

servation laws still may show some exact properties. This
work manifestly is intended as a contribution to the latter
category, determining, from mild assumptions, stringent
requirements for the occurrence of fractional charge.
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