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I discuss the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology
and show how, after a simple change of variables, to quantize the problem in a way which
parallels the classical discussion. The result is that two of the Einstein equations arise as exact
equations of motion and one of the usual Einstein equations (suitably quantized) survives as
a constraint equation to be imposed on the space of physical states. However, the Friedmann
equation, which is also a constraint equation and which is the basis of the Wheeler-deWitt
equation, acquires a welcome quantum correction that becomes significant for small scale
factors. To clarify how things work in this formalism I briefly outline the way in which our
formalism works for the exactly solvable case of de-Sitter space.

1 Introduction

The remarkable agreement of the WMAP??? measurements of the anisotropy in the cosmic mi-
crowave background(CMB) radiation with the predictions of slow-roll inflation?, strongly sug-
gests that the paradigm for computing the fluctuations? in δρ/ρ is correct. These fluctuations
are remarkable in that they represent an imprinting of the structure of the quantum state of the
field theory, at the time inflation begins, onto the electromagnetic radiation that comes to us
from the surface of last scattering. Unfortunately, derivations of this effect usually mix classical
and quantum ideas and so, it is difficult to determine how they would change given a fully
quantum mechanical treatment.

In this talk I will show how one can fill this gap by fully quantizing this problem in cosmic
time. To be precise, I will show how to work in fixed, co-moving coordinates, and canonically
quantize the theory of the Friedmann-Robertson-Walker(FRW) metric,

ds2 = −dt2 + a(t)2d~x · d~x, (1)
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and the spatially constant part of the inflaton field, Φ(t), in a straightforward manner. I will
then show that the quantized system has states for which the expectation values of the scale
factor and inflaton field satisfy the equations associated with the inflationary scenario.

I wish to emphasize that this approach assumes that getting quantum mechanics to describe
the evolution of the system in cosmic time is paramount. Because of this, I will argue that
imposing a strong form of the Wheeler-deWitt equation is not useful. Instead, in this formal-
ism, geometry, defined by the condition that the Einstein equations be true, is an emergent
phenomenon. It exists only for some quantum states and then, only when the scale factor be-
comes large. To clarify the subtle way in which this works I will exhibit the exact solution to
the problem for the case of de Sitter space. As I will show, a bonus of this approach is that the
quantum corrections to the Einstein equations, which become important when the scale factor
is small, completely eliminate the problem of the Äbig crunch.

Obviously, given the constraints of time, I cannot discuss all of the results presented in our
earlier preprints?. What I will do is try to very briefly outline the main ideas and discuss what
happens in the exactly solvable case of de Sitter space.

2 The Classical Problem

Before discussing this approach to the quantum treatment of FRW cosmology it is important to
demonstrate that the classical version of this formalism does no violence to the usual Einstein
theory. I will outline how this works.

To simplify the usual derivations of the Einstein equations for FRW cosmology I will assume,
as is the case experimentally, that we are dealing with a spatially flat universe and choose co-
moving coordinates, in which the metric takes the general form shown in Eq.??.

If we combine this form of the metric with the Lagrangian and ignore everything but the
spatially constant part of the inflaton field, one obtains

S = V
∫

dt
√−g

[
R(t)
2κ2

+
1
2

dΦ(t)
dt

2

− V (Φ(t))

]
. (2)

Note that V is the volume of the region in which the theory is being defined. Clearly V must
be taken to be larger than the horizon volume at the time of inflation in order to avoid edge
effects in δρ/ρ.

If we write
√−gR(t) in terms of a(t) and integrate by parts, to eliminate the term with

d2a(t)/dt2, we obtain a form of the action which can be further simplified by making the change
of variables u(t)2 = a(t)3. This results in the final, simple form for the action

S = V

[
− 4

3κ2

(
du(t)

dt

)2

+
1
2
u(t)2

(
dΦ(t)

dt

)2

− u(t)2V (Φ(t))

]
. (3)

Although this change of variables greatly simplifies the classical discussion, it has a greater
significance for the quantized theory. This is because we can choose −∞ ≤ u ≤ ∞, whereas the
only physically allowable range for a is 0 ≤ a ≤ ∞. It is only for the space of square-integrable
functions on the interval −∞ ≤ u ≤ ∞ that the Heisenberg equations of motion can be obtained
by canonical manipulations.

It is obvious that there can only be two Euler-Lagrange equations for this system, one for
u(t) and one for Φ(t). However, there a four relevant Einstein equations. Thus, by quantizing
in this fixed gauge, we fail to obtain the full set of Einstein equations. The missing equations
are the Friedmann equation and its time derivative

H(t)2 =
κ2

3

(
1
2

(
dΦ(t)

dt

)2

+ V (Φ(t))

)
and

dH(t)
dt

= −κ2

2

(
dΦ(t)

dt

)2

. (4)



where the Hubble parameter H is defined to be

1
u(t)

da(t)
dt

=
2

3u(t)
du(t)

dt
(5)

Since the Friedmann equation and its time derivative are not equations of motion they can,
at best, be imposed as constraints on the space of physical solutions, in analogy to Coulomb’s
law in electrodynamics. Thus, we have to show that as a consequence of the equations we do
have, if we impose the Friedmann equations at any one time, then they will continue to be true
for all later times. This can be proven by first differentiating H with respect to t to obtain and
identity which can be substituted into the equation of motion for u(t) to obtain the equation

2u(t)
κ2

[(
2
dH(t)

dt
+ κ2

(
dΦ(t)

dt

)2
)

+ 3

(
H(t)2 − κ2

3

(
1
2

(
dΦ(t)

dt

)2

+ V (Φ(t))

))]
= 0. (6)

Identifying the first constraint equation as

G = H(t)2 − κ2

3

(
1
2

(
dΦ(t)

dt

)2

+ V (Φ(t))

)
, (7)

we can use the Euler-Lagrange equation for Φ(t), to rewrite Eq.?? as

2u(t)
κ2

(
1

H(t)

(
dG
dt

)
+ 3G

)
= 0. (8)

This first order differential equation for G(t) shows that if, at time t = t0, G = 0, then dG/dt
will also vanish and so G(t) = 0 exactly. In other words, we arrive at the desired result.

To show why it is possible, at the classical level, to confuse the Friedmann equation with
the Hamiltonian, we follow the canonical procedure. The canonical momenta and Hamiltonian
are written as

pu = −V
8

3κ2

du(t)
dt

; pΦ = Vu2 dΦ(t)
dt

. (9)

and

H = pu
du(t)

dt
+ pΦ

dΦ(t)
dt

− L = − 3κ2

16V
p2

u +
1

2Vu2
p2

φ + Vu2V (Φ). (10)

Next, rewriting the Hamiltonian in terms of the operators du(t)
dt and dΦ(t)

dt and substituting the
definition of H into the resulting equation we see that

H == −Vu2

[
3H2

κ2
−

(
1
2

(
dΦ(t)

dt

)2

+ V (Φ)

)]
= −V

3u2

κ2
G. (11)

In other words, the Hamiltonian, H is proportional to the constraint, G. It follows that setting
G = 0 means H = 0, which tells us that the Hamiltonian vanishes for physical solutions. The
identification of the Hamiltonian with the constraint equation is the content of the Wheeler-
DeWitt equation.

3 Canonical Quantization of the Theory

Now that we have seen that our formalism, including the change of variables from a(t) to u(t),
does no violence to the classical theory, we will proceed to a discussion of the quantum mechanics.

The basic procedure is to use the same Hamiltonian and to define the operators u,Φ and
their conjugate momenta to have the commutation relations

[pu, u] = −i ; [pΦ,Φ] = −i, (12)



where all other commutators vanish. With this definition it is simple to derive the Heisenberg
equations of motion, for any operator O(t), by commuting that operator with the Hamiltonian.
(Note, for any operator, the Heisenberg operator is defined to be O(t) = eiHtOe−iHt.)

Explicit computation shows that the operators u and Φ satisfy equations of motion which
can be made to look identical to the classical equations of motion if we define the quantum
version of the Hubble operator H to be

H = − κ2

8V

(
pu

1
u

+
1
u3

puu2
)

. (13)

Given this definition of the Hubble operator, we mimic the classical derivation; i.e., we compute
the time derivative of the Hubble operator and use the identity

d2u(t)
dt2

=
3u

2

(
dH
dt

+
3
2
H2 − 9κ4

128V2u4

)
, (14)

to rewrite the equation of motion for u(t) as

3u

4

(
1
A

dG
dt

+ 3G
)

= 0. (15)

where now G(t) is defined to be

G = H2 − κ2

3

(
1
2

(
dΦ(t)

dt

)2

+ V (Φ)

)
+ Q, (16)

where the operator Q represents a quantum correction to the equation of motion

Q = − 3κ4

64V2u4
. (17)

(Note, the operator A can be solved for explicitly and is a non-vanishing expression and is just
H plus explicit quantum corrections.) Since Eq.?? is an exact operator equation of motion, we
see that if we could define the space of states by the condition G(t0)|ψ〉 = 0, then this condition
would hold for all time. But, as in the classical theory, this definition of G, implies that

G(t) = − κ2

3Vu(t)2
H. (18)

Thus, while we can define the space of physical states, to be which are annihilated by the
Hamiltonian, obviously this immediately leads to a contradiction between the Schroedinger and
Heisenberg picture. This is because H|ψ〉 = 0 implies that the state does not evolve in the
Schroedinger picture, whereas we have already shown that the operators u(t) and Φ(t) do evolve
in time.

Although it is possible to show that one can define variants of G(t) which allow us to impose
a state condition which does not manifestly ruin the connection between the Schroedinger and
Heisenberg picture, unfortunately one can explicitly show that in exactly solvable theories the
solutions to the equation Gα|ψ〉 = 0 are not normalizable. Thus, attempting to impose such a
strong condition for any α leads to problems interpreting the quantum mechanical theory. For
this reason we propose a weak form of the condition, namely: a state is physical if

lim
t→±∞G(t)|Ψ〉 = 0. (19)

It should be clear from the fact that Q vanishes for large t that Eq.?? guarantees that for these
states geometry, in the sense that the familiar Einstein equations become arbitrarily accurate,
emerges dynamically at large time.



In the next section, where we discuss the exact solution of de Sitter space, we show that
this asymptotic condition is easily satisfied for a wide class of states. Furthermore, the exact
solution demonstrates why imposing a stronger condition on physical states is neither necessary
nor desirable.

4 de Sitter Space: An Exactly Solvable Problem

Since our assertion that it is unnecessary to adopt a strong version of the gauge condition flies in
the face of conventional wisdom, it is important to show how things work in an exactly solvable
example. For this reason I now turn to a discussion of de Sitter space.

Begin by considering the general action of the FRW problem, but with V (Φ) replaced by a
cosmological constant Λ, so that the Hamiltonian takes the form

H = − 3κ2

16V
p2

u +
1

2Vu2
p2
Φ + Vu2Λ (20)

Since the conjugate variable to pΦ doesn’t appear in the Hamiltonian, we are free to work in
sectors of the Hilbert space in which pΦ takes a definite value. The particular sector defined by
the condition pΦ|ψ〉 = 0 the Hamiltonian takes the simpler form

H = − 3κ2

16V
p2

u + Vu2Λ, (21)

which we immediately recognize as a theory with a cosmological constant, whose solution at the
classical level is just de Sitter space.

The Heisenberg equations of motion for u(t) and pu(t) are:

du(t)
dt

= −3κ2

8V
pu ;

d2u(t)
dt2

=
3κ2Λ

4
u. (22)

The exact solution to these equations, written in terms of the operators u(t = 0) = u and
pu(t = 0) = pu are

u(t) = cosh(ωt)u− 3κ2

8Vω
sinh(ωt)pu

pu(t) = cosh(ωt)pu − 8Vω

3κ2
sinh(ωt)u, (23)

where we have defined

ω =

√
3κ2Λ

4
. (24)

It is convenient to rewrite Eq.?? in terms of exponentials; i.e.,

u(t) =
eωt

2

(
u− 3κ2

8Vω
pu

)
+

3κ2e−ωt

16Vω

(
pu +

8Vω

3κ2
u

)
(25)

and to introduce the canonically conjugate asymptotic operators

u∞ =
1√
2

(
u− 3κ2

8Vω
pu

)
; p∞ =

1√
2

(
pu +

8Vω

3κ2
u

)
. (26)

In terms of these operators the solution for the operator u(t) and the Hamiltonian take the
simple forms

u(t) =
1√
2

eωtu∞ +
1√
2

3κ2

8Vω
e−ωtp∞, (27)



and

H =
√

3Λκ

4
(u∞p∞ + p∞u∞) . (28)

From this point on all of the technical work is finished, the only chore which remains is to extract
the physical significance of these results.

Before discussing the physical states of the quantum theory, it is worth spending a few
moments considering what the preceding results mean in the context of the classical theory.
Obviously, Eqs.?? and ?? are equally true for both the classical and quantum versions of the
theory; the only difference between these cases being is that in the classical theory u∞ and
p∞ are simply numbers, whereas in the quantum theory they are non-commuting operators.
Thus, for the classical theory, imposing the condition that the energy vanishes is the same as
requiring either u∞ or p∞ to vanish. This is, of course, just the usual result: i.e., for the case of
a cosmological constant, the full, non-linear, set of Einstein equations, admit only an expanding,
or contracting, solution for a(t) or u(t). This is why running the expanding solution back in
time (or the contracting solution forward in time) always leads to a big crunch.

The situation is clearly different for the quantum theory since it is not possible to simply
set an operator to zero. If one chooses the gauge-condition which corresponds to α = 1, i.e. the
Wheeler-deWitt equation, then one is looking for states annihilated by the Hamiltonian. Given
that we can write p∞ = −i d

du∞ , for a function of the form |ψ〉 = eS(u∞),this equation takes the
simple form

2u∞
dS(u∞)

du∞
= −1, (29)

which has the solution
S(u∞) = − ln(

√
u∞). (30)

This of course means that |ψ〉 is of the form

|ψ〉 ≈ 1√
u∞

(31)

which is not normalizable.
Intuitively, given the exact solution for u(t), we see that any state for which H|Ψ〉 has a finite

norm will, for sufficiently large |t|, satisfy Eq.?? to arbitrary accuracy. This means that (modulo
some technical details) essentially any Gaussian wave packet in u∞ will be a physical state. It
also means that for large times all the physics measured in such a state will be compatible with
the full set of Einstein equations.

5 Defining Quantum Histories

Now that we have settled upon shifted Gaussian wavepackets as good candidates for physical
states, we turn to a discussion of the only two physical observables in this theory; the expansion
rate and the volume of the universe. Since we are working in the Heisenberg picture, where
the choice of state determines the entire subsequent evolution of the system, we will henceforth
refer to the choice of an allowed quantum state as a choice of quantum history . What we wish
to ascertain is to what degree the value of each of the observables depends upon the specific
choice of quantum history . The exact solution given in Eq.?? shows that, at large times, the
expansion rate is attached to the scale factor and is totally independent of the state. This is
not true of the volume. Thus, I will now focus on the degree to which the measured properties
of the volume operator differ from quantum history to quantum history.

Since we started off quantizing in a volume with coordinate size V, the volume of the universe
at any time is given by

V (t) = Vu(t)2



=
V
2


e2ωtu2

∞ +

(
3κ2

8Vω

)2

e−2ωtp2
∞ +

3κ2

8Vω
(u∞p∞ + p∞u∞)


 . (32)

A surprising feature of this formula is that for large times in the past and future the volume
operator V (t) behaves classically. By this I mean that, if one measures V (t) at some late time,
t1, and obtain a definite value, then we will be able to predict the value we will obtain if we
measure V (t) at some later time t2. To see that this is the case we note that Eq.?? tells us that,
for very large positive times, V (t) is, to arbitrarily high accuracy, proportional to the single
operator u2∞ (at large negative times it is proportional to p2∞). Thus we see that a measurement
of V (t1), for sufficiently large t1, corresponds to a measurement of u2∞, which means that we
know V (t) for all times t2 > t1.

From the fact that u∞ and p∞ are canonically conjugate variables we see that if we were to
try and identify a quantum history with an eigenstate of p∞, then the volume operator would be
well-determined in the past, but completely undetermined in the future. Conversely, eigenstates
of u∞ correspond to states for which the volume operator is completely well determined in the
future, but completely undetermined in the past. Fortunately, the condition that physical states
must be normalizable states for which 〈ψ|H2|ψ〉 < ∞ is true, tells us that we cannot identify such
states with quantum histories. States which can be identified with allowed quantum histories
are Gaussian packets of the form,

|Ψ〉 = e−
γ
2
u2∞ (33)

and the coherent states, |u0, p0, γ〉, obtained from them. These coherent states are defined by

|u0, p0, γ〉 = eip0u∞ e−iu0p∞ |Ψ〉, (34)

and the expectation values of u∞ and p∞ in these states are given by

〈u0, p0, γ|u∞|u0, p0, γ〉 = u0, 〈u0, p0, γ|p∞|u0, p0, γ〉 = p0. (35)

Moreover, the relevant products of these operators have the values

〈u0, p0, γ|u2
∞|u0, p0, γ〉 = u2

0 +
1
2γ

,

〈u0, p0, γ|p2
∞|u0, p0, γ〉 = p2

0 +
γ

2
,

〈u0, p0, γ|u∞p∞ + p∞u∞|u0, p0, γ〉 = 2<(〈u∞ p∞〉) = 2u0p0.

The nice thing about such coherent states is that they are the kind of states we would expect to
obtain if, in the past, we make a measurement which determines V (−t) to have a central value
V
2 eω|t|p2

0, with a width parameterized by γ. For this same packet, measurements of V (t) in the
distant future will produce results centered about the value V

2 eω|t|u2
0, with a width parameterized

by 1/γ.

6 Equivalence Classes of Histories

From this point on we will restrict the term quantum history to mean a coherent state of the
form defined above. To see that many of these histories are equivalent to one another consider
the equation

〈V (t)〉 = 〈u0, p0, γ|V (t)|u0, p0, γ〉 =
V
2


e2ωt

〈
u2
∞

〉
+

(
3κ2

8Vω

)2

e−2ωt
〈
p2
∞

〉
+

3κ2

8Vω
(2<(〈u∞p∞〉))


 .

(36)



Clearly Eq.?? shows that at large times the volume behaves as a single exponential, as
expected from the solution of the classical Einstein equations. More interesting, however, is the
fact that letting t → t + t0, where t0 is defined by the condition

e2ωt0 =
3κ2

8Vω

√
〈p2∞〉
〈u2∞〉

, (37)

allows us to rewrite Eq.?? as

〈V (t)〉 =
3κ2

√〈u2∞〉 〈p2∞〉
8ω

[
cosh(ωt) +

<(〈u∞p∞〉)√〈u2∞〉 〈p2∞〉

]

=
κ2

√〈u2∞〉 〈p2∞〉
4H

[
cosh(ωt) +

<(〈u∞p∞〉)√〈u2∞〉 〈p2∞〉

]
(38)

Thus, we see 〈V (t)〉 corresponds to a system which is contracting at large times in the past
and which then bounces and re-expands in the future. During most of this history the system
satisfies the Friedmann equation to high accuracy and expands (or contracts) with a Hubble
constant equal to

H =
2
3
ω =

√
κ2Λ
3

. (39)

There is, however, a period in time where the quantum corrections to the Friedmann equation
dominate the behavior; namely, at times t ≈ 1/ω. Assuming, for the sake of argument, that
were to set 1/κH ≈ 103, as it is in many models of slow roll inflation, and assuming

√〈u2∞〉 〈p2∞〉
to be of order unity, then the minimum volume of the universe at the time of the bounce is on
the order of 103 Planck volumes; i.e., on the order to 10 Planck-lengths in each dimension. This
sets the order of magnitude of the scale at which the quantum corrections become important.
It is gratifying that these quantum corrections keep the system from contracting forever and
ending in a big crunch. Finally, Eq.?? shows that any two quantum histories which give the
same values for

√〈u2∞〉 〈p2∞〉 and <(〈u∞p∞〉)
√〈u2∞〉 〈p2∞〉, see the same physics. They only differ

by the time at which the bounce occurs.

7 Summary

In this talk I showed how, if one takes the point of view that getting a sensible evolution of a
quantum system a a function of cosmic time takes precedence over forcing a purely geometrical
interpretation, to fully quantize the theory of inflation and δρ/ρ.

My focus throughout was on the formulation of the part of the problem that involved the
spatially constant fields. As we demonstrated, in both the classical and quantum theory, working
in a fixed gauge yields only two of the four relevant Einstein equations as equations of motion.
I argued that in the classical theory the Friedmann equation and its time derivative must be
treated as constraints whose constancy in time requires a proof. That proof followed from
the two equations of motion we did have. Next, I showed that, in the quantum version of
the theory, the same two Einstein equations appear as operator equations of motion, but the
constraints appeared in a modified form. I then argued that the simplest of these constraint
equations, that which corresponds to the Wheeler-de Witt equation, cannot be used to define
the space of physical states, since it leads to a direct conflict between the Schroedinger and
Heisenberg pictures. I then suggested that the Wheeler-de Witt equation should be replaced by
a weaker asymptotic state condition. In order to clarify how things work in detail, I sketched the
application of the general formalism to the case of de Sitter space. The most important result



of this discussion is that, in the case of de Sitter space, the system deviates from the expected
pure exponential expansion at a finite time in the past.

While, as it stands, the formalism I presented is by no means a candidate for a theory of
everything, I feel that the interesting results obtained by proceeding along these lines suggests it
is a good candidate for a theory of simething. Namely, a fully quantum theory of the measured
fluctuations in the CMB radiation.
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