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We describe an algorithm and a C++ implementation that we have written and made available for
calculating the fully nonlinear evolution of 5D braneworld models with scalar fields. Bulk fields allow
for the stabilization of the extra dimension. However, they complicate the dynamics of the system,
so that analytic calculations (performed within an effective 4D theory) are usually only reliable for
static bulk configurations or when the evolution of the extra dimension is negligible. In the general
case, the nonlinear 5D dynamics can be studied numerically, and the algorithm and code we describe
are the first ones of that type designed for this task. The program and its full documentation are
available on the Web at http://www.cita.utoronto.ca/~ jmartin/BRANECODE/ '. In this paper we
provide a brief overview of what the program does and how to use it.

I. INTRODUCTION

Many extensions of the Standard Model have in com-
mon the presence of extra dimensions. This has to be
contrasted with the fact that our world looks four di-
mensional, so one has to explain why the presence of the
extra space has not yet been detected. The traditional
answer has been that the extra space is compact and very
small, so that the fields associated with its excitations are
too heavy to be observable in accelerators or cosmology.
More recently, it has been realized that ordinary matter
and gauge interactions may be confined on lower dimen-
sional submanifolds, known as branes. In this case, they
could be four dimensional objects, even if the geome-
try of the theory is higher dimensional. The situation
is different for gravity, which propagates in the whole
bulk space. Several questions naturally arise, such as
why a compact space would remain small while the three
non-compact dimensions are undergoing cosmological ex-
pansion, or why the expansion of the universe we see is
described by 3 + 1 dimensional general relativity so well.
The presence of extra dimensions may cause deviations
from the standard FRW cosmology that is supported by
observations.

In most cases, these two questions turn out to be inti-
mately related. Only if the extra space is static can the
evolution of the non-compact coordinates behave as in
the standard four dimensional case. Hence, the dynam-
ics of the hidden dimensions becomes a crucial ingredient
in understanding the evolution of the ones we observe. In
some particular cases, static bulk configurations can be
achieved under the combined action of the bulk/brane

IWe also maintain a mirror of the BRANECODE website at
http://www.cita.utoronto.ca/ kofman/BRANECODE/

gravity. In most realistic examples that could account
for our observed four dimensional cosmology the stabil-
ity is due to the presence of additional fields that acquire
nontrivial configurations in the bulk. While the stabiliza-
tion has to be effective at relatively “late” times, the first
stages of our universe (before primordial nucleosynthesis,
for instance) are much less constrained. The evolution of
the bulk may have been significant at this phase, and this
offers many new possibilities for phenomenology. This is
particularly true with the addition of the fields responsi-
ble for the “late” time stabilization, since they constitute
new dynamical degrees of freedom for the system.

While the above considerations are valid for all mod-
els with extra dimensions, significant computations have
been performed in the framework of brane models. These
models can be thought of as simplified, phenomenologi-
cal (bottom-up) versions of branes in string theory. The
string dynamics is ignored and the primary focus is on
the classical dynamics from the point of view of Gen-
eral Relativity. Branes act as a source for the Einstein
equations of the system, with their tension and possibly
with the energy density of fields confined on them. Ad-
ditional sources are a bulk cosmological constant, or the
energy density of possible bulk fields. This set-up is suf-
ficiently rich to describe very interesting situations. For
example, inflation in braneworlds can acquire a nice geo-
metrical interpretation, with the inflaton associated with
the distance between different branes, the Hubble param-
eter scale associated with the induced curvature on the
branes, and with reheating through radion oscillations.

Despite this great simplification, the whole dynamics
is still very complicated, in particular when a bulk scalar
field is present. In this case, analytical computations are
typically performed within an effective 4 dimensional the-
ory, obtained after the extra dimension is integrated out,
or perturbatively, using linearized analysis around simple
backgrounds. While these studies are very useful when
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the extra space is static or quasi-static, they are not suf-
ficient to describe the system when the evolution of the
bulk is important. For example, systems that are stable
at low energy (low curvature of the branes) can become
unstable when the energy/curvature is increased. The
stability /instability can be studied analytically. How-
ever, one cannot determine analytically where the system
will evolve towards when the initial configuration turns
out to be unstable.

For example, we numerically examined the dynamics
of brane collisions and found that, as the branes approach
each other, the spacetime of the bulk asymptotically ap-
proaches the Kasner-type solution.

Motivated by these limitations with the analytical
treatment, we undertook a numerical study of these mod-
els. We developed a numerical algorithm, implemented
in a C4++ code, specifically designed for codimension
one braneworlds, with a scalar field included in order
to provide stabilization of the bulk at low energies. With
the assumption of homogeneity and isotropy along the
brane spatial coordinates x (corresponding to the stan-
dard assumption of homogeneity and isotropy of the non-
compact coordinates), the problem is reduced to an effec-
tively 2 dimensional one. The independent variables are
the bulk time ¢ and the bulk dimension y. The program
integrates numerically the full set of Einstein equations
in the bulk, together with the Israel junction conditions
at two orbifold branes. We discretize the two dimensional
spacetime (time and the bulk coordinate) and solve the
bulk differential equations by finite-differencing them us-
ing the so-called leapfrog scheme. This algorithm is suffi-
cient for our problem, and it provides a good compromise
between accuracy and computational time (see Section
[ for more details). The two branes act as (one dimen-
sional) boundaries of this space, and the junction condi-
tions provide the boundary conditions for the system at
each time-step. The solution of a boundary value prob-
lem is required to provide generic initial conditions that
fulfill the constraint equations and the boundary condi-
tions at the beginning of the evolution. In the static
configurations we have mentioned above, this boundary
value problem is significantly simpler than in the general
case. The setup of initial conditions is explained in more
detail in Section [[V]

The first results obtained with the code have
been presented in [1]. We are now making
the code public on the World Wide Web un-

der the name BRANECODE. Its website is at
http://www.cita.utoronto.ca/ "kofman/BRANECODE/.
The website for the program has documentation, includ-
ing derivations of all the equations used in the program.
Here we present a short summary of what the program
does and what it can be used for. For more details see
the website. Section [l of this paper gives an overview of
what the program is and how it works. Sections [Tl and
V] describe the evolution equations and the setting of
initial conditions respectively. Section [Vl describes some
of the output generated by the program. The references

section is limited to papers from our group related to the
BRANECODE design and its first results [l 2, 3, 4, 15].
See these papers for a more complete set of references.

II. OVERVIEW AND USER ADJUSTABLE
FILES

In this Section we give an overview of the program and
how to adjust it for a particular simulation. More details
can be found in the documentation.

To work with the BRANECODE the user must specify
a model, consisting of bulk and brane potentials for the
scalar field, plus initial conditions for the field and the
geometry. This information is encoded in a model file,
which is a header file read in by the program. The file
should be called model numeric.h or model_analytic.h
depending on whether the initial conditions are speci-
fied numerically or analytically. The model files con-
tain the potentials and their first and second deriva-
tives that are needed for the evolution of the bulk equa-
tions @) and boundary conditions (). For example, the
BRANECODE distribution includes both a numeric and
an analytic model file (with different initial conditions).
The file model _analytic.h contains examples for branes
in AdS and AdS-Schwarzschild geometries, whereas the
file model numeric.h we designed for the class of models
with bulk scalar fields determined by the bulk and brane
potentials

V(p) = $m*¢* + A,
Ui(¢p) = $M;(¢i — o))+ N - (1)

A bulk cosmological constant and brane tensions is in-
cluded as constant terms in these potentials. Most im-
portantly, the program is designed to work for arbitrary
potentials, different from (). Other potentials V(¢),
Ui(¢) can be implemented by modifying the correspond-
ing lines in the model file. Aside from this file, the only
other file that the user needs to modify is parameters.h,
which contains all the parameters for a given run of the
program. These include the number of grid points, the
running time, and a number of other general variables
specific to each run. There is also a parameter in this file
that tells the program which type of model file to look
for.

Given a specific model and set of parameters, the
BRANECODE solves the system of equations of motions
for the metric functions and the scalar field @) along with
the boundary conditions provided by the presence of the
branes (B). The required functions are contained in the
file equations.cpp.

The BRANECODE has built-in routines for out-
putting and plotting the metric fields, the scalar field,
and derived quantities. These outputs are stored in
ASCII files that can be read in and plotted by any
standard plotting software. There are also options (set
in parameters.h) to have the program call GNUPLOT



to generate and display postscript plots of the data at
runtime. (These options should only be chosen if the
program is running on a computer with both GNUPLOT
and GHOSTVIEW.) An example of this graphical output is
shown in Fig. [0

FIG. 1: An example of the graphical output generated by
the BRANECODE. The plot shows the evolution of a met-
ric component B (describing the interbrane separation) as a
function of space and time. Physically, this evolution shows
a transition from an unstable static warped geometry solu-
tion towards a stable static solution. During this non-linear
reconfiguration the interbrane distance and the Hubble scale
of the de Sitter geometry decreases.

Once all parameters have been set and you have mod-
ified or created a model file according to your wishes you
simply compile and run the BRANECODE. The code is
designed to be platform independent and should work
with any C++ compiler. The makefile that comes with
the distribution has entries and flags for the GNU gcc
compiler and the INTEL icc compiler. You can select
one of them or edit the makefile to invoke your favorite
compiler.

IIT. ALGORITHM

The evolution equations solved by the BRANECODE
are the set of Einstein/scalar field equations on an effec-
tively 2 dimensional spacetime obtained after imposing
homogeneity and isotropy on the non-compact spatial co-
ordinates x . In [l1] we showed that under these conditions
it is always possible to choose coordinates that bring the
metric to the form

d82 _ 62 B(t,y) (—dt2 + dy2) + e2 A(t,y) dx2 , (2)

with the two branes fixed at y = 0, 1, respectively. This
choice is motivated by the fact that in this coordinate sys-
tem the lattice size is time independent due to the fixed
position of the branes and the equations simplify signif-
icantly. In this gauge, we have the following dynamical

equations
. . 2
A — A" 4342 347 = 2By
3
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B~ B" - 34%+34% + 20 — §¢’2 = —3V.03)
(5—¢N—|—3A(J.5—3A/¢/ _ _QQBV#7 ,
supplemented by the constraint equations
\ \ ) , 1.
—AA+BA+AB-A = §¢¢’, (4)
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Dots and primes denote derivatives with respect to the
time ¢ and the coordinate y along the bulk, respectively.
In addition, the program imposes the following junction
(Israel) conditions at the positions of the branes
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A= 6Ue , B'= 6Ue ,¢—26 Us. (5)
These junction conditions are equivalent to extending the
space beyond the two branes, and imposing Zs symmetry
across the branes.

In the coordinate system (), the characteristic prop-
agation speed of the dynamical equations is always 1.
This is advantageous from a numerical viewpoint as the
size of the time step can be optimized uniformly by set-
ting it equal to spatial grid separation. We describe
below our implementation of the leapfrog discretization
scheme, which is stable, second order accurate, and non-
dissipative.

The program discretizes the 2 dimensional {t,y} space
and computes the value of the three functions B, A, ¢ at
each grid point. For any fixed time, the grid is made of
N + 1 points equally spaced along the bulk, with 0 and
N corresponding to the locations of the two branes. The
value of N is set in parameters.h. The same grid spacing
is taken in the y and ¢ directions. The initial conditions

are in the form (A(y), B(y), 6(y), A(y), B(y), d(y) ) , and
they can be chosen arbitrarily subject to the fact that
they satisfy @) and () at the initial time. Of particular
interest are configurations with an initially static bulk,
since the program can be used to verify their stability
and to study the dynamics when they are unstable as
described in section [Vl

The discretized initial data (Ai, A;, Bi, Bi, ¢; ,
(bl) )
able for the leapfrog algorithm. Instead of having the
fields and their velocities at the time t = o, the algo-
rithm needs the spatial profiles of the fields (A4;, B;, ¢;)
at two subsequent moments in time t = tg and t = to +e€.
In some special cases the profiles at the two initial times
can be calculated analytically, but in general the program
takes a Runge-Kutta step using the initial derivatives to
calculate the field values at tg + €.

i=20,...,N has to be converted to a form suit-



The field values at all subsequent time steps are calcu-
lated as follows. (Note that we will use f here to denote
a generic field, i.e. for equations that apply to all three
fields A, B, and ¢.) In the gauge chosen, the bulk equa-
tions only contain derivatives in the form f—f", and
fa—1f"g . Recall that our grid spacing e = 1/N is equal
to our time step. Thus, to second order accuracy, we
can write the derivatives at a given point in spacetime in
terms of the values of its neighbors as

1
:z
F9-1'9 = o (fap — fan) (up — gan) +

—(fie — fie) (gt — )] + O (%) , (6)

where the indices label relative grid positions as defined
in Fig. Bl In this way, the three differential equations ()
become three algebraic equations for the three unknown
quantities (Byp , Aup , Pup) - Notice that this can be done
independently site by site in the bulk.

Once the bulk field values at the new time have been
determined, we can apply the junction conditions @) to
advance the boundary field values. We discuss only the
computation at the first brane (i = 0). The treatment
for the second brane is analogous. Only first derivatives
in y enter in ([@). To preserve second order accuracy, we
use an “asymmetric” discretization of the derivatives

f_f” (fup+fdn—flt—frc)+0(€2) y

fo = i(—3fo+4f1—f2)+0(62) , (7)

where subscripts indicate the grid position of each field
value (see Fig. Bl). The junction conditions (@) thus be-
come a set of three algebraic equations in terms of three
unknowns. We can eliminate Ay and By in favor of ¢q,
and write an equation in terms of the only unknown

quantity ¢o ,
A¢y —¢2 — 3o — eI U (g)=0.  (8)

For specific brane potentials, these equations can be
solved analytically. However, as the code is designed
for arbitrary bulk/brane potentials, eq. (B) is solved nu-
merically using the iterative Newton’s method. Once ¢q
is determined, the remaining unknowns By and Ag are
trivially computed through the remaining junction con-
ditions.

Boundary
DO
,,',,',,,

dn

0 1 ---N-3N-2N-1N y

FIG. 2: Numerical evolution scheme. See text for details.

IV. INITIAL CONDITIONS

In general, the specification of initial conditions, i.e.
the determination of the initial spatial profiles for the
fields and their velocities A(y), B(y), ¢(y), A(y), B(y),
and ¢(y) is a non-trivial task. These function cannot be
chosen independently, but rather are subject to the con-
straint equations (@) and boundary conditions ([@). How-
ever, the physical instability of static de Sitter configura-
tions [, B] provides the possibility to generate interesting
braneworld dynamics with static solutions as initial con-
ditions that we can recommend. All the static solutions
for a given model can be exhaustively classified by the
phasespace analysis of the dynamics of the gravity /scalar
system performed in [2].

One simple way to generate static initial conditions is
to consider a configuration of the form B = B (y) , ¢ =
¢(y), A= B+ Ht (de Sitter branes in a static bulk).
The first of the equations (@) is then trivially satisfied.
For a sufficiently simple model, the remaining constraint
equation can be solved analytically. Otherwise we pro-
vide a MATHEMATICA notebook and MAPLE worksheet to
solve them numerically for a given bulk potential and
generate appropriately formatted initial data. For sim-
plicity, the code determines two of the three parameters
of the brane potentials [0) in such a way that the bound-
ary conditions (@) are fulfilled initially. The third param-
eter, either the tension on the brane \; or the minimum
of the brane potential o;, is set by the user in the file
model numeric.h. If the user instead wants to set up
initial conditions for a given choice of brane potentials,
he can make use of a shooting method operating in the
phasespace of the static solutions. Namely, he can start
with initial conditions chosen such that they fulfill the
boundary conditions on one of the branes, compute the
corresponding bulk configuration, and keep varying the
initial conditions (e.g. with a numerical scan) until the so-
lution also satisfies the junction conditions at the second
boundary. For any given set of bulk and brane poten-
tials, there can be none, one, or more than one solution
to the boundary value problem. The latter case opens
up the possibility for interesting dynamics of transitions
as investigated in [1I].

V. OUTPUT

The main outputs of the program are the values of
the three functions B, A, and ¢ at different bulk sites
and time steps. Two parameters inside parameters.h
control how many points (both in the y and ¢ directions)
are to be saved. From these quantities, one can construct
some outputs of immediate physical relevance. One is
the physical interbrane distance. The branes are at a
fixed coordinate distance in our gauge and their physical



separation is encoded in the metric coefficient B .

D(t):/o dy\/gg_/o dyeP®y) (9)

Another interesting quantity is the Hubble parameter as
computed by observers on each of the two branes

_1lda

i =

= e_Bi Az ) (10)

a drli
where 7 is the physical time measured by the observers,
defined by Dt = ePdt. Quite interestingly, the gauge
choice used in the algorithm (see the previous Sec-
tion) does not exhaust the gauge freedom of the prob-
lem. Residual gauge transformations have been described
in |1}, and one can show that they do not change the val-
ues of D and H;, which therefore have physical meaning.
Besides these physical quantities the BRANECODE also
computes the Ricci scalar and the square of the Weyl
tensor in the bulk. Other quantities of interest can easily
be obtained from the “raw” values of B, A, ¢.

VI. CONCLUSIONS

The main motivation for our work was to extend the
knowledge of braneworld dynamics beyond the few situa-
tions where it was known analytically. Apart from these
situations (characterized by a static or slowly evolving
bulk), approximate methods based on effective 4 dimen-
sional computations are unreliable. In this short note
we have presented an algorithm, together with its C+-+
implementation, designed for numerical computations in
this framework. First results obtained from this code
were presented in [, 4]. We could show that some bulk
configurations which are stable at low energy (low value
of the expansion rate H of the two branes) become un-
stable as H increases, in agreement with the analytical
calculations of [3]. This can be interpreted as a part of
a more general phenomenon of gravitational instability

of compactification to four dimensional de Sitter geom-
etry [3). The numerical integration allowed us to fol-
low the evolution of the system starting from the un-
stable configuration. For certain bulk/brane potentials
the system may evolve towards another static, but stable
configuration, characterized by a lower value of H. The
transition is typically a process of quick bulk reconfigu-
ration. In many cases, however, the second configuration
does not exist or cannot be reached. The two branes
then either move apart to infinite distance, or they col-
lide. Brane collisions is a very interesting subject by
itself. The study of the numerical evolution led us to the
conclusion that the asymptotic geometry is given by the
universal Kasner-type that is typical of homogeneous but
anisotropic strong gravity regimes. We did not investi-
gated the case of branes departing from each other when
one of them in general approaches a naked singularity in
the bulk configuration. We also did not studied the pos-
sibility of the formation of an apparent horizon between
the branes.

Our algorithm is focused on the simplest possible set-
up which allows for brane stabilization based on a gener-
alized Goldberger-Wise mechanism. Only one bulk scalar
field has been considered, although with arbitrary poten-
tials in the bulk and at the two branes. The inclusion of
more scalar fields would be straightforward. In particu-
lar, one could consider other fields, which are confined to
the branes, and which are coupled to the bulk fields e.g.
through the brane potentials. (The interplay between
bulk/brane fields may lead to novel interesting features
not considered in [1l]). Another easy generalization would
be the inclusion of perfect fluids on the branes (for ex-
ample, describing standard matter and radiation). Less
trivial but more interesting extensions could be the inclu-
sion of other types of fields (form fields in the bulk, for
instance), or evolution with more dimensions included.
For example, relaxing the hypothesis of homogeneity and
isotropy along the ordinary dimensions would allow the
study of inhomogeneous perturbations of the system.
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