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The intent of this letter is to point out that the accretion of a ghost condensate by black holes
could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost
fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike
minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy
density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is
established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate
accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the
ghost condensate model.

I. INTRODUCTION

Prompted by an increasingly precise experimental
measurements of cosmological parameters, and in par-
ticular detection of acceleration of the universe due to an
unknown source which looks like a cosmological constant,
in the recent years there has been a wide discussion in
the literature about modifications of Einstein gravity on
cosmological scales as a possible alternative to dark mat-
ter and/or energy. However, finding a self-consistent and
well-motivated theory which agrees with all the observa-
tions is proving to be quite a challenge.

Recently, Arkani-Hamed et. al. proposed a model [1],
dubbed a ghost condensation, which they argued to be
consistent with all experimental observations and provide
an interesting modification of gravity in the infrared, with
potential applications to inflation [2] and cosmological
constant problem. It involves an introduction of a scalar
field which develops a non-zero expectation value of its
(timelike) gradient in vacuum, due to non-trivial kinetic
term in the action. Such modifications of the scalar field
kinetic term were considered earlier on phenomenological
grounds in the model known as k-inflation [3, 4].

The ghost condensate model has been studied on per-
turbative level in effective field theory [1], which already
leads to interesting consequences such as star trails [5, 6].
We look at the ghost condensate from a slightly differ-
ent perspective, namely we would like to investigate its
behaviour in the strong gravitational field, for instance,
near a Schwarzschild black hole

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

n, (1)

where f(r) = 1 − rg/r, and rg = 2Gm is a gravitational
radius of Schwarzschild black hole of mass m. The prob-
lem is similar to interaction of a cosmological scalar field
with a black hole [7], so one would expect ghost conden-
sate to be accreted by a black hole.
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Accretion of fluid onto a black hole has long been an
important problem in astrophysics. Spherically symmet-
ric steady-state fluid accretion onto a Schwarzschild black
hole was derived in Ref. [8]. Minimally coupled scalar
field [9] and quintessence [7, 10] accrete onto black holes
as well, although the accretion rate is limited by the cos-
mological density of the field [7]. Accretion of exotic
matter fields can lead to unusual results. For instance,
accretion of a phantom energy (which violates energy
dominance conditions) decreases the black hole size [11].

In this letter, we calculate the steady-state accretion
rate of the ghost condensate by a black hole, and point
out that it could be extremely efficient. This puts serious
constraints on the parameters of the ghost condensate
model.

II. GHOST CONDENSATE AS A FLUID

Ghost condensate model adds a non-minimally cou-
pled scalar field to Einstein theory of gravity. However,
instead of the usual kinetic term

X = −(∇φ)2, (2)

the action is assumed to involve a more complicated func-
tion of the field gradient squared

S =

∫
{

R

16πG
+M4P (X)

} √
−g d4x, (3)

as well as higher-derivative terms. We will ignore higher-
derivative terms in what follows. They complicate cal-
culations significantly, and we are concerned with large
scale flows, while one would expect higher-derivative
terms to be important on short scales.

As the ghost field φ is not directly coupled to other
fields, its dimensionality and normalization are arbitrary.
If the field φ is chosen to have dimension of length, the
field gradient X and the function P are dimensionless,
and the only dimensional quantity in the ghost sector
is M , which sets the overall energy scale of the ghost
condensate. The specific form of the function P (X) is
not rigidly fixed, although the defining feature of the
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FIG. 1: Ghost condensate kinetic term (top) and equivalent
fluid description (bottom). Equation of state w and sound
speed c2

s
are shown by dashed and solid curves, respectively.

ghost condensate model is that P has a minimum at non-
vanishing (timelike) value of the field gradient. Because
of that, the ghost field rolls even in its vacuum state. The
simplest choice for P with this property is

P (X) =
1

2
(X −A)2, (4)

illustrated in Fig. 1. One could also add a cosmological
constant term Λ, but since it is not accreted by a black
hole, we will not discuss it further.

Variation of the action (3) with respect to the ghost
field φ yields equation of motion

∇µ [P ′(X)∇µφ] ≡ 1√
−g

∂µ

[√
−g P ′(X) ∂µφ

]

= 0. (5)

The equation of motion is implied by conservation of the
stress-energy tensor, which for the ghost condensate is

Tµν = 2M4P ′(X)φ;µφ;ν +M4P (X)gµν . (6)

Configurations with P ′(X) ≡ 0 solve the equation of mo-
tion identically for any spacetime metric. However, such
configurations are indistinguishable gravitationally from
a purely Einstein theory, as the stress-energy tensor be-
comes trivial as well.

The stress-energy tensor of the ghost condensate (6)
can be transformed into that of a perfect fluid

Tµν = (ρ+ p)uµuν + pgµν (7)

by a formal identification

ρ = M4(2XP ′ − P ), p = M4P, uµ =
φ;µ√
X
. (8)

The fluid analogy is very useful in understanding the
physics behind the solutions of the ghost equation of mo-
tion (5), although it is not an exact correspondence. Un-
like ordinary fluids, ghost condensate is irrotational, that
is, the vorticity tensor of the flow uµ vanishes identically

ωαβ =
1

2

(

uα;µq
µ
β − uβ;µq

µ
α

)

≡ 0, (9)

where qµν = gµν + uµuν . This is a direct consequence of
the vector flow uµ being derived from a scalar.

Important parameters of the fluid are its equation of
state and sound speed

w ≡ p

ρ
, c2s ≡ dp

dρ
=
p′

ρ′
. (10)

For the ghost condensate with kinetic term (4), they are

w =
X −A

3X +A
, c2s =

X −A

3X −A
. (11)

The equation of state and the sound speed change from
dust-like in the minimum X = A to radiation-like for
large displacements X ≫ A, as shown in Fig. 1. Config-
urations with X < A are unstable, as the sound speed
squared becomes negative.

III. STEADY-STATE ACCRETION

Steady-state accretion means that the flow of the field
(i.e. its gradient) does not change with time, that is
£∂t

(∇µφ) = ∂µ∂tφ = 0, which in turn implies that ∂tφ
is constant (and can be set to one by a choice of the field
normalization). Therefore, a general steady-state spher-
ically symmetric field configuration is of the form

φ = t+ ψ(r), (12)

and, in Schwarzschild spacetime (1), has a gradient

X =
1 − (∂∗rψ)2

f(r)
, (13)

where we introduced a “tortoise” derivative ∂∗r ≡ f(r)∂r .
For steady-state accretion of the spherically symmetric

ghost condensate profile (12) onto a Schwarzschild black
hole (1), the equation of motion (5) becomes

∂∗r (r2P ′∂∗rψ) = 0, (14)

which can be immediately integrated to yield the flow
conservation equation

P ′∂∗rψ = α
r2g
r2
. (15)

The meaning of the dimensionless constant of integration
α becomes clear if one looks at the accretion rate

ṁ = 4πr2T r
t = 2α · 4πr2gM4, (16)



3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

A=3/4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

A=1

FIG. 2: Flow diagrams v(x) of the ghost condensate accretion onto a black hole for A = 3/4 (left) and A = 1 (right). Inflow,
no-flow, and (unstable) outflow branches are shown by solid, dot-dash, and dotted lines correspondingly. Flow trajectories
passing through the critical point are emphasized by thicker lines. Negative v region corresponds to reversed flow direction,
and is not shown.

which does not depend on r and describes a steady-state
transfer of mass from infinity into a black hole. The nu-
merical value of the coefficient α is picked by the solution
of the flow equation (15) that is regular at the horizon
and becomes homogeneous far from the black hole.

The flow equation (15) is actually algebraic in ∂∗rψ, and
could be analyzed for an arbitrary function P . We will re-
strict our discussion to the ghost condensate with kinetic
term (4) and further assume A ≤ 1, as the choice A > 1
places the solution (12) on the unstable branch of the
kinetic term far from a black hole and is not physically
relevant. Introducing the short-hand notation v ≡ ∂∗rψ
and x ≡ f(r), the flow equation (15) can be written as

(

1 − v2

x
−A

)

v

(1 − x)2
= α. (17)

Solutions v(x) for various values of α are shown in Fig. 2.
Although cubic equation (17) can be directly solved in
radicals, the flow is more readily analyzed using standard
phase space diagram techniques.

Both at the horizon (x = 0) and infinity (x = 1), all
flow trajectories converge to one of three roots

x = 0 : v0 = 0,±1
x = 1 : v1 = 0,±

√
1 −A

. (18)

All flow trajectories must start and end at these roots,
and they do not intersect except at the critical points.
The critical points are defined as the points where the

full differential of (17),

−3v2 − 1 +Ax

x(1 − x)2
dv − (1 − v2)(1 − 3x) + 2Ax2

x2(1 − x)3
v dx = 0,

(19)
becomes degenerate, i.e. when coefficients in front of dv
and dx both vanish. In the positive v region, there is (at
most) one critical point

v2
∗ =

A+
√
A2 − 36A+ 36

18
, x∗ =

1 − 3v2
∗

A
. (20)

Regularity at the horizon for ingoing flow demands that
v0 = 1, while proper fall-off at infinity requires v1 = 0.
For A < 1, the only flow trajectory that connects the two
is the one that passes through the critical point (20), as it
is clear from the left panel of Fig. 2. The flow starts out
subsonic at infinity, and turns supersonic at the critical
point. As it is easy to see from equation (17), the field
gradient v falls off at infinity as r−2, and so the field
profile levels off as r−1 far from the black hole.

Thus, the coefficient α for the steady-state accretion
flow is calculated by evaluating equation (17) at the crit-
ical point (20). The resulting expression is straightfor-
ward, but cumbersome for arbitrary A, so we will not
write it down here. Instead, we will show the graph of α
as a function of A in Fig. 3. The coefficient α decreases
monotonically from 3

√
3/2 at A = 0 to 1 at A = 1.

The case of A = 1 is special, and is shown on the right
panel of Fig. 2. The three roots at infinity merge into
one triple root at v1 = 0, and one can get from infinity
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FIG. 3: Dependence of the accretion rate coefficient α on A.

to horizon without going through a critical point. These
solutions correspond to a dust-like flow with 0 ≤ α < 1,
and are always supersonic. However, their gradient v falls
off at infinity only as r−

1

2 , which means that the ghost
field does not become homogeneous far from a black hole,
but in fact grows as r

1

2 . In particular, the trivial solution
(P ′ ≡ 0, α = 0) is

φ = t+ 2r
1

2

g

[

r
1

2 − r
1

2

g arctanh

√

rg
r

]

. (21)

The likely reason behind the change in field asymptotic is
that spherically symmetric dust accretion is not steady-
state. The accretion rate is ever growing, as the dust
from larger and larger volume falls inside the black hole.

For A = 1, the flow trajectory which passes through a
critical point (α = 1) is simply v = 1 − x = rg/r. The
corresponding field profile is

φ = t+ rg ln

[

r

rg
− 1

]

. (22)

Its asymptotic at infinity is also non-homogeneous, but
the growth is only logarithmic.

IV. DISCUSSION

In the last section, we calculated the steady-state ac-
cretion rate of the ghost condensate by a black hole for
spherically symmetric flows. The most important result
of the calculation is that the dimensionless coefficient
α, which determines the accretion rate of the flow, is
bounded below by 1 even as density of the ghost con-
densate far from a black hole becomes vanishingly small.

This means that it is the energy scale M of the ghost
condensate theory that sets the accretion rate, and not
the cosmological abundance of the ghost condensate field
as one might have naively expected.

Up to a numerical coefficient of order one, the accre-
tion rate is equal to the energy density M4 falling down
through the horizon area 4πr2g at the speed of light. The
top value of 10MeV for the ghost energy scale quoted in
[1] corresponds to a rather high density

(10MeV)4 =
(10MV · e)4

~3c5
= 2.32 · 1012 kg

m3
. (23)

If the steady-state flow of the kind we considered is estab-
lished, the accretion rate of a 10MeV-scale ghost conden-
sate by an astrophysical black hole would be enormous

ṁ = 0.08α
M⊙

s

( rg
3km

)2
(

M

10MeV

)4

. (24)

To avoid rapid black hole growth and its astrophysical
consequences, energy scale M of the ghost condensate
should be significantly less than 10MeV. Stellar-size black
hole would double in size over the lifetime of the universe
(roughly 14Gyrs, or 4 ·1017s) for the ghost energy scale of
order 1keV. This estimate goes down to 10eV for super-
massive (109M⊙) black holes.

Spherically symmetric steady-state accretion is an ide-
alized situation, of course. We have not considered time-
scale required to establish such flows, the role of initial
conditions, motion of the black hole with respect to the
condensate, or what happens if the ghost field becomes
highly inhomogeneous. All of these are much harder
problems, and it might turn out that some factors prevent
the accretion from settling into an efficient steady-state
regime. Still, having ghost condensate capable of such
high accretion rates is alarming, and the issue should be
further addressed by the ghost condensate scenario.
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