Measurement of Time-Dependent CP-Violating Asymmetries in B0 ->K*0 gamma ($\mathrm{K} * 0->\mathrm{K} 0 _$S pi0) Decays

By
Aubert et. al
(For the BABAR Collaboration)

Submitted to Physical Review Letters

Measurement of Time-dependent $C P$-violating Asymmetries in $\boldsymbol{B}^{0} \rightarrow \boldsymbol{K}^{* 0} \gamma\left(\boldsymbol{K}^{* 0} \rightarrow \boldsymbol{K}_{s}^{0} \boldsymbol{\pi}^{0}\right)$ Decays

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A. W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C. T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A. V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$
J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$
T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ M. T. Ronan,,${ }^{5}$ V. G. Shelkov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ M. Barrett, ${ }^{6}$ K. E. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ A. J. Hart, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ A. T. Watson, ${ }^{6}$ M. Fritsch, ${ }^{7}$ K. Goetzen, ${ }^{7}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ M. Steinke, ${ }^{7}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ N. S. Knecht, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ A. Khan, ${ }^{10}$ P. Kyberd, ${ }^{10}$ L. Teodorescu,,10 A. E. Blinov, ${ }^{11}$ V. E. Blinov, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen,,11 E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Bruinsma, ${ }^{12}$ M. Chao, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ B. L. Hartfiel, ${ }^{13}$ S. D. Foulkes, ${ }^{14}$ J. W. Gary, ${ }^{14}$ B. C. Shen, ${ }^{14}$ K. Wang, ${ }^{14}$ D. del Re, ${ }^{15}$ H. K. Hadavand, ${ }^{15}$ E. J. Hill, ${ }^{15}$ D. B. MacFarlane, ${ }^{15}$ H. P. Paar, ${ }^{15}$ Sh. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J. W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ B. Dahmes, ${ }^{16}$ S. L. Levy, ${ }^{16}$ O. Long, ${ }^{16}$ A. Lu, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ W. Verkerke, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ G. Nesom, ${ }^{17}$ T. Schalk, ${ }^{17}$ R. E. Schmitz, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ P. Spradlin, ${ }^{17}$ D. C. Williams, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ J. Albert, ${ }^{18}$ E. Chen, ${ }^{18}$ G. P. Dubois-Felsmann, ${ }^{18}$

A. Dvoretskii, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ A. Ryd, ${ }^{18}$ A. Samuel, ${ }^{18}$ S. Yang, ${ }^{18}$ S. Jayatilleke, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ T. Abe, ${ }^{20}$ F. Blanc, ${ }^{20}$ P. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ W. T. Ford,,20 U. Nauenberg,,20 A. Olivas, ${ }^{20}$ P. Rankin, ${ }^{20}$ J. G. Smith, ${ }^{20}$ J. Zhang, ${ }^{20}$ L. Zhang, ${ }^{20}$ A. Chen, ${ }^{21}$ J. L. Harton,,21 A. Soffer, ${ }^{21}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ Q. L. Zeng, ${ }^{21}$ D. Altenburg, ${ }^{22}$ T. Brandt, ${ }^{22}$ J. Brose, ${ }^{22}$ M. Dickopp, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. M. Lacker, ${ }^{22}$ R. Müller-Pfefferkorn, ${ }^{22}$ R. Nogowski, ${ }^{22}$ S. Otto, ${ }^{22}$ A. Petzold, ${ }^{22}$ J. Schubert, ${ }^{22}$ K. R. Schubert, ${ }^{22}$ R. Schwierz, ${ }^{22}$ B. Spaan, ${ }^{22}$ J. E. Sundermann, ${ }^{22}$ D. Bernard, ${ }^{23}$ G. R. Bonneaud, ${ }^{23}$ F. Brochard, ${ }^{23}$ P. Grenier, ${ }^{23}$ S. Schrenk, ${ }^{23}$ Ch. Thiebaux, ${ }^{23}$ G. Vasileiadis, ${ }^{23}$ M. Verderi, ${ }^{23}$ D. J. Bard, ${ }^{24}$ P. J. Clark,,24 D. Lavin, ${ }^{24}$ F. Muheim, ${ }^{24}$ S. Playfer, ${ }^{24}$ Y. Xie, ${ }^{24}$ M. Andreotti, ${ }^{25}$ V. Azzolini, ${ }^{25}$ D. Bettoni, ${ }^{25}$ C. Bozzi, ${ }^{25}$ R. Calabrese, ${ }^{25}$ G. Cibinetto, ${ }^{25}$ E. Luppi, ${ }^{25}$ M. Negrini, ${ }^{25}$ L. Piemontese, ${ }^{25}$ A. Sarti, ${ }^{25}$ E. Treadwell, ${ }^{26}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri, ${ }^{27}$ M. Piccolo, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Capra, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ S. Bailey, ${ }^{29}$ G. Brandenburg, ${ }^{29}$ M. Morii, ${ }^{29}$ E. Won, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ U. Langenegger, ${ }^{30}$ W. Bhimji, ${ }^{31}$ D. A. Bowerman, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ U. Egede, ${ }^{31}$ J. R. Gaillard, ${ }^{31}$ G. W. Morton, ${ }^{31}$ J. A. Nash, ${ }^{31}$ M. B. Nikolich, ${ }^{31}$ G. P. Taylor, ${ }^{31}$ M. J. Charles, ${ }^{32}$ G. J. Grenier, ${ }^{32}$ U. Mallik, ${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ J. Lamsa, ${ }^{33}$ W. T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ J. Yi, ${ }^{33}$ M. Davier, ${ }^{34}$ G. Grosdidier, ${ }^{34}$ A. Höcker, ${ }^{34}$ S. Laplace, ${ }^{34}$ F. Le Diberder, ${ }^{34}$ V. Lepeltier, ${ }^{34}$ A. M. Lutz, ${ }^{34}$ T. C. Petersen, ${ }^{34}$ S. Plaszczynski, ${ }^{34}$ M. H. Schune, ${ }^{34}$ L. Tantot, ${ }^{34}$ G. Wormser, ${ }^{34}$ C. H. Cheng, ${ }^{35}$ D. J. Lange, ${ }^{35}$ M. C. Simani, ${ }^{35}$ D. M. Wright, ${ }^{35}$ A. J. Bevan, ${ }^{36}$ C. A. Chavez, ${ }^{36}$ J. P. Coleman, ${ }^{36}$ I. J. Forster, ${ }^{36}$ J. R. Fry, ${ }^{36}$ E. Gabathuler, ${ }^{36}$ R. Gamet, ${ }^{36}$ R. J. Parry, ${ }^{36}$ D. J. Payne, ${ }^{36}$ R. J. Sloane, ${ }^{36}$ C. Touramanis, ${ }^{36}$ J. J. Back,,${ }^{37, *}$ C. M. Cormack, ${ }^{37}$ P. F. Harrison, ${ }^{37,}{ }^{*}$ F. Di Lodovico, ${ }^{37}$ G. B. Mohanty, ${ }^{37, *}$ C. L. Brown, ${ }^{38}$ G. Cowan, ${ }^{38}$ R. L. Flack, ${ }^{38}$ H. U. Flaecher, ${ }^{38}$ M. G. Green, ${ }^{38}$ P. S. Jackson, ${ }^{38}$ T. R. McMahon, ${ }^{38}$ S. Ricciardi, ${ }^{38}$ F. Salvatore, ${ }^{38}$ M. A. Winter, ${ }^{38}$ D. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ J. Allison, ${ }^{40}$ N. R. Barlow, ${ }^{40}$ R. J. Barlow, ${ }^{40}$ M. C. Hodgkinson, ${ }^{40}$ G. D. Lafferty, ${ }^{40}$ A. J. Lyon, ${ }^{40}$ J. C. Williams, ${ }^{40}$ A. Farbin, ${ }^{41}$ W. D. Hulsbergen, ${ }^{41}$ A. Jawahery, ${ }^{41}$ D. Kovalskyi, ${ }^{41}$ C. K. Lae, ${ }^{41}$ V. Lillard, ${ }^{41}$ D. A. Roberts, ${ }^{41}$ G. Blaylock, ${ }^{42}$ C. Dallapiccola, ${ }^{42}$ K. T. Flood, ${ }^{42}$ S. S. Hertzbach, ${ }^{42}$ R. Kofler, ${ }^{42}$ V. B. Koptchev,,42 T. B. Moore, ${ }^{42}$ S. Saremi, ${ }^{42}$ H. Staengle, ${ }^{42}$ S. Willocq, ${ }^{42}$ R. Cowan, ${ }^{43}$ G. Sciolla, ${ }^{43}$ F. Taylor, ${ }^{43}$ R. K. Yamamoto, ${ }^{43}$ D. J. J. Mangeol, ${ }^{44}$ P. M. Patel, ${ }^{44}$ S. H. Robertson, ${ }^{44}$ A. Lazzaro, ${ }^{45}$ F. Palombo, ${ }^{45}$ J. M. Bauer, ${ }^{46}$ L. Cremaldi, ${ }^{46}$ V. Eschenburg, ${ }^{46}$ R. Godang, ${ }^{46}$ R. Kroeger, ${ }^{46}$ J. Reidy, ${ }^{46}$ D. A. Sanders, ${ }^{46}$ D. J. Summers, ${ }^{46}$ H. W. Zhao, ${ }^{46}$ S. Brunet, ${ }^{47}$ D. Côté, ${ }^{47}$ P. Taras, ${ }^{47}$ H. Nicholson, ${ }^{48}$ F. Fabozzi, ${ }^{49,}$| \dagger |
| :--- |
| C. Gatto, |${ }^{49}$ L. Lista, ${ }^{49}$ D. Monorchio, ${ }^{49}$ P. Paolucci, ${ }^{49}$ D. Piccolo, ${ }^{49}$ C. Sciacca, ${ }^{49}$ M. Baak, ${ }^{50}$ H. Bulten, ${ }^{50}$ G. Raven, ${ }^{50}$ H. L. Snoek, ${ }^{50}$ L. Wilden, ${ }^{50}$ C. P. Jessop, ${ }^{51}$ J. M. LoSecco, ${ }^{51}$ T. A. Gabriel, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ B. Brau, ${ }^{53}$

K. K. Gan,,${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin,,${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ G. Tiozzo, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ L. Del Buono, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John,,${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malcles, ${ }^{56}$ J. Ocariz, ${ }^{56}$ M. Pivk, ${ }^{56}$ L. Roos, ${ }^{56}$ S. T'Jampens,,${ }^{56}$ G. Therin, ${ }^{56}$ P. F. Manfredi, ${ }^{57}$ V. Re,,${ }^{57}$ P. K. Behera, ${ }^{58}$ L. Gladney,,58 Q. H. Guo, ${ }^{58}$ J. Panetta,,${ }^{58}$ F. Anulli, ${ }^{27,59}$ M. Biasini, ${ }^{59}$ I. M. Peruzzi, ${ }^{27,59}$ M. Pioppi, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Bondioli, ${ }^{60}$ F. Bucci, ${ }^{60}$ G. Calderini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ F. Martinez-Vidal,,${ }^{60}$, 团 M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ M. Rama, ${ }^{60}$ G. Rizzo, ${ }^{60}$ F. Sandrelli, ${ }^{60}$ J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ D. Judd, ${ }^{61}$ K. Paick, ${ }^{61}$ D. E. Wagoner, ${ }^{61}$ N. Danielson, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ V. Miftakov, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith,,${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Bellini, ${ }^{63}$ G. Cavoto,,${ }^{62,63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ M. Pierini, ${ }^{63}$ G. Piredda,,${ }^{63}$ F. Safai Tehrani, ${ }^{63}$ C. Voena, ${ }^{63}$ S. Christ, ${ }^{64}$ G. Wagner, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ N. De Groot,,${ }^{65}$ B. Franek, ${ }^{65}$ N. I. Geddes, ${ }^{65}$ G. P. Gopal, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ P.-F. Giraud, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ M. Langer, ${ }^{66}$ M. Legendre, ${ }^{66}$ G. W. London, ${ }^{66}$ B. Mayer, ${ }^{66}$ G. Schott, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ M. V. Purohit, ${ }^{67}$ A. W. Weidemann, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ F. X. Yumiceva, ${ }^{67}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ N. Berger, ${ }^{68}$ A. M. Boyarski, ${ }^{68}$ O. L. Buchmueller, ${ }^{68}$ R. Claus, ${ }^{68}$ M. R. Convery, ${ }^{68}$ M. Cristinziani, ${ }^{68}$ G. De Nardo, ${ }^{68}$ D. Dong, ${ }^{68}$ J. Dorfan, ${ }^{68}$ D. Dujmic, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ E. E. Elsen, ${ }^{68}$ S. Fan, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ T. Hadig, ${ }^{68}$ V. Halyo, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ J. Libby, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth,,${ }^{68}$ H. L. Lynch, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O'Grady, ${ }^{68}$ V. E. Ozcan,,68 A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ S. Petrak, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ G. Simi, ${ }^{68}$ A. Snyder, ${ }^{68}$ A. Soha, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ J. Va'vra, ${ }^{68}$ S. R. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ A. J. R. Weinstein, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ T. I. Meyer, ${ }^{69}$
B. A. Petersen, ${ }^{69}$ C. Roat, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ M. Saleem,,${ }^{70}$ F. R. Wappler, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ H. Kim, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. Satpathy, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ I. Kitayama, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ M. Bona, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ C. Borean, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ S. Dittongo, ${ }^{75}$ S. Grancagnolo, ${ }^{75}$ L. Lanceri, ${ }^{75}$ P. Poropat, ${ }^{75}$, ${ }_{5}^{3}$ L. Vitale, ${ }^{75}$ G. Vuagnin, ${ }^{75}$ R. S. Panvini, ${ }^{76}$ Sw. Banerjee, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ P. D. Jackson, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ H. R. Band, ${ }^{78}$ S. Dasu, ${ }^{78}$ M. Datta, ${ }^{78}$ A. M. Eichenbaum, ${ }^{78}$ M. Graham, ${ }^{78}$ J. J. Hollar, ${ }^{78}$ J. R. Johnson, ${ }^{78}$ P. E. Kutter, ${ }^{78}$ H. Li, ${ }^{78}$ R. Liu, ${ }^{78}$ A. Mihalyi, ${ }^{78}$ A. K. Mohapatra, ${ }^{78}$ Y. Pan, ${ }^{78}$ R. Prepost, ${ }^{78}$ A. E. Rubin, ${ }^{78}$ S. J. Sekula, ${ }^{78}$ P. Tan, ${ }^{78}$ J. H. von Wimmersperg-Toeller, ${ }^{78}$ J. Wu, ${ }^{78}$ S. L. Wu, ${ }^{78}$ Z. Yu, ${ }^{78}$ M. G. Greene, ${ }^{79}$ and H. Neal ${ }^{79}$
(The BABAR Collaboration)

[^0][^1](Dated: May 31, 2004)

Abstract

We present a measurement of the time-dependent $C P$-violating asymmetries in $B^{0} \rightarrow$ $K^{* 0} \gamma\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$ decays based on 124 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. In a sample containing 105 ± 14 signal decays, we measure $S_{K^{*} \gamma}=0.25 \pm 0.63 \pm 0.14$ and $C_{K^{*} \gamma}=-0.57 \pm 0.32 \pm 0.09$, where the first error is statistical and the second systematic.

PACS numbers: $13.25 . \mathrm{Hw}, 13.25 .-\mathrm{k}, 14.40 . \mathrm{Nd}$

The recent data 1 from the B factory experiments have provided strong evidence that the quark mixing mechanism in the Standard Model (SM), encapsulated in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [2], is the dominant source of $C P$ violation in the quark sector. Nonetheless, decays which originate from radiative loop processes, such as $b \rightarrow s \gamma$, may exhibit significant deviations from the SM due to new physics contributions. In this letter we report the first measurement of time-dependent $C P$-violating (CPV) asymmetries in a $b \rightarrow s \gamma$ process through the exclusive decay $B^{0} \rightarrow K^{* 0} \gamma$, where $K^{*} \rightarrow K_{S}^{0} \pi^{0}[3]$. D. Atwood, M. Gronau and A. Soni were the first to point out that such a measurement probes the polarization of the photon [4], which is dominantly left-handed (right-handed) for $b \rightarrow s \gamma$ ($\bar{b} \rightarrow \bar{s} \gamma$) in the SM, but is mixed in various new physics scenarios. The exclusive decays $B^{0} \rightarrow\left(K_{S}^{0} \pi^{0}\right) \gamma_{R}$ and $\bar{B}^{0} \rightarrow\left(K_{S}^{0} \pi^{0}\right) \gamma_{L}$ are orthogonal transitions and are the dominant decays in the SM. Therefore the CPV asymmetry due to interference between decays with or without mixing is expected to be very small, $\approx 2\left(m_{s} / m_{b}\right) \sin 2 \beta$ $\left(\beta \equiv \arg \left(-V_{c d} V_{c b}^{*} / V_{t d} V_{t b}^{*}\right)\right)$. Any significant deviation would indicate phenomena beyond the SM.

The $B^{0} \rightarrow K^{* 0} \gamma$ decays have been previously explored by the CLEO [5], BABAR [6], and Belle collaborations [7], who reported measurements of branching fractions and the direct $C P$ and isospin asymmetries. The measurements reported in this letter are based on 124 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected in 1999-2003 at the PEPII $e^{+} e^{-}$collider at the Stanford Linear Accelerator Center with the $B A B A R$ detector, which is fully described in Ref. 8]. For the extraction of the time dependence of $B^{0} \rightarrow K^{* 0} \gamma\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$ decays, we adopt an analysis approach that closely follows our recently published measurement of CPV asymmetries in the decay $B^{0} \rightarrow K_{S}^{0} \pi^{0}$ [9]. There we established a technique of vertex reconstruction for B decay modes to final states containing a $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decay and other neutral particles, but no primary charged particles at the B decay vertex.

We search for $B^{0} \rightarrow K^{* 0} \gamma\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$ decays in hadronic events, which are selected based on charged particle multiplicity and event topology. We reconstruct $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$candidates from pairs of oppositely charged tracks, detected in the silicon vertex detector (SVT) and/or the central drift chamber (DCH). We require that these tracks originate from a vertex which is more than 0.3 cm from the primary vertex and that the re-
sulting candidates have a $\pi^{+} \pi^{-}$invariant mass between 487 and $508 \mathrm{MeV} / c^{2}$. We form $\pi^{0} \rightarrow \gamma \gamma$ candidates from pairs of photon candidates in BABAR's electromagnetic calorimeter (EMC) which are not associated with any charged tracks, carry a minimum energy of 30 MeV , and possess the expected lateral shower shape. We require that the $\gamma \gamma$ combination has an energy greater than 200 MeV and an invariant mass between 115 and $155 \mathrm{MeV} / c^{2}$. We reconstruct candidate $K^{*} \rightarrow K_{S}^{0} \pi^{0}$ decays from $K_{S}^{0} \pi^{0}$ combinations with invariant mass in the range $0.8<M\left(K_{S}^{0} \pi^{0}\right)<1.0 \mathrm{GeV} / c^{2}$. For photons originating from the B decay, we select clusters in the EMC which are isolated by 25 cm from all other energy deposits and are inconsistent with $\pi^{0} \rightarrow \gamma \gamma$ or $\eta \rightarrow \gamma \gamma$ decays.

We identify $B^{0} \rightarrow K^{* 0} \gamma$ decays in $K^{*} \gamma$ combinations using two nearly independent kinematic variables: the energy-substituted mass $m_{\mathrm{ES}}=$ $\sqrt{\left(s / 2+\mathbf{p}_{i} \cdot \mathbf{p}_{B}\right)^{2} / E_{i}^{2}-p_{B}^{2}}$ and the energy difference $\Delta E=E_{B}^{*}-\sqrt{s} / 2$. Here $\left(E_{i}, \mathbf{p}_{i}\right)$ and $\left(E_{B}, \mathbf{p}_{B}\right)$ are the four-vectors of the initial $e^{+} e^{-}$system and the B candidate, respectively, \sqrt{s} is the center-of-mass energy, and the asterisk denotes th center-of-mass (CMS) frame. For signal decays, the m_{ES} distribution peaks near the B mass with a resolution of $\approx 3.5 \mathrm{MeV} / c^{2}$ and ΔE peaks near 0 MeV with a resolution of $\approx 50 \mathrm{MeV}$. Both m_{ES} and ΔE exhibit a low-side tail from energy leakage in the EMC. For the study of CPV asymmetries, we consider candidates within $5.2<m_{\mathrm{ES}}<5.3 \mathrm{GeV} / c^{2}$ and $|\Delta E|<300 \mathrm{MeV}$, which includes the signal as well as a large "sideband" region for background estimation. When more than one candidate is found in an event, we select the combination with the π^{0} mass closest to the nominal π^{0} value, and if ambiguity persists we select the combination with the K_{S}^{0} mass closest to the nominal K_{S}^{0} value.

The sample of candidate events selected by the above requirements contains significant background contributions from continuum $e^{+} e^{-} \rightarrow q \bar{q}(q=\{u, d, s, c\})$, as well as random combinations from generic $B \bar{B}$ decays. We suppress both of these backgrounds by taking advantage of the expected angular distribution of the decay products of these processes. Angular momentum conservation restricts the K^{*} meson in the $B^{0} \rightarrow K^{* 0} \gamma$ decay to transversely polarized states, which leads to an angular distribution of $\sin ^{2} \theta_{H}$ for the decay products, where θ_{H} is the angle between the K_{S}^{0} and the B meson direc-

FIG. 1: Distribution of (a) m_{ES} and (b) $M_{K^{*}}$ for events enhanced in signal decays. The dashed and solid curves represent the background and signal-plus-background contributions, respectively, as obtained from the maximum likelihood fit to the full data sample. The selection technique is described in the text.
tions in the K^{*} rest frame. Monte Carlo studies show that the background candidates peak near $\cos \theta_{H}=-1$. We require $\cos \theta_{H}>-0.6$, resulting in rejection of 68% of $B \bar{B}$ and 48% of continuum background candidates, while retaining 91% of the signal.

We exploit topological variables to further suppress the continuum backgrounds, which in the CMS frame tend to retain the jet-like features of the $q \bar{q}$ fragmentation process, as opposed to spherical $B \bar{B}$ decays. In the CMS system we calculate the angle θ_{S}^{*} between the sphericity axis of the B candidate and that of the remaining particles in the rest of the event (ROE). While $\left|\cos \theta_{S}^{*}\right|$ is highly peaked near 1 for continuum background, it is nearly uniformly distributed for $B \bar{B}$ events. We require $\left|\cos \theta_{S}^{*}\right|<0.9$, eliminating 58% of the continuum events. We also employ an event-shape Fisher discriminant in the maximum-likelihood fit (described below) from which we extract the CPV measurements. This variable is defined as $\mathcal{F}=0.53-0.60 L_{0}+1.27 L_{2}$, where $L_{j} \equiv \sum_{i \in \operatorname{ROE}}\left|\mathbf{p}_{i}^{*} \| \cos \theta_{i}^{*}\right|^{j}, \mathbf{p}_{\mathbf{i}}^{*}$ is the momentum of particle i in the CMS system and θ_{i}^{*} is the angle between \mathbf{p}_{i}^{*} and the sphericity axis of the B candidate.

The above selections yield $1916 B^{0} \rightarrow K^{* 0} \gamma\left(K^{* 0} \rightarrow\right.$ $K_{S}^{0} \pi^{0}$) candidates. We extract our measurements from this sample using an unbinned maximum-likelihood fit to kinematic ($m_{\mathrm{ES}}, \Delta E$, and K^{*} mass), event shape (\mathcal{F}), flavor tag, and time structure variables (described below). As input to the fit, we parameterize the probability distribution functions (PDF) describing the observables of signal and $B \bar{B}$ background events using either more copious fully-reconstructed B decays in data or simulated samples. For the continuum background, we select the functional form of the PDFs describing each fit variable in data using the sideband regions of the other observables where the $q \bar{q}$ background dominates. We include these regions in the fitted sample and simultaneously extract the parameters of the background PDFs along with the

CPV measurements. We fit 105 ± 14 signal and 19 ± 15 other B decays in the selected sample. This signal yield is consistent with expectations from the previous measurements of the branching fractions [5, 6, 7]. Figure 11 displays the m_{ES} and $M_{K^{*}}$ distributions for signal-enhanced sub-samples of these events, selected using the PDFs employed in the fit (see below).

For each $B^{0} \rightarrow K^{* 0} \gamma$ candidate, we examine the remaining tracks and neutral particles in the event to determine if the other B in the event, B_{tag}, decayed as a B^{0} or a \bar{B}^{0} (flavor tag). Time-dependent CPV asymmetries are determined by reconstructing the distribution of the proper decay time difference, $\Delta t \equiv t_{C P}-t_{\mathrm{tag}}$. At the $\Upsilon(4 S)$ resonance, the distribution of Δt follows

$$
\begin{align*}
P_{\bar{B}^{0}}^{B^{0}}(\Delta t)= & \frac{e^{-|\Delta t| / \tau}}{4 \tau}[1 \pm \tag{1}\\
& \left.\left(S_{f} \sin \left(\Delta t \Delta m_{d}\right)-C_{f} \cos \left(\Delta t \Delta m_{d}\right)\right)\right]
\end{align*}
$$

where the upper (lower) sign corresponds to $B_{\text {tag }}$ decaying as $B^{0}\left(\bar{B}^{0}\right), \tau$ is the B^{0} lifetime, Δm_{d} is the mixing frequency, and S_{f} and C_{f} are the magnitude of the mixing-induced and direct CPV asymmetries, respectively. As stated above, in the SM we expect $S_{K^{*} \gamma} \approx$ $2\left(m_{s} / m_{b}\right) \sin 2 \beta \approx 0.05$. We expect $C_{K^{*} \gamma}=-A_{K^{*} \gamma}$, the direct $C P$ asymmetry measured in the self-tagging and more copious $B^{0} \rightarrow K^{* 0} \gamma\left(K^{*} \rightarrow K^{+} \pi^{-}\right)$decay.

We use a neural network to determine the flavor, T, of the $B_{\text {tag }}$ meson from kinematic and particle identification information [10]. Each event is assigned to one of five mutually exclusive tagging categories, designed to combine flavor tags with similar performance and Δt resolution. We parameterize the performance of this algorithm in a data sample ($B_{\text {flav }}$) of fully reconstructed $B^{0} \rightarrow D^{(*)-} \pi^{+} / \rho^{+} / a_{1}^{+}$decays. The average effective tagging efficiency obtained from this sample is $Q=\Sigma_{c} \epsilon_{S}^{c}\left(1-2 w^{c}\right)^{2}=0.288 \pm 0.005$, where ϵ_{S}^{c} and w^{c} are the efficiency and mistag probabilities, respectively, for events tagged in category c. In each tagging category, we extract the fraction of events $\left(\epsilon_{q \bar{q}}^{c}\right)$ and the asymmetry in the rate of B^{0} and \bar{B}^{0} tags in the continuum background events in the fit to the data.

We compute the proper time difference Δt from the known boost of the $e^{+} e^{-}$system and the measured $\Delta z=z_{C P}-z_{\mathrm{tag}}$, the difference between the reconstructed decay vertex positions of the $B^{0} \rightarrow K^{* 0} \gamma$ and $B_{\text {tag }}$ candidate along the boost direction (z). A description of the inclusive reconstruction of the B_{tag} vertex using tracks in ROE is given in [10]. Replicating the vertexing technique developed for $B^{0} \rightarrow K_{S}^{0} \pi^{0}$ decays $[9]$, we determine the decay point $z_{C P}$ for $B^{0} \rightarrow K^{* 0} \gamma\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$ candidates from the intersection of the K_{S}^{0} trajectory with the interaction region. This is accomplished by constraining the B vertex to the interaction point (IP) in the plane transverse to the beam, which is determined in each run from the spatial distribution of vertices from
two-track events. We combine the uncertainty in the IP position, which follows from the size of the interaction region (about $200 \mu \mathrm{~m}$ horizontal and $4 \mu \mathrm{~m}$ vertical), with the RMS of the transverse B flight length distribution (about $30 \mu \mathrm{~m}$) to assign an uncertainty to the IP constraint.

Simulation studies indicate that $B^{0} \rightarrow K^{* 0} \gamma\left(K^{* 0} \rightarrow\right.$ $K_{S}^{0} \pi^{0}$) decays exhibit properties which are characteristic of the IP vertexing technique, namely that the per-event estimate of the error on $\Delta t, \sigma_{\Delta t}$, reflects the expected dependence of the $z_{C P}$ resolution on the K_{S}^{0} flight direction and the number of SVT layers traversed by its decay daughters. Though the fit extracts $C_{K^{*} \gamma}$ from all flavor tagged signal decays, we only allow 68% of these events contribute to the measurement of $S_{K^{*} \gamma}$. This subset consists of candidates which are composed of K_{S}^{0} decays with at least one hit in the SVT on both tracks and pass the quality requirements of $\sigma_{\Delta t}<2.5 \mathrm{ps}$ and $|\Delta t|<20 \mathrm{ps}$. For 66% of this subset, both tracks have hits in the inner three SVT layers, which results in a mean Δt resolution that is comparable to decays with the vertex directly reconstructed from charged particles originating at the B decay point 10]. In the remainder of the subset, the resolution is nearly two times worse.

We obtain the PDF for the time-dependence of signal decays from the convolution of Eq. 1 with a resolution function $\mathcal{R}\left(\delta t \equiv \Delta t-\Delta t_{\text {true }}, \sigma_{\Delta t}\right)$. The resolution function is parameterized as the sum of a 'core' and a 'tail' Gaussian function, each with a width and mean proportional to the reconstructed $\sigma_{\Delta t}$, and a third Gaussian centered at zero with a fixed width of 8 ps 10]. Using simulated data, we have verified that the parameters of $\mathcal{R}\left(\delta t, \sigma_{\Delta t}\right)$ for $B^{0} \rightarrow K^{* 0} \gamma$ decays and the $B \bar{B}$ backgrounds are similar to those obtained from the $B_{\text {flav }}$ sample, even though the distributions of $\sigma_{\Delta t}$ differ considerably. Therefore, we extract these parameters from a fit to the $B_{\text {flav }}$ sample. We find that the Δt distribution of continuum background candidates is well described by a delta function convoluted with a resolution function with the same functional form as used for signal events. We determine the parameters of the background function in the fit to the $B^{0} \rightarrow K^{* 0} \gamma\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$ dataset.

To extract the CPV asymmetries we maximize the logarithm of the likelihood function

$$
\mathcal{L}\left(S_{f}, C_{f}, N_{h}, f_{h}, \epsilon_{q \bar{q}}^{c}, \vec{\alpha}\right)=\begin{gathered}
\frac{e^{-\left(N_{S}+N_{B \bar{B}}+N_{q \bar{q}}\right)}}{\left(N_{S}+N_{B \bar{B}}+N_{q \bar{q}}\right)} \times \\
\prod_{i \in \mathrm{w} / \Delta t}\left[N_{S} f_{S} \epsilon_{S}^{c} \mathcal{P}_{S}\left(\vec{x}_{i}, \vec{y}_{i} ; S_{f}, C_{f}\right)+\right. \\
N_{B \bar{B}} f_{B \bar{B}} \epsilon_{B \bar{B}}^{c} \mathcal{P}_{B \bar{B}}\left(\vec{x}_{i}, \vec{y}_{i}\right)+ \\
\left.N_{q \bar{q}} f_{q \bar{q}} \epsilon_{q \bar{q}}^{c} \mathcal{P}_{q \bar{q}}\left(\vec{x}_{i}, \vec{y}_{i} ; \vec{\alpha}\right)\right] \times \\
\prod_{i \in \mathrm{w} / \mathrm{o} \Delta t}\left[N_{S}\left(1-f_{S}\right) \epsilon_{S}^{c} \mathcal{P}_{S}^{\prime}\left(\vec{y}_{i} ; C_{f}\right)+\right. \\
N_{B \bar{B}}\left(1-f_{B \bar{B}}\right) \epsilon_{B \bar{B}}^{c} \mathcal{P}_{B \bar{B}}^{\prime}\left(\vec{y}_{i}\right)+ \\
\left.N_{q \bar{q}}\left(1-f_{q \bar{q}}\right) \epsilon_{q \bar{q}}^{c} \mathcal{P}_{q \bar{q}}^{\prime}\left(\vec{y}_{i} ; \vec{\alpha}\right)\right],
\end{gathered}
$$

where the second (third) factor on the right-hand side is the contribution from events with (without)
Δt information. The vectors \vec{x}_{i} and \vec{y}_{i} represent the time-structure and remaining observables, respectively, for event i. The PDFs $\mathcal{P}_{h}\left(\vec{x}_{i}, \vec{y}_{i}\right)=$ $P_{h}\left(m_{\mathrm{ES} i}\right) P_{h}\left(\Delta E_{i}\right) P_{h}\left(\mathcal{F}_{i}\right) P_{h}\left(M_{K^{*}, i}\right) P_{h}^{c_{i}}\left(\Delta t_{i} \mid \sigma_{\Delta t, i}, T_{i}\right)$ and $\mathcal{P}^{\prime}{ }_{h}\left(\vec{y}_{i}\right)=P_{h}\left(m_{\mathrm{ES} i}\right) P_{h}\left(\Delta E_{i}\right) P_{h}\left(\mathcal{F}_{i}\right) P_{h}\left(M_{K^{*}, i}\right) P_{h}^{c_{i}}\left(T_{i}\right)$ are the products of the PDFs described above for hypothesis h of signal $(S), B \bar{B}$ background $(B \bar{B})$, and continuum background $(q \bar{q})$. Along with the CPV asymmetries S_{f} and C_{f}, the fit extracts the yields $N_{S}, N_{B \bar{B}}$, and $N_{q \bar{q}}$, the fractions of events with Δt information f_{S} and $f_{q \bar{q}}$, and the parameters $\vec{\alpha}$ which describe the background PDFs. We determine ϵ_{B}^{c} and $f_{B \bar{B}}$ in simulated generic $B \bar{B}$ decays.

The fit to the data sample yields $\quad S_{K^{*} \gamma}=0.25 \pm 0.63 \pm 0.14 \quad$ and $C_{K^{*} \gamma}=-0.57 \pm 0.32 \pm 0.09$, where the uncertainties are statistical and systematic, respectively. The fit reports a correlation of 1% between these parameters. The result for $C_{K^{*} \gamma}$ is consistent with a fit that does not employ Δt information. Since the present measurements of $A_{K^{*} \gamma}$ [6, 7] are consistent with zero, we also fit the data sample with $C_{K^{*} \gamma}$ fixed to zero and obtain $S_{K^{*} \gamma}=0.25 \pm 0.65 \pm 0.14$.

The event selection criteria employed to isolate signalenhanced samples displayed in Figure 1 are based on a cut on the likelihood ratio $R=\mathcal{P}_{S} /\left(\mathcal{P}_{S}+\mathcal{P}_{B B}+\right.$ $\left.\mathcal{P}_{q \bar{q}}\right)$ calculated without the displayed observable. The dashed and solid curves indicate background and signal-plus-background contributions, respectively, as obtained from the fit, but corrected for the selection efficiency of R. Figure 2 shows distributions of Δt for B^{0} and \bar{B}^{0}-tagged events, and the asymmetry $\mathcal{A}_{K^{*} \gamma}(\Delta t)=$ $\left[N_{B^{0}}-N_{\bar{B}^{0}}\right] /\left[N_{B^{0}}+N_{\bar{B}^{0}}\right]$ as a function of Δt, also for a signal-enhanced sample.

We consider several sources of systematic uncertainties related to the level and possible asymmetry of the background contribution from generic $B \bar{B}$ decays. We estimate the impact of potential biases in the determination of the $B \bar{B}$ background rate to lead to a systematic uncertainty of $0.04(0.05)$ on $S_{K^{*} \gamma}\left(C_{K^{*} \gamma}\right)$. We estimate an uncertainty of 0.12 (0.03) due to potential CPV asymmetries in the $B \bar{B}$ backgrounds and 0.02 (0.06) due to possible asymmetries in the rate of B^{0} versus \bar{B}^{0} tags in continuum backgrounds. We quantify possible systematic effects due to the vertexing method in the same manner as Ref. [9], estimating systematic uncertainties of 0.04 (0.02) due to the choice of resolution function, 0.04 (<0.01) due to the vertexing technique, and 0.03 (0.01) due to possible misalignments of the SVT. Finally, we include a systematic uncertainty of 0.02 (0.02) due to tagging asymmetries in the signal and 0.02 (0.02) due to imperfect knowledge of the PDFs used in the fit.

In summary, we have performed a measurement of the time-dependent CPV asymmetry $S_{K^{*} \gamma}$ and the direct$C P$ violating asymmetry $C_{K^{*} \gamma}$ from $B^{0} \rightarrow K^{* 0} \gamma\left(K^{* 0} \rightarrow\right.$

FIG. 2: Distributions of Δt for events enhanced in signal decays with $B_{\text {tag }}$ tagged as (a) B^{0} or (b) \bar{B}^{0}, and (c) the resulting asymmetry $\mathcal{A}_{K^{*} \gamma}(\Delta t)$. The dashed and solid curves represent the fitted background and signal-plus-background contributions, respectively, as obtained from the maximum likelihood fit. The raw asymmetry projection corresponds to approximately 38 signal and 19 background events.
$K_{S}^{0} \pi^{0}$) decays. Our measurement is consistent with the SM expectation of very small CPV asymmetries.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany),

INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Now at Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy
\ddagger Also with IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain
${ }^{\S}$ Deceased
[1] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 87, 091801 (2001). K. Abe et al. [BELLE Collaboration], Phys. Rev. Lett. 87, 091802 (2001).
[2] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi, and T. Maskawa, Prog. Th. Phys. 49, 652 (1973).
[3] Unless explicitly stated, charge conjugate decay modes are assumed throughout this paper.
[4] D. Atwood, M. Gronau and A. Soni, Phys. Rev. Lett. 79, 185 (1997) [arXiv hep-ph/9704272].
[5] T.E. Coan et al., [CLEO Collaboration], Phys. Rev. Lett. 84, 5283 (2000).
[6] B. Aubert et al., [BABAR Collaboration], Phys. Rev. Lett. 88, 101805 (2002)
[7] M. Nakao et al., [Belle Collaboration], arXiv hep-ex/0402042
[8] B. Aubert et al., [BABAR Collaboration], Nucl. Instr. and Methods A 479, 1 (2002).
[9] B. Aubert et al., [BABAR Collaboration], arXiv hep-ex/0403001 Submitted to Phys. Rev. Lett.
[10] B. Aubert et al., [BABAR Collaboration], Phys. Rev. D 66, 032003 (2002).
[11] K. Hagiwara et al., [Particle Data Group], Phys. Rev. D 66, 010001 (2002).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{4}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720 , USA
 ${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany ${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T $1 Z 1$
 ${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{12}$ University of California at Irvine, Irvine, CA 92697, USA
 ${ }^{13}$ University of California at Los Angeles, Los Angeles, CA 90024, USA
 ${ }^{14}$ University of California at Riverside, Riverside, CA 92521, USA
 ${ }^{15}$ University of California at San Diego, La Jolla, CA 92093, USA
 ${ }^{16}$ University of California at Santa Barbara, Santa Barbara, CA 93106, USA
 ${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
 ${ }^{18}$ California Institute of Technology, Pasadena, CA 91125, USA
 ${ }^{19}$ University of Cincinnati, Cincinnati, OH 45221, USA

[^1]: ${ }^{20}$ University of Colorado, Boulder, CO 80309, USA
 ${ }^{21}$ Colorado State University, Fort Collins, CO 80523, USA
 ${ }^{22}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{23}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
 ${ }^{24}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{25}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{26}$ Florida AछM University, Tallahassee, FL 32307, USA
 ${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{29}$ Harvard University, Cambridge, MA 02138, USA
 ${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{32}$ University of Iowa, Iowa City, IA 52242, USA
 ${ }^{33}$ Iowa State University, Ames, IA 50011-3160, USA
 ${ }^{34}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
 ${ }^{35}$ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
 ${ }^{36}$ University of Liverpool, Liverpool L69 72E, United Kingdom
 ${ }^{37}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{38}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
 ${ }^{39}$ University of Louisville, Louisville, $K Y$ 40292, USA
 ${ }^{40}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{41}$ University of Maryland, College Park, MD 20742, USA
 ${ }^{42}$ University of Massachusetts, Amherst, MA 01003, USA
 ${ }^{43}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA
 ${ }^{44}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
 ${ }^{45}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
 ${ }^{46}$ University of Mississippi, University, MS 38677, USA
 ${ }^{47}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
 ${ }^{48}$ Mount Holyoke College, South Hadley, MA 01075, USA
 ${ }^{49}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{50}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{51}$ University of Notre Dame, Notre Dame, IN 46556, USA
 ${ }^{52}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
 ${ }^{53}$ Ohio State University, Columbus, OH 43210, USA
 ${ }^{54}$ University of Oregon, Eugene, OR 97403, USA
 ${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
 ${ }^{57}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
 ${ }^{58}$ University of Pennsylvania, Philadelphia, PA 19104, USA
 ${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{61}$ Prairie View A 8 M University, Prairie View, TX 77446, USA
 ${ }^{62}$ Princeton University, Princeton, NJ 08544, USA
 ${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{67}$ University of South Carolina, Columbia, SC 29208, USA
 ${ }^{68}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
 ${ }^{69}$ Stanford University, Stanford, CA 94305-4060, USA
 ${ }^{70}$ State Univ. of New York, Albany, NY 12222, USA
 ${ }^{71}$ University of Tennessee, Knoxville, TN 37996, USA
 ${ }^{72}$ University of Texas at Austin, Austin, TX 78712, USA
 ${ }^{73}$ University of Texas at Dallas, Richardson, TX 75083, USA
 ${ }^{74}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{76}$ Vanderbilt University, Nashville, TN 37235, USA
 ${ }^{77}$ University of Victoria, Victoria, BC, Canada V8W 3P6
 ${ }^{78}$ University of Wisconsin, Madison, WI 53706, USA
 ${ }^{79}$ Yale University, New Haven, CT 06511, USA

