
SLAC-PUB-10466

Centralized Authenitcation with Kerberos 5, Part I

Work supported by Department of Energy contract DE–AC03–76SF00515.

Alf Wachsmann
Stanford Linear Accelerator Center

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Submitted to Linux Journal

June 2004

Centralized Authentication with Kerberos 5 – Part I

1. Introduction

Account administration in a distributed Unix/Linux environment can become very complicated and
messy if done by hand Large sites use special tools to deal with this problem. I will describe how
even very small installations like your three computer network at home can take advantage of the
very same tools.

The problem in a distributed environment is that password and shadow files need to be changed
individually on each machine if an account change occurs. Account changes include: password
change, addition/removal of accounts, name change of an account (UID/GID changes are a big
problem in any case), additional or removed login privileges to a (group of) computer(s), etc.

In this article, I will show how Kerberos 5 solves the authentication problem in a distributed
computing environment. A second article will describe a solution for the authorization problem.

The problem of authenticating users to a computer is mostly solved through passwords, although
other methods are available (smart cards, biometrics, etc.). Traditionally, these passwords are
stored in /etc/passwd and later in /etc/shadow. Because these files are local to a computer, it is a
big problem keeping all these files up to date. Directory services like NIS, NIS+ and LDAP were
invented to solve this problem. These services, however, introduce a new problem: they work over
the network and, hence, expose passwords, which are only weakly encrypted, on this network.

The authentication protocol implemented by Kerberos combines the advantages of being a
networked service and of eliminating the need to communicate passwords between computers
altogether.

To do so, Kerberos requires you to run two daemons on a secure server. The Key Distribution
Center (KDC) daemon handles all password verification requests and the generation of Kerberos
credentials, called Ticket Granting Tickets (TGTs). A second daemon, the Kerberos
Administration daemon, allows you to administer (add, delete, modify) accounts remotely without
logging into the computer running the Kerberos daemons. It also handles password change
requests from users. Note that, with Kerberos, only a password change ever requires transmitting a
strongly encrypted password over the network.

The Kerberos KDC grants a temporary credential, a TGT, to the account whenever a user gets
authenticated. Typically, these credentials have a lifetime of 10 or 24 hours. This lifetime can be
configured and should be no longer than 24 hours in case the TGT gets stolen. A thief can use it
only for the remaining TGT lifetime. The credential expiration will cause no issues if you are using
Kerberos only for authentication as described in this article. However, if you are using kerberized
services, you need to train your users to obtain new credentials after their lifetime expires even
though they are still logged in.

Kerberos was invented at MIT. The latest version is Kerberos 5, with its protocol defined in RFC
1510. Today, two Kerberos implementations are freely available: from MIT (U.S. and Canada:
http://web.mit.edu/kerberos/dist/; everybody else: http://www.crypto-publish.org/mit-kerberos5/)
and Heimdal from KTH in Sweden (http://www.pdc.kth.se/heimdal/). MIT's Kerberos 5 is
included in Red Hat Linux, whereas Heimdal is included in Suse's and Debian's Linux distribution.
There are Kerberos 5 implementations coming with Microsoft (Windows 2000 and above), Sun's
Solaris (SEAM, Solaris 2.6 and above), and Apple's Mac OS X.

I will use MIT's Kerberos distribution throughout this article because it offers simple password
quality checking, password aging and password history out of the box.

2. Prerequisites

You have to meet two prerequisites before you can switch authentication over to
Kerberos.

The clocks on all computers that will be members of your Kerberos installation need to be
synchronized to the clock of the machine running your KDC. The simplest way of doing this is to
use the Network Time Protocol (NTP) on all your machines.

The second requirement is harder to meet. All account names, UIDs and GIDs have to be the same
on all your computers. This is necessary because each of these accounts will become a new and
independent Kerberos account, called a "principal". You will have to go through all your local
/etc/passwd files and check whether this requirement is met. If not, you need to consolidate your
accounts! If you want to add Windows or Mac OS X clients to your Kerberos installation, you need
to look at all accounts on those machines as well.

3. Compiling

If you want to compile the Kerberos distribution yourself, follow these steps for MIT Krb5. If you
decide to use the Kerberos package that comes with your Linux distribution, just install the
packages and skip these steps.

 1. Get the source from one of the URLs above.

Get the PGP signature of the source package and
Verify the integrity of the downloaded source with

 % gpg --verify krb5-1.3.1.targz.asc
 2. Unpack the source with
 % tar zxvf krb5-1.3.1.tar.gz
 3. and change into the source directory
 % cd krb5-1.3.1/src

 4. Execute
 % ./configure --help

to find out whether you need to use special configure options for your site. /usr/local/ is the
default installation directory. If you need this software in another directory, use a "--
prefix=/new/path/to/directory" flag in the next step.

 5. In almost all cases, the default should be fine:
 % ./configure
 6. Compile the package with
 % make
 7. and check whether everything compiled correctly with
 % make check
 8. If everything looks ok, install the package with
 % sudo make install

Note: Never compile code as "root"! Use "root" privileges only when necessary as in these
installation steps.

 9. You now have MIT Krb5 installed in /usr/local/
10. Some additional directories need to be created by hand and their permissions set:
 % sudo mkdir -p /usr/local/var/krb5kdc
 % sudo chown root /usr/local/var/krb5kdc
 % sudo chmod 700 /usr/local/var/krb5kdc

4. Creating your realm

A Kerberos "realm" is an administrative domain which has its own Kerberos database. Each
Kerberos realm has its own set of Kerberos servers. The name of your realm can be anything, but
should reflect your place in the DNS world. If your new Kerberos realm is for your entire DNS
domain "example.com", you should give the same name (with all capital letters - this is a Kerberos
convention) to your Kerberos realm: "EXAMPLE.COM". Or, if you are setting up a new realm for
your engineering department in example.com, a realm name of "ENG.EXAMPLE.COM" could be
chosen.

The first step for creating your own realm is to create a /etc/krb5.conf file that contains all the
necessary information about this realm. The krb5.conf file needs to go onto every computer that
wants access to your new Kerberos realm. Here is an example file for the realm
"EXAMPLE.COM" with the KDC and administration servers running on machine
"kdc.example.com":

 [libdefaults]
 # determines your default realm name
 default_realm = EXAMPLE.COM

 [realms]
 EXAMPLE.COM = {
 # specifies where the servers are and on which ports

 # they listen (88 and 749 are the standard ports)
 kdc = kdc.example.com:88
 admin_server = kdc.example.com:749
 }

 [domain_realm]
 # maps your DNS domain name to your Kerberos realm name
 .example.com = EXAMPLE.COM

 [logging]
 # determines where each service should write its logging info
 kdc = SYSLOG:INFO:DAEMON

admin_server = SYSLOG:INFO:DAEMON
default = SYSLOG:INFO:DAEMON

The next file, /usr/local/var/krb5kdc/kdc.conf, configures the KDC server. It only needs to be on
the computer running the KDC daemon. Every entry has a reasonable default. Creating an empty
file should be sufficient for most cases:
 % sudo touch /usr/local/var/krb5kdc/kdc.conf

The following commands need to be executed on the computer that will become your KDC.

The command
 % sudo /usr/local/sbin/kdb5_util create -s
creates an initial Kerberos database for the new realm. It will ask you for the database master
password for the new realm and stores it in a file (/usr/local/var/krb5kdc/.k5.EXAMPLE.COM).

This command also creates a first set of principals in your Kerberos 5 account database. You can
list them by using
 % sudo /usr/local/sbin/kadmin.local
and then typing "listprincs" (w/o the quotes) at the "kadmin.local:" prompt. This will print the list
 K/M@EXAMPLE.COM
 kadmin/admin@EXAMPLE.COM
 kadmin/changepw@EXAMPLE.COM
 kadmin/history@EXAMPLE.COM
 krbtgt/EXAMPLE.COM@EXAMPLE.COM

Note, at this time we are not ready yet to use the remote version of the kadmin tool.

Before you start creating any principals in your new realm, you should define a "policy" that
determines how passwords are handled:

 kadmin.local: add_policy -maxlife 180days -minlife 2days -minlength 8 -minclasses 3 -
history 10 default

This defines a "default" policy that is used for every principal we create from here on. It
determines that the maximum lifetime for passwords is 180 days. The minimum lifetime is 2 days.
The minimum password length is 8 characters and these characters have to come from 3 different
classes out of these 5 available ones: lower case, upper case, numbers, punctuation, others. A
history of the last 10 passwords is kept to prevent reuse. If you want to have passwords checked
against a dictionary, add a "dict_file" definition like
 [realms]
 EXAMPLE.COM = {
 dict_file = /usr/share/dict/words
 }
to your kdc.conf file which was empty so far.

Now you are ready to create an administration principal for yourself:
 kadmin.local: addprinc john/admin
Adjust the name to _your_ account name but keep the "/admin"! It will ask twice for a new
password for this principal. You can look at the new account with
 kadmin.local: getprinc john/admin
which will print something like:
 Principal: john/admin@EXAMPLE.COM
 Expiration date: [never]
 Last password change: Wed Dec 24 09:55:17 PST 2003
 Password expiration date: Mon Jun 21 10:55:17 PDT 2004
 Maximum ticket life: 1 day 00:00:00
 Maximum renewable life: 0 days 00:00:00
 Last modified: Wed Dec 24 09:55:17 PST 2003 (root/admin@EXAMPLE.COM)
 Last successful authentication: [never]
 Last failed authentication: [never]
 Failed password attempts: 0
 Number of keys: 2
 Key: vno 1, Triple DES cbc mode with HMAC/sha1, no salt
 Key: vno 1, DES cbc mode with CRC-32, no salt
 Attributes:
 Policy: default

Exit the "kadmin.local" program by typing "quit" and start the KDC daemon with
 % sudo /usr/local/sbin/krb5kdc

Get a Kerberos 5 TGT by typing
 % /usr/local/bin/kinit john/admin@EXAMPLE.COM
and look at your TGT with
 % /usr/local/bin/klist
 Ticket cache: FILE:/tmp/krb5cc_5828
 Default principal: john/admin@EXAMPLE.COM

 Valid starting Expires Service principal
 12/23/03 14:15:39 12/24/03 14:15:39 krbtgt/EXAMPLE.COM@EXAMPLE.COM

Congratulations! You just did your first successful Kerberos authentication.

You now need to specify which privileges this administration account should have. This is
determined by entries in the file /usr/local/var/krb5kdc/kadm5.acl You can give "john/admin"
permissions to administer all principals, indicated by the wildcard character "*", by adding the line
 john/admin@EXAMPLE.COM *
to this file.

Before you can start using the administration daemon (kadmind) over the network, you have to
create a keytab file containing the key for one of the kadmin principals that where created when we
initialized our realm.
 kadmin.local: ktadd -k /usr/local/var/krb5kdc/kadm5.keytab kadmin/changepw

Now everything is ready for the Kerberos administration daemon. Start it with
 % sudo /usr/local/sbin/kadmind
This daemon allows you to administer your Kerberos principals remotely, i.e. without logging into
your KDC, using the "kadmin" client tool.

If you want your Kerberos daemons to start up automatically at boot time, add them to your KDC's
/etc/rc files.

With the Kerberos TGT obtained above, start the remote administration tool
 % /usr/local/sbin/kadmin
 Authenticating as principal john/admin@EXAMPLE.COM with password.
 Password for john/admin@EXAMPLE.COM:

4.1 Adding new accounts

New accounts still need to be added to your shadow file or password map. However, instead of
putting the encrypted password into these places, you have to create a new Kerberos principal and
store the password in the KDC.

Use the "kadmin" tool for this purpose
 % /usr/local/sbin/kadmin
and add a principal for a regular users with
 kadmin: addprinc john
 NOTICE: no policy specified for john@EXAMPLE.COM; assigning "default"
 Enter password for principal "john@EXAMPLE.COM":
 Re-enter password for principal "john@EXAMPLE.COM":
 Principal "john@EXAMPLE.COM" created.

The password you have entered during this principal creation process is the one "john" will need to
type in order to obtain a Kerberos TGT or just to login to a computer configured to use your
Kerberos 5 realm.

You can now either create principals for all your accounts by hand or you can use the technique
described in the migration section below.

4.2 Adding Slave KDCs

If you plan to use Kerberos in production at your site, you should plan on using additional slave
KDCs to make your installation more fault tolerant. For this, the master KDC needs to have an
additional "propagation service" installed that sends updated versions of the KDC database to all
slave servers. The slave servers need to have a receiving end for the propagation service installed.
See the MIT documentation for how to set this up.

5 Configuring the clients

The easiest way to enable a computer for Kerberos authentication is to use a Pluggable
Authentication Module (PAM). Because it uses Kerberos API calls, it needs a working
/etc/krb5.conf file. So, the first step is to copy the /etc/krb5.conf file from your KDC (see above)
onto each client machine.

Kerberos is not only used to authenticate users. It is also used to authenticate computers, to prevent
you from logging into a machine with a hijacked IP address. For this to work, each computer needs
its own Kerberos principal with the key (the "password") stored in a file (a "keytab" file).
Principals for computers have the special form host/<hostname>.example.com@EXAMPLE.COM.

The first step is to create a new principal for each of your client machines. The following
commands are using the computer name "client1" as example. Replace the string "client1" with the
hostname of the client computer. Login to every one of your client computers and execute
 % sudo /usr/local/sbin/kadmin
 kadmin: addprinc -randkey host/client1.example.com@EXAMPLE.COM
which assignes a random password to the new principal.

Then extract the key into a keytab file with
 kadmin: ktadd host/client1.example.com@EXAMPLE.COM
which will create a file /etc/krb5.keytab. To have write permissions to the /etc/ directory, you need
to run the kadmin command with sudo. Just creating a new principal would not have required these
special privileges. Watch out for the ownership and file permissions of /etc/krb5.keytab! It has to
be readable only by root. Otherwise, the security of this machine is compromised.

There are several PAM modules for Kerberos 5 available and all are called pam_krb5. Most of
these will not work any more due to some API changes in MIT Kerberos5 version 1.3. Your best
choice right now is to use the PAM module that comes with your Linux distribution.

If you really need to (or want to) compile your own, here is how to get a working version of the
module shipped by Red Hat. The following worked for me on a Red Hat 9 system:

 % cvs -d :pserver:anoncvs@elvis.redhat.com:/usr/local/CVS login
Type in your email address as password.
 % cvs -d :pserver:anoncvs@elvis.redhat.com:/usr/local/CVS co pam_krb5
 % cd pam_krb5

Your $PATH environment variable has to have the Kerberos distro of your choice _first_ in case
you have more than one distribution on your computer.

Example:
 % PATH=/usr/local/bin:$PATH
if you have installed your own version in /usr/local

Then execute
 % ./autogen
to have automake and friends create the necessary Makefiles.

If you get an automake error, run this command:
 % perl -pi -e "s/AC_CONFIG_HEADER/AM_CONFIG_HEADER/" configure.ac
and run again
 % ./autogen
Then compile and install the package with
 % make
 % sudo make install

Now add the new PAM module to your system's authentication stack by editing the file
/etc/pam.d/system-auth (on Red Hat systems). The entries should look similar to these Red Hat 9
entries:
auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth sufficient /lib/security/$ISA/pam_krb5.so use_first_pass
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account [default=bad success=ok user_unknown=ignore service_err=ignore

system_err=ignore] /lib/security/$ISA/pam_krb5.so

password required /lib/security/$ISA/pam_cracklib.so retry=3 type=
password sufficient /lib/security/$ISA/pam_unix.so nullok use_authtok md5 shadow
password sufficient /lib/security/$ISA/pam_krb5.so use_authtok
password required /lib/security/$ISA/pam_deny.so

session required /lib/security/$ISA/pam_limits.so
session required /lib/security/$ISA/pam_unix.so

session optional /lib/security/$ISA/pam_krb5.so

These changes will make every program that has the "system-auth" PAM stack in its PAM
configuration file (see the other files in /etc/pam.d/) use Kerberos for its authentication.

5.1 Unix clients using a Windows KDC

If you already have a working Windows Active Directory (AD) KDC installation, you can use it as
the master KDC for your Linux/Unix machines. In this case, you can skip the entire server
installation and only do the above described setup of your clients. Your /etc/krb5.conf file needs to
define the Windows KDC instead of a Unix KDC. For more information about how to create and
copy a keytab file and this scenario in general, see
http://www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp

6 Migration from local passwords or NIS/LDAP to Kerberos

Now that you have a working Kerberos 5 realm and your clients configured, you have to convert all
your user accounts. So far, the passwords for your accounts are stored either in machine's local
/etc/shadow files or in a NIS/LDAP password map. These passwords are encrypted with a one-
way hash function that makes it impossible (or at least impractical for people without a
supercomputer to crack them) to just "convert" everything into Kerberos 5 format. A good way to
migrate from you current situation to Kerberos, is to use pam_krb5_migrate from
http://freshmeat.net/projects/pam_krb5_migrate. This stackable PAM module can be installed on a
few computers and every time someone logs on, it creates a new principal for this account in your
Kerberos 5 KDC reusing the account's current password.

After everybody has logged on to these special machines, all your users have a corresponding
Kerberos 5 principal and you can replace the passwords in your local files or your NIS/LDAP
password map with a placeholder, like "krb5". The Kerberos PAM module will authenticate your
users from now on. At this point, you can also remove pam_krb5_migrate from the migration
systems.

7.1 Unix and Windows

If you have a number of Windows machines in your group, you can use your Unix KDC for them
as well. This will only work, however, if your Windows clients don't already belong to Windows
AD domain with Kerberos and the account names are the same in Kerberos and Windows. See the
above referenced Microsoft document for details.

7.2 Unix and Mac OS X

Using Mac OS X clients in your Kerberos 5 realm is as easy as configuring the names of your Unix
KDCs on your Macs. Again, account names have to match.

8 Kerberized Applications

Now that you have Kerberos up and running, you can use services that make use of it. You could
install kerberized telnet and ftp but you should really use ssh. You could kerberize your Apache
web server and your Mozilla web browser (http://meta.cesnet.cz/software/heimdal/
negotiate.en.html). Before Kerberos, you would have to type your password when using these
services. With Kerberos, all these applications are using your stored Kerberos credentials and use
them internally to authenticate you for the respective service. This is what many mean by "single-
sign-on."

9 Further Reading

The MIT Kerberos 5 distribution comes with good documentation about installing, administrating
and using Kerberos. The recently published O'Reilly book "Kerberos: The Definitive Guide" by
Jason Garman (ISBN 0-596-00403-6) is a good resource for setting up a new realm and getting
interoperability with other operating systems to work.

