Branching Fractions and $C P$ Asymmetries in $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ and $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc,,${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}{ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A. W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C. T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A. V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$
J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$
T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ M. T. Ronan,,${ }^{5}$ V. G. Shelkov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ M. Barrett, ${ }^{6}$ K. E. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ A. J. Hart, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ A. T. Watson, ${ }^{6}$ M. Fritsch, ${ }^{7}$ K. Goetzen, ${ }^{7}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ M. Steinke, ${ }^{7}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$
M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ N. S. Knecht, ${ }^{9}$
T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ A. Khan,,10 P. Kyberd, ${ }^{10}$ L. Teodorescu, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$

Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Bruinsma, ${ }^{12}$ M. Chao, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel,,${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ B. L. Hartfiel, ${ }^{13}$ S. D. Foulkes, ${ }^{14}$ J. W. Gary, ${ }^{14}$ B. C. Shen, ${ }^{14}$ K. Wang, ${ }^{14}$ D. del Re, ${ }^{15}$ H. K. Hadavand, ${ }^{15}$ E. J. Hill, ${ }^{15}$ D. B. MacFarlane, ${ }^{15}$ H. P. Paar, ${ }^{15}$ Sh. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J. W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ B. Dahmes, ${ }^{16}$ S. L. Levy, ${ }^{16}$ O. Long, ${ }^{16}$ A. Lu, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ W. Verkerke, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. A. Heusch,,17 W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ R. E. Schmitz, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden,,17 P. Spradlin, ${ }^{17}$ D. C. Williams, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ J. Albert, ${ }^{18}$ E. Chen, ${ }^{18}$ G. P. Dubois-Felsmann, ${ }^{18}$ A. Dvoretskii, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ A. Ryd, ${ }^{18}$ A. Samuel, ${ }^{18}$ S. Yang, ${ }^{18}$ S. Jayatilleke, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ T. Abe, ${ }^{20}$ F. Blanc, ${ }^{20}$ P. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ W. T. Ford, ${ }^{20}$
U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ P. Rankin, ${ }^{20}$ J. G. Smith, ${ }^{20}$ J. Zhang, ${ }^{20}$ L. Zhang, ${ }^{20}$ A. Chen, ${ }^{21}$ J. L. Harton, ${ }^{21}$ A. Soffer, ${ }^{21}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ Q. L. Zeng, ${ }^{21}$ D. Altenburg, ${ }^{22}$ T. Brandt, ${ }^{22}$ J. Brose, ${ }^{22}$ M. Dickopp, ${ }^{22}$
E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. M. Lacker, ${ }^{22}$ R. Müller-Pfefferkorn, ${ }^{22}$ R. Nogowski, ${ }^{22}$ S. Otto, ${ }^{22}$ A. Petzold,,${ }^{22}$ J. Schubert,,22 K. R. Schubert, ${ }^{22}$ R. Schwierz, ${ }^{22}$ B. Spaan, ${ }^{22}$ J. E. Sundermann, ${ }^{22}$ D. Bernard, ${ }^{23}$ G. R. Bonneaud, ${ }^{23}$ F. Brochard, ${ }^{23}$ P. Grenier, ${ }^{23}$ S. Schrenk, ${ }^{23}$ Ch. Thiebaux, ${ }^{23}$ G. Vasileiadis, ${ }^{23}$ M. Verderi, ${ }^{23}$ D. J. Bard, ${ }^{24}$
P. J. Clark, ${ }^{24}$ D. Lavin,,${ }^{24}$ F. Muheim, ${ }^{24}$ S. Playfer, ${ }^{24}$ Y. Xie, ${ }^{24}$ M. Andreotti, ${ }^{25}$ V. Azzolini, ${ }^{25}$ D. Bettoni, ${ }^{25}$ C. Bozzi, ${ }^{25}$ R. Calabrese, ${ }^{25}$ G. Cibinetto, ${ }^{25}$ E. Luppi, ${ }^{25}$ M. Negrini, ${ }^{25}$ L. Piemontese, ${ }^{25}$ A. Sarti, ${ }^{25}$ E. Treadwell, ${ }^{26}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri, ${ }^{27}$ M. Piccolo, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo,,28 R. Capra, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ S. Bailey, ${ }^{29}$ G. Brandenburg, ${ }^{29}$ M. Morii, ${ }^{29}$ E. Won, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ U. Langenegger, ${ }^{30}$ W. Bhimji, ${ }^{31}$ D. A. Bowerman, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ U. Egede, ${ }^{31}$ J. R. Gaillard, ${ }^{31}$ G. W. Morton, ${ }^{31}$ J. A. Nash, ${ }^{31}$ G. P. Taylor, ${ }^{31}$ M. J. Charles, ${ }^{32}$ G. J. Grenier, ${ }^{32}$ U. Mallik, ${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ J. Lamsa, ${ }^{33}$ W. T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ J. Yi, ${ }^{33}$ M. Davier, ${ }^{34}$ G. Grosdidier, ${ }^{34}$ A. Höcker, ${ }^{34}$ S. Laplace, ${ }^{34}$ F. Le Diberder, ${ }^{34}$ V. Lepeltier, ${ }^{34}$ A. M. Lutz, ${ }^{34}$ T. C. Petersen, ${ }^{34}$ S. Plaszczynski, ${ }^{34}$ M. H. Schune, ${ }^{34}$ L. Tantot, ${ }^{34}$ G. Wormser, ${ }^{34}$ C. H. Cheng, ${ }^{35}$ D. J. Lange, ${ }^{35}$ M. C. Simani, ${ }^{35}$ D. M. Wright, ${ }^{35}$ A. J. Bevan, ${ }^{36}$ C. A. Chavez, ${ }^{36}$ J. P. Coleman, ${ }^{36}$ I. J. Forster, ${ }^{36}$ J. R. Fry, ${ }^{36}$ E. Gabathuler, ${ }^{36}$
R. Gamet, ${ }^{36}$ R. J. Parry, ${ }^{36}$ D. J. Payne, ${ }^{36}$ R. J. Sloane, ${ }^{36}$ C. Touramanis, ${ }^{36}$ J. J. Back, ${ }^{37}$ C. M. Cormack, ${ }^{37}$ P. F. Harrison, ${ }^{37, *}$ F. Di Lodovico, ${ }^{37}$ G. B. Mohanty, ${ }^{37}$ C. L. Brown, ${ }^{38}$ G. Cowan, ${ }^{38}$ R. L. Flack, ${ }^{38}$ H. U. Flaecher, ${ }^{38}$ M. G. Green, ${ }^{38}$ P. S. Jackson, ${ }^{38}$ T. R. McMahon, ${ }^{38}$ S. Ricciardi, ${ }^{38}$ F. Salvatore, ${ }^{38}$ M. A. Winter, ${ }^{38}$ D. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ J. Allison, ${ }^{40}$ N. R. Barlow, ${ }^{40}$ R. J. Barlow, ${ }^{40}$ P. A. Hart, ${ }^{40}$ M. C. Hodgkinson, ${ }^{40}$ G. D. Lafferty, ${ }^{40}$ A. J. Lyon, ${ }^{40}$ J. C. Williams, ${ }^{40}$ A. Farbin, ${ }^{41}$ W. D. Hulsbergen, ${ }^{41}$ A. Jawahery, ${ }^{41}$ D. Kovalskyi, ${ }^{41}$ C. K. Lae, ${ }^{41}$ V. Lillard, ${ }^{41}$ D. A. Roberts, ${ }^{41}$ G. Blaylock, ${ }^{42}$ C. Dallapiccola, ${ }^{42}$ K. T. Flood, ${ }^{42}$ S. S. Hertzbach, ${ }^{42}$ R. Kofler, ${ }^{42}$ V. B. Koptchev, ${ }^{42}$ T. B. Moore, ${ }^{42}$ S. Saremi, ${ }^{42}$ H. Staengle, ${ }^{42}$ S. Willocq, ${ }^{42}$ R. Cowan, ${ }^{43}$ G. Sciolla, ${ }^{43}$ F. Taylor, ${ }^{43}$ R. K. Yamamoto, ${ }^{43}$ D. J. J. Mangeol, ${ }^{44}$ P. M. Patel, ${ }^{44}$ S. H. Robertson, ${ }^{44}$ A. Lazzaro, ${ }^{45}$ F. Palombo, ${ }^{45}$
J. M. Bauer, ${ }^{46}$ L. Cremaldi, ${ }^{46}$ V. Eschenburg, ${ }^{46}$ R. Godang, ${ }^{46}$ R. Kroeger, ${ }^{46}$ J. Reidy, ${ }^{46}$ D. A. Sanders, ${ }^{46}$ D. J. Summers, ${ }^{46}$ H. W. Zhao, ${ }^{46}$ S. Brunet, ${ }^{47}$ D. Côté, ${ }^{47}$ P. Taras, ${ }^{47}$ H. Nicholson, ${ }^{48}$ N. Cavallo, ${ }^{49}$ F. Fabozzi, ${ }^{49, \dagger}$ C. Gatto, ${ }^{49}$ L. Lista, ${ }^{49}$ D. Monorchio, ${ }^{49}$ P. Paolucci, ${ }^{49}$ D. Piccolo, ${ }^{49}$ C. Sciacca, ${ }^{49}$ M. Baak, ${ }^{50}$ H. Bulten,,50 G. Raven, ${ }^{50}$ L. Wilden, ${ }^{50}$ C. P. Jessop,,${ }^{51}$ J. M. LoSecco,,${ }^{51}$ T. A. Gabriel, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ B. Brau, ${ }^{53}$
K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin, ${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ G. Tiozzo, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ L. Del Buono, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malcles, ${ }^{56}$ J. Ocariz,,56 M. Pivk, ${ }^{56}$ L. Roos, ${ }^{56}$ S. T'Jampens, ${ }^{56}$ G. Therin, ${ }^{56}$ P. F. Manfredi, ${ }^{57}$ V. Re, ${ }^{57}$ P. K. Behera, ${ }^{58}$ L. Gladney, ${ }^{58}$ Q. H. Guo, ${ }^{58}$ J. Panetta, ${ }^{58}$ F. Anulli, ${ }^{27,}{ }^{59}$ M. Biasini, ${ }^{59}$ I. M. Peruzzi, ${ }^{27,}{ }^{59}$ M. Pioppi, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Bondioli, ${ }^{60}$ F. Bucci, ${ }^{60}$ G. Calderini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ V. Del Gamba, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ F. Martinez-Vidal,,${ }^{60}$, \ddagger M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$
E. Paoloni, ${ }^{60}$ M. Rama, ${ }^{60}$ G. Rizzo, ${ }^{60}$ F. Sandrelli, ${ }^{60}$ J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ D. Judd, ${ }^{61}$ K. Paick, ${ }^{61}$
D. E. Wagoner, ${ }^{61}$ N. Danielson, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ V. Miftakov, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{62,63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ M. Pierini, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Safai Tehrani, ${ }^{63}$ C. Voena, ${ }^{63}$ S. Christ, ${ }^{64}$ G. Wagner, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ N. De Groot, ${ }^{65}$ B. Franek, ${ }^{65}$ N. I. Geddes, ${ }^{65}$ G. P. Gopal, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ P.-F. Giraud, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ M. Langer, ${ }^{66}$ M. Legendre, ${ }^{66}$ G. W. London, ${ }^{66}$ B. Mayer, ${ }^{66}$ G. Schott, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ M. V. Purohit, ${ }^{67}$ A. W. Weidemann, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ F. X. Yumiceva, ${ }^{67}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ N. Berger, ${ }^{68}$ A. M. Boyarski, ${ }^{68}$ O. L. Buchmueller, ${ }^{68}$ M. R. Convery, ${ }^{68}$ M. Cristinziani, ${ }^{68}$ G. De Nardo, ${ }^{68}$ D. Dong, ${ }^{68}$ J. Dorfan, ${ }^{68}$ D. Dujmic, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ E. E. Elsen, ${ }^{68}$ S. Fan, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ T. Hadig, ${ }^{68}$ V. Halyo, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ J. Libby, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O’Grady, ${ }^{68}$ V. E. Ozcan, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ S. Petrak, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ G. Simi, ${ }^{68}$ A. Snyder, ${ }^{68}$ A. Soha,,${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ J. Va'vra, ${ }^{68}$ S. R. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ A. J. R. Weinstein, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ T. I. Meyer, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ C. Roat, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ M. Saleem, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ H. Kim, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. Satpathy, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ I. Kitayama, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ M. Bona, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ C. Borean, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ S. Dittongo, ${ }^{75}$ S. Grancagnolo, ${ }^{75}$ L. Lanceri, ${ }^{75}$ P. Poropat, ${ }^{75}$, ${ }^{\S}$ L. Vitale, ${ }^{75}$ G. Vuagnin, ${ }^{75}$ R. S. Panvini, ${ }^{76}$ Sw. Banerjee, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ P. D. Jackson, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ H. R. Band, ${ }^{78}$ S. Dasu, ${ }^{78}$ M. Datta, ${ }^{78}$ A. M. Eichenbaum, ${ }^{78}$ M. Graham, ${ }^{78}$ J. J. Hollar, ${ }^{78}$ J. R. Johnson, ${ }^{78}$ P. E. Kutter, ${ }^{78}$ H. Li, ${ }^{78}$ R. Liu, ${ }^{78}$ A. Mihalyi, ${ }^{78}$ A. K. Mohapatra, ${ }^{78}$ Y. Pan, ${ }^{78}$ R. Prepost, ${ }^{78}$ A. E. Rubin, ${ }^{78}$ S. J. Sekula, ${ }^{78}$ P. Tan, ${ }^{78}$ J. H. von Wimmersperg-Toeller, ${ }^{78}$ J. Wu, ${ }^{78}$ S. L. Wu, ${ }^{78}$ Z. Yu, ${ }^{78}$ M. G. Greene, ${ }^{79}$ and H. Neal ${ }^{79}$
(The BABAR Collaboration)

[^0][^1](Dated: June 1, 2004)

Abstract

We measure the branching fractions and $C P$ asymmetries in the decays $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ and $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ using a sample of approximately 122 million $B \bar{B}$ pairs collected by the $B A B A R$ detector. From a time-dependent analysis of the $K^{+} K^{-} K_{S}^{0}$ sample that excludes ϕK_{S}^{0}, the values of the $C P$-violation parameters are $S=-0.56 \pm 0.25 \pm 0.04$ and $C=-0.10 \pm 0.19 \pm 0.10$, where the first uncertainty is statistical, the second is systematic. We confirm that the final state is nearly purely $C P$-even. Using this result and setting $C=0$, we extract the Standard Model parameter $\sin 2 \beta=0.57 \pm 0.26 \pm 0.04_{-0}^{+0.17}$ where the last error is due to uncertainty on the $C P$ content. We present the first measurement of the $C P$-violating charge asymmetry $\mathcal{A}_{C P}\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right)=$ $-0.04 \pm 0.11 \pm 0.02$, with a 90% confidence-level interval of $[-0.23,0.15]$. The branching fractions are $\mathcal{B}\left(B^{0} \rightarrow K^{+} K^{-} K^{0}\right)=(23.8 \pm 2.0 \pm 1.6) \times 10^{-6}$ and $\mathcal{B}\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right)=(10.7 \pm 1.2 \pm 1.0) \times 10^{-6}$.

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}$

In the Standard Model (SM) of particle physics, the decays $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ and $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ [1] are dominated by $b \rightarrow s \bar{s} s$ gluonic penguin diagrams [2]. $C P$ violation in such decays arises from the Cabibbo-KobayashiMaskawa (CKM) quark-mixing mechanism [3]. Neglecting CKM-suppressed contributions, the expectation for the $C P$-asymmetry parameters in $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ decays is the same as in $B^{0} \rightarrow J / \psi K_{S}^{0}$ decays, where $C P$ violation has been observed $[4,5]$. The decay rates for $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ and $B^{-} \rightarrow K^{-} K_{S}^{0} K_{S}^{0}$ are expected to be equal. However, contributions from physics beyond the SM could invalidate these predictions [6]. Since $b \rightarrow s \bar{s} s$ decays involve one-loop transitions, they are especially sensitive to additional contributions. Present results in decays of neutral B mesons are inconclusive due to large statistical errors. Belle measures the $C P$ asymmetry parameter in ϕK_{S}^{0} decays of $\sin 2 \beta=-0.96 \pm$ $0.50_{-0.11}^{+0.09}[7]$ which is 3.5 standard deviations from the SM expectation of $\sin 2 \beta=0.731 \pm 0.056[4,5]$. A BABAR measurement of $\sin 2 \beta=0.47 \pm 0.34_{-0.06}^{+0.08}[8]$ is consistent with the SM and disagrees with Belle by 2.3 standard deviations.

A more accurate $C P$ measurement can be made using all the decays to $K^{+} K^{-} K_{S}^{0}$ that do not contain a ϕ meson. This sample is several times larger than the sample of $\phi K_{S}^{0}[9,10]$. As Belle noted [10], the $C P$ content of the final state can be extracted using an isospin analysis. In decays that exclude ϕK_{S}^{0}, Belle measures $\sin 2 \beta=0.51 \pm 0.26 \pm 0.05_{-0}^{+0.18}[7]$, consistent with the SM expectation. In this letter we present measurements of $C P$ asymmetry and $C P$ content in $K^{+} K^{-} K_{S}^{0}$ decays, and the first measurement of the charge asymmetry rate in $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ decays.

This analysis is based on about 122 million $B \bar{B}$ pairs collected with the BABAR detector [11] at the PEP-II asymmetric-energy $e^{+} e^{-}$storage rings at SLAC, operating on the $\Upsilon(4 S)$ resonance. We reconstruct B mesons from $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$and $K^{ \pm}$candidates. Charged kaons are distinguished from pions and protons using energyloss $(\mathrm{d} E / \mathrm{d} x)$ information in the tracking system and from the Cherenkov angle and number of photons measured by the detector of internally reflected Cherenkov light
(DIRC). We accept $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$candidates that have a two-pion invariant mass within $12 \mathrm{MeV} / c^{2}$ of the nominal K_{S}^{0} mass [12], a decay length greater than 3 standard deviations, and a cosine of the angle between the line connecting the B and K_{S}^{0} decay vertices and the K_{S}^{0} momentum greater than 0.999 . The three daughters in the B decay are fitted constraining their paths to a common vertex, and the K_{S}^{0} mass to the nominal value.

In the characterization of the B candidates we use two kinematic variables. The energy difference $\Delta E=$ $E_{B}-\sqrt{s} / 2$ is reconstructed from the energy of the B candidate E_{B} and the total energy \sqrt{s} in the $e^{+} e^{-}$center-ofmass (CM) frame. The ΔE resolution for signal events is 18 MeV . We also use the beam-energy-substituted mass $m_{\mathrm{ES}}=\sqrt{\left(s / 2+\vec{p}_{i} \cdot \vec{p}_{B}\right)^{2} / E_{i}^{2}-\vec{p}_{B}^{2}}$, where $\left(\vec{p}_{i}, E_{i}\right)$ is the four-momentum of the initial $e^{+} e^{-}$system and \vec{p}_{B} is the momentum of the B candidate, both measured in the laboratory frame. The m_{ES} resolution for signal events is $2.6 \mathrm{MeV} / c^{2}$. We retain candidates with $|\Delta E|<200 \mathrm{MeV}$ and $5.2<m_{\mathrm{ES}}<5.3 \mathrm{GeV} / c^{2}$.

The background is dominated by random combinations of tracks created in $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$ continuum events. We suppress this background by utilizing the difference in the topology in the CM frame between jet-like $q \bar{q}$ events and spherical signal events. The topology is described using angle θ_{T} between the thrust axis of the B candidate and the thrust axis of the charged and neutral particles in the rest of the event (ROE) [11]. Other quantities that characterize the event topology are two sums over the ROE: $L_{0}=\sum\left|\vec{p}_{i}^{*}\right|$ and $L_{2}=\sum\left|\vec{p}_{i}^{*}\right| \cos ^{2} \theta_{i}$, where θ_{i} is the angle between the momentum ${\overrightarrow{p_{i}}}^{*}$ and the thrust axis of the B candidate. Additional separation is achieved using the angle θ_{B} between the B momentum direction and the beam axis. After requiring $\left|\cos \theta_{T}\right|<0.9$, these four event shape variables are combined into a Fisher discriminant \mathcal{F} [13].

The remaining background originates from B decays where a neutral or charged pion is missed during reconstruction (peaking B background). We use Monte Carlo (MC) events to model the signal and the peaking background, and data sidebands to model continuum background.

We suppress background from B decays that proceed through a $b \rightarrow c$ transition leading to the $K^{+} K^{-} K_{S}^{0}$ ($K^{+} K_{S}^{0} K_{S}^{0}$) final state by applying invariant mass cuts to remove $D^{0} \rightarrow K K, D^{+} \rightarrow K^{+} K_{S}^{0}, J / \psi \rightarrow K K$, and $\chi_{c 0} \rightarrow K K\left(K_{S}^{0} K_{S}^{0}\right)$ decays. Finally, B decays into final states with pions are eliminated by requiring the pion misidentification rate to be less than 2%.

The time-dependent $C P$ asymmetry is obtained by measuring the proper time difference Δt between a fully reconstructed neutral B meson ($B_{C P}$) decaying into $K^{+} K^{-} K_{S}^{0}$, and the partially reconstructed recoil B meson (B_{tag}). Decay products of the recoil side are used to determine the $B_{\text {tag }}$ meson's flavor (flavor tag) and to classify the event into five mutually exclusive tagging categories [4]. If the fraction of events in category c is ϵ_{c} and the mistag probability is w_{c}, the overall quality of the tagging, $\sum_{c} \epsilon_{c}\left(1-2 w_{c}\right)^{2}$, is $(28.0 \pm 0.4) \%$.

The time difference Δt is extracted from the measurement of the separation Δz between the $B_{C P}$ and B_{tag} vertices, along the boost axis (z) of the $B \bar{B}$ system. The vertex position of the $B_{C P}$ meson is reconstructed primarily from kaon tracks, and its MC-estimated resolution ranges between $40-80 \mu \mathrm{~m}$, depending on the opening angle and direction of the kaon pair. The final Δt resolution is dominated by the uncertainty on the $B_{\text {tag }}$ vertex which allows the $\Delta t(\Delta z)$ precision with r.m.s. of $1.1 \mathrm{ps}(180 \mu \mathrm{~m})$. We retain events that have $|\Delta t|<20 \mathrm{ps}$ and whose estimated uncertainty $\sigma_{\Delta t}$ is less than 2.5 ps . The Δt resolution function is parameterized as a sum of two Gaussian distributions whose widths are given by a scale factor times the event-by-event uncertainty $\sigma_{\Delta t}$. A third Gaussian distribution, with a fixed large width, accounts for a small fraction of outlying events [4].

Parameters describing the tagging performance and the Δt resolution function are extracted from approximately $30,000 \quad B^{0}$ decays into $D^{(*)-} X^{+}\left(X^{+}=\right.$ $\pi^{+}, \rho^{+}, a_{1}^{+}$) flavor eigenstates ($B_{\text {flav }}$ sample).

The decay rate $f_{+}\left(f_{-}\right)$when the flavor of the tagging meson is a $B^{0}\left(\bar{B}^{0}\right)$ is given by

$$
\begin{align*}
& \mathrm{f}_{ \pm}(\Delta t)= \frac{\mathrm{e}^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1 \pm S \sin \left(\Delta m_{d} \Delta t\right)\right. \\
&\left.\mp C \cos \left(\Delta m_{d} \Delta t\right)\right] \tag{1}
\end{align*}
$$

where $\tau_{B^{0}}$ is the mean B^{0} lifetime and Δm_{d} is the $B^{0}{ }_{-}$ \bar{B}^{0} oscillation frequency. The parameters C and S describe the magnitude of $C P$ violation in the decay and the interference between decay and mixing, respectively. In the SM, we expect $C=0$ because there can be no direct $C P$ violation when there is only one decay mechanism. If we exclude ϕK_{S}^{0} events by applying a $K^{+} K^{-}$ invariant mass cut of $15 \mathrm{MeV} / c^{2}$ around the nominal ϕ mass [12], and assume that the remaining $B_{C P}$ candidates are $C P$-even, as our analysis below indicates, we expect $S=-\sin 2 \beta=-0.731 \pm 0.056[4,5]$.

Direct $C P$ violation in $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ decays is mea-
sured as an asymmetry in the decay rates

$$
\begin{equation*}
\mathcal{A}_{C P}=\frac{\Gamma_{K^{-}-K_{S}^{0} K_{S}^{0}}-\Gamma_{K^{+} K_{S}^{0} K_{S}^{0}}}{\Gamma_{K^{-} K_{S}^{0} K_{S}^{0}}+\Gamma_{K^{+} K_{S}^{0} K_{S}^{0}}} . \tag{2}
\end{equation*}
$$

The SM expectation for $\mathcal{A}_{C P}$ is zero.
Branching fractions and $C P$ asymmetries are extracted in unbinned extended maximum likelihood fits to the different samples. The likelihood function \mathcal{L}, with event yields N_{i} and probability density functions (PDFs) $\mathcal{P}_{i, j}$, is:

$$
\begin{equation*}
\mathcal{L}=\exp \left(-\sum_{i} N_{i}\right) \prod_{j=1}\left[\sum_{i} N_{i} \mathcal{P}_{i, j}\right] \tag{3}
\end{equation*}
$$

where j runs over events and i over event yields. We have a total of 6144 events in the $K^{+} K_{S}^{0} K_{S}^{0}$ mode, and 13864 (12862) in the $K^{+} K^{-} K_{S}^{0}$ mode with ϕK_{S}^{0} included (excluded).

In the measurement of the branching fractions \mathcal{B}, the total PDF is formed as $\mathcal{P}\left(m_{\mathrm{ES}}\right) \cdot \mathcal{P}(\Delta E) \cdot \mathcal{P}(\mathcal{F})$. Event yields for signal, continuum, and peaking B background are varied in the fit. In the extraction of the charge asymmetry $\mathcal{A}_{C P}$ in $K^{+} K_{S}^{0} K_{S}^{0}$ decays, the yields are split by the charge, which brings the total number of varied parameters to six. To extract the branching fractions, we assign a weight for each event to belong to the signal decay, $\mathcal{W}_{j}=\frac{\sum_{i} V_{s, i} \mathcal{P}_{i, j}}{\sum_{i} N_{i} \mathcal{P}_{i, j}}$ where $V_{s, i}$ is the signal row of the covariance matrix obtained from the fit [14]. The branching fraction is calculated as $\mathcal{B}=\sum_{j} \mathcal{W}_{j} / \varepsilon_{j}$. Since the efficiency ε_{j} varies across the phase space, ε_{j} is computed in small phase-space bins using simulated events. The method is cross-checked with a simple counting analysis. Distributions of m_{ES} and ΔE are shown in Fig. 1 and the fit results are given in Table I.

In the time-dependent $C P$ fit, $K^{+} K^{-} K_{S}^{0}$ events that exclude ϕK_{S}^{0} decays are fit simultaneously with the $B_{\text {flav }}$ sample. The PDFs are formed as $\mathcal{P}\left(m_{\mathrm{ES}}\right) \cdot \mathcal{P}(\Delta E) \cdot \mathcal{P}(\mathcal{F})$. $\mathcal{P}_{c}\left(\Delta t ; \sigma_{\Delta t}\right)$ for $B_{C P}$ events and $\mathcal{P}\left(m_{\mathrm{ES}}\right) \cdot \mathcal{P}_{c}\left(\Delta t ; \sigma_{\Delta t}\right)$ in the $B_{\text {flav }}$ sample. The Δt resolution and tagging parameters are allowed to be different for each tagging category c. Fit parameters that are common to both samples are the signal fractions in tagging categories ϵ_{c}, the average mistag fraction w_{c}, the difference between B^{0} and \bar{B}^{0} mistag rates Δw_{c}, and the Δt resolution functions for signal and background events. We also vary the $K^{+} K^{-} K_{S}^{0}$ signal yield and background yields in tag categories, the $C P$ parameters, and the parameters describing the Δt shape of the background. The total number of floated parameters is 38 . The largest correlation between S or C with any linear combination of other parameters is 6.6%.

Results of the time-dependent $C P$ asymmetry measurement in $K^{+} K^{-} K_{S}^{0}$ are given in Table I. Figure 2 shows the Δt distributions of events with B^{0} and \bar{B}^{0} tags, with projections from the likelihood fit superimposed. The fit procedure is verified with the $K^{+} K_{S}^{0} K_{S}^{0}$

TABLE I: Summary of branching fraction (\mathcal{B}), time-dependent (S, C) and direct $C P$-asymmetry $\left(\mathcal{A}_{C P}\right)$ results. $N_{\text {sig }}$ and ε are the signal yield and the average total efficiency in the branching-fraction fit; $f_{\text {even }}$ is the $C P$-even fraction of the final states. The 90% confidence-level interval for $\mathcal{A}_{C P}$ is $[-0.23,0.15]$.

Mode	$\varepsilon(\%)$	$N_{\text {sig }}$	$\mathcal{B}\left(10^{-6}\right)$	$f_{\text {even }}$	S	C	$\mathcal{A}_{C P}$
$K^{+} K^{-} K^{0} C P$	8.58	201 ± 16	$20.2 \pm 1.9 \pm 1.4$	$0.98 \pm 0.15 \pm 0.04$	$-0.56 \pm 0.25 \pm 0.04$	$-0.10 \pm 0.19 \pm 0.10$	-
$K^{+} K^{-} K^{0}$ all	8.78	249 ± 20	$23.8 \pm 2.0 \pm 1.6$	$0.83 \pm 0.12 \pm 0.03$	-	-	-
$K^{+} K_{S}^{0} K_{S}^{0}$	9.7	122 ± 14	$10.7 \pm 1.2 \pm 1.0$	-	-0.16 ± 0.35	-0.08 ± 0.22	$-0.04 \pm 0.11 \pm 0.02$

${ }^{\overline{C P}}$ Excludes ϕK_{S}^{0} events.
sample (Table I), where one expects zero asymmetry, and the $J / \psi K_{S}^{0}$ sample where the results are consistent with our previous measurement [4].

We evaluate the fraction $f_{\text {even }}$ of $C P$-even final states in $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ decays by comparing $K^{+} K^{-} K^{0}$ and $K^{+} K_{S}^{0} K_{S}^{0}$ decay rates: $f_{\text {even }}=\frac{2 \Gamma\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right)}{\Gamma\left(B^{0} \rightarrow K^{+} K^{-} K^{0}\right)} \quad[10]$. The results listed in Table I are in agreement with Belle's measurements of $0.86 \pm 0.15 \pm 0.05$ and $1.04 \pm 0.19 \pm 0.06$ for the total sample and the $C P$ sample that excludes ϕK_{S}^{0} events, respectively [10]. We estimate the fraction of remaining ϕK_{S}^{0} events in the $C P$ sample, using a noninterfering Breit-Wigner for the ϕ shape and measured branching fractions, to be $1.1 \pm 0.4 \%$. As a consistency check, we examine the distribution of the cosine of the helicity angle θ_{H}, which is defined as the angle between the K^{+}and B^{0} directions in the $K^{+} K^{-}$center of mass frame. The distribution in several $K^{+} K^{-}$invariant mass bins of the $C P$ sample is approximately uniform which is consistent with S -wave decays. The presence of interference effects due to $C P$-odd amplitudes cannot be ruled out, but this would require a full amplitude analysis which is not feasible with the present statistics.

If we account for a small $C P$-odd fraction in the $C P$

FIG. 1: Projection plots of the variables $m_{\mathrm{ES}}(\mathrm{a}, \mathrm{c})$ and ΔE (b, d) in the fits for $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ (top) and $B^{+} \rightarrow$ $K^{+} K_{S}^{0} K_{S}^{0}$ (bottom) decays. The points are data and the curves are projections from the likelihood fit. The signal-tobackground ratio is enhanced with a cut on the event probability.
sample, we can extract the SM parameter $\sin 2 \beta$. In a fit with $C=0$ we get $\sin 2 \beta=-S /\left(2 f_{\text {even }}-1\right)=0.57 \pm$ $0.26 \pm 0.04_{-0}^{+0.17}$ where the last error is due to uncertainty on the $C P$ content.

TABLE II: Branching fraction systematic uncertainties (\%).

Source	$K^{+} K^{-} K_{S}^{0}$	$K^{+} K_{S}^{0} K_{S}^{0}$
Efficiency	5.6	8.6
PDF parameterization	2.7	2.5
Non-charm $B \bar{B}$ background	2.2	2.9
Charm $B \bar{B}$ background	1.2	1.0
Other	1.7	1.6
Total	6.9	9.6

Systematic uncertainties in the branching fraction measurements are given in Table II. We include contributions from the signal reconstruction efficiency and from the modeling of the efficiency variation over the phase space. Other errors come from the fit bias, the counting of $B \bar{B}$ pairs, and the misidentification of kaons. We assume equal production rates of $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$. The systematic uncertainty on $\mathcal{A}_{C P}$ due to charge asymmetry in track finding and identification is 0.02 .

FIG. 2: Plots a) and b) show the Δt distributions of B^{0} - and \bar{B}^{0}-tagged $K^{+} K^{-} K_{S}^{0}$ events. The solid lines refer to the fit for all events; the dashed lines correspond to the background. Plot c) shows the raw asymmetry, where the solid line is obtained from the fit and the dotted line is the SM expectation for the measured $C P$ content. The signal-to-background ratio is enhanced with a cut on the event probability.

TABLE III: Systematic uncertainties in $C P$ parameters.

Source	S	C
Fit bias	0.024	0.026
DCSD	0.018	0.053
Detector effects	0.013	0.012
Tag asymmetries	0.010	0.078
Other	0.016	0.012
Total	0.04	0.10

The systematic errors on the time-dependent $C P$ asymmetry parameters are given in Table III. The errors account for the fit bias, the presence of double CKMsuppressed decays(DCSD) in $B_{\text {tag }}$ [15], uncertainty in the beam spot and detector alignment, and the asymmetry in the tagging efficiency for signal and background events. Other smaller effects come from Δt resolution, PDF parameterization of yield variables, and uncertainty on the B^{0} lifetime and mixing frequency. In the fit we use $\tau_{B^{0}}=$ $1.537 \pm 0.015 \mathrm{ps}$ and $\Delta m_{d}=0.502 \pm 0.007 \mathrm{ps}^{-1}$ [12].

In summary, we have measured branching fractions for charmless decays of B mesons into the three-body final states $B^{0} \rightarrow K^{+} K^{-} K^{0}$ and $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$. Using two independent approaches, we find that the $K^{+} K^{-} K_{S}^{0}$ final state is dominated by a $C P$-even component. The results agree with previous measurements $[9,10]$. In the first measurement of the charge asymmetry in $B^{+} \rightarrow$ $K^{+} K_{S}^{0} K_{S}^{0}$ decays, we find no evidence for direct $C P$ violation. We measure a time-dependent $C P$ asymmetry in $B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ decays at the 1.9σ level. The obtained $\sin 2 \beta$ is consistent with the SM expectation and previous measurements in decays into the $K^{+} K^{-} K_{S}^{0}$ final state $[7,8]$, but differs from Belle's measurement in ϕK_{S}^{0} decays [7] by 2.7 standard deviations.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway),

MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Now at Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy
\ddagger Also with IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain
${ }^{\S}$ Deceased
[1] Charge-conjugate states are included unless explicitly stated otherwise.
[2] D. London and R. D. Peccei, Phys. Lett. B 223, 257 (1989); N. G. Deshpande and J. Trampetic, Phys. Rev. D 41, 895 (1990); R. Fleischer, Z. Phys. C 62, 81 (1994); N. G. Deshpande and X. G. He, Phys. Lett. B 336, 471 (1994); Y. Grossman, Z. Ligeti, Y. Nir and H. Quinn, Phys. Rev. D 68 (2003) 015004 ; M. Gronau and J. L. Rosner, Phys. Lett. B 564, 90 (2003).
[3] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[4] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 89, 201802 (2002).
[5] K. Abe et al. [Belle Collaboration], hep-ex/0308036.
[6] Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); R. Fleischer, Int. J. Mod. Phys. A 12, 2459 (1997); D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
[7] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 91, 261602 (2003).
[8] B. Aubert [BABAR Collaboration], hep-ex/0403026.
[9] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 69, 011102 (2004).
[10] A. Garmash et al. [Belle Collaboration], Phys. Rev. D 69, 012001 (2004).
[11] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Meth. A 479, 1 (2002).
[12] K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002).
[13] R. A. Fisher, Annals Eugen. 7179 (1936).
[14] M. Pivk, F. R. Le Diberder, physics/0402083.
[15] O. Long, M. Baak, R. N. Cahn and D. Kirkby, Phys. Rev. D 68, 034010 (2003).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{4}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
 ${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T $1 Z 1$
 ${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{12}$ University of California at Irvine, Irvine, CA 92697, USA
 ${ }^{13}$ University of California at Los Angeles, Los Angeles, CA 90024, USA
 ${ }^{14}$ University of California at Riverside, Riverside, CA 92521, USA
 ${ }^{15}$ University of California at San Diego, La Jolla, CA 92093, USA

[^1]: ${ }^{16}$ University of California at Santa Barbara, Santa Barbara, CA 93106, USA
 ${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
 ${ }^{18}$ California Institute of Technology, Pasadena, CA 91125, USA
 ${ }^{19}$ University of Cincinnati, Cincinnati, OH 45221, USA
 ${ }^{20}$ University of Colorado, Boulder, CO 80309, USA
 ${ }^{21}$ Colorado State University, Fort Collins, CO 80523, USA
 ${ }^{22}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{23}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
 ${ }^{24}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{25}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{26}$ Florida A 8 M University, Tallahassee, FL 32307, USA
 ${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{29}$ Harvard University, Cambridge, MA 02138, USA
 ${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{32}$ University of Iowa, Iowa City, IA 52242, USA
 ${ }^{33}$ Iowa State University, Ames, IA 50011-3160, USA
 ${ }^{34}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
 ${ }^{35}$ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
 ${ }^{36}$ University of Liverpool, Liverpool L69 72E, United Kingdom
 ${ }^{37}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{38}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
 ${ }^{39}$ University of Louisville, Louisville, KY 40292, USA
 ${ }^{40}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{41}$ University of Maryland, College Park, MD 20742, USA
 ${ }^{42}$ University of Massachusetts, Amherst, MA 01003, USA
 ${ }^{43}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA ${ }^{4} \mathrm{Mc}$ Gill University, Montréal, QC, Canada H3A 2T8
 ${ }^{45}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy ${ }^{46}$ University of Mississippi, University, MS 38677, USA
 ${ }^{47}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
 ${ }^{48}$ Mount Holyoke College, South Hadley, MA 01075, USA
 ${ }^{49}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{50}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{51}$ University of Notre Dame, Notre Dame, IN 46556, USA
 ${ }^{52}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
 ${ }^{53}$ Ohio State University, Columbus, OH 43210, USA
 ${ }^{54}$ University of Oregon, Eugene, OR 97403, USA
 ${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{56}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
 ${ }^{57}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
 ${ }^{58}$ University of Pennsylvania, Philadelphia, PA 19104, USA
 ${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{61}$ Prairie View A $\mathcal{B} M$ University, Prairie View, TX 77446, USA
 ${ }^{62}$ Princeton University, Princeton, NJ 08544, USA
 ${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{67}$ University of South Carolina, Columbia, SC 29208, USA
 ${ }^{68}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
 ${ }^{69}$ Stanford University, Stanford, CA 94305-4060, USA
 ${ }^{70}$ State Univ. of New York, Albany, NY 12222, USA
 ${ }^{71}$ University of Tennessee, Knoxville, TN 37996, USA
 ${ }^{72}$ University of Texas at Austin, Austin, TX 78712, USA
 ${ }^{73}$ University of Texas at Dallas, Richardson, TX 75083, USA
 ${ }^{{ }^{4}}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{76}$ Vanderbilt University, Nashville, TN 37235, USA
 ${ }^{77}$ University of Victoria, Victoria, BC, Canada V8W 3P6
 ${ }^{78}$ University of Wisconsin, Madison, WI 53706, USA
 ${ }^{79}$ Yale University, New Haven, CT 06511, USA

