
SLAC–PUB–10457
May 2004

hep-ph/yymmnnn

Composite Vector Mesons from QCD to the Little Higgs

Maurizio Piai1∗, Aaron Pierce2,3†, Jay G. Wacker3‡

1. Department of Physics
Yale University

New Haven, CT 06520

2. Theory Group
Stanford Linear Accelerator Center

Menlo Park, CA 94025

3. Institute for Theoretical Physics
Stanford University
Stanford, CA 94305

Abstract
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1 Introduction

Little Higgs models have recently rekindled interest in theories where the Higgs is a pseudo-
Nambu-Goldstone boson (PNGB)[1, 2, 3, 4]. These models can naturally be ultraviolet-
completed into theories of strong dynamics, although linear sigma model UV completions are
possible. If completed into a theory of strong dynamics, the PNGBs arise when the gauge
dynamics at a scale Λ ∼ 10 TeV breaks global chiral symmetries of the theory. These PNGBs
are not the only states associated with the strong dynamics – a host of resonances are expected
near the scale of strong coupling. The energy at the Large Hadron Collider (LHC) will be
insufficient to directly explore the constituents of the strong dynamics; therefore, the question
of more immediate interest is how to describe the low-lying states of the strong dynamics. It
is challenging to study the phenomenology of the theory in this regime because the dynamics
are strongly coupled.

The same situation exists in QCD: the chiral Lagrangian accurately models the interactions
of the pions at the lowest energies; perturbation theory is a powerful tool at high energies; but
it is difficult to discuss the interactions of the QCD resonances near the strong coupling scale,
such as the ρ. Historically, a variety of techniques have been employed to investigate these
resonances, including current algebra, QCD sum rules, dispersion relations, and hidden local
symmetry. In this paper, we first discuss the ρ mesons of QCD; the lessons learned are used in
the subsequent treatment of techni-ρ mesons in Little Higgs theories.

We use hidden local symmetry because this technique is valid at low energies and small
Q2, precisely the regime in which we are interested. In the hidden local symmetry approach,
one writes an effective Lagrangian including the ρ mesons, analogous to the traditional chiral
Lagrangian written for the pions [5]. Gauge symmetries are useful for describing light vector
mesons and can be used to constrain the interactions of the ρ [6]. The lightness of the ρ (relative
to 4πfπ ≡ Λ) is crucial to success in this program. While the separation between mρ and Λ is
not incredibly large, it is enough to be predictive. These predictions are qualitatively correct
and, perhaps surprisingly, quantitatively not far from the experimentally measured values.

Another asset of the language of hidden local symmetry is that it clearly illuminates the
possibility of an enhanced symmetry for QCD, reflected in a particular value of the ρ-pion
coupling. This symmetry point is essentially the “vector limit” discussed in [6], and reviewed
in our Sec. 2.2. As we will discuss, QCD is not too far from realizing this enhanced symmetry.
Reference [7] showed that a theory comprised of gauge groups and bi-fundamental fields can be
mapped directly on to a description of a physical extra dimension. In particular, notions that
are traditionally associated with a physical dimension, such as locality, can be preserved in the
theory space description. We find that the vector limit is closely related to locality in theory
space.

Including the lightest spin-one resonances in the effective theory allows us to address
questions of how high energy physics affects the PNGBs. In particular, we can examine the
unitarization of the PNGB scattering. We also find that the incorporating the techni-ρ’s into
the effective field theory associated with electroweak symmetry breaking (EWSB) can shed
light on previously incalculable quantities in Little Higgs models.

The organization of the paper is as follows. In Sec. 2 we review the couplings of the ρ in the
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QCD chiral Lagrangian. This gives a well-understood example for the hidden local symmetry
approach and motivates our discussion of techni-ρ’s and their properties in more general theories
of strong dynamics. For our discussion of ρ’s in QCD, we draw heavily upon the paper [6].
In our discussion of the weak-scale strong dynamics, we will emphasize the potential utility of
(techni-)ρ’s in regulating quadratic divergences. To motivate this point, we again turn towards
QCD. In Sec. 2.2, we introduce the vector limit of QCD. In this limit, the ρ’s regulate the
quadratic divergence in the charged pion mass that arises from QED loops [8]. Having laid a
foundation with our discussion of the QCD ρ meson, we then turn towards a discussion of the
techni-ρ and its couplings. We explain how techni-ρ mesons can analogously soften quadratic
divergences in Little Higgs models in Sec. 3. This allows us to calculate previously UV-sensitive
quantities, including the Higgs boson mass in the Littlest Higgs model. We also note that the
inclusion of techni-ρ’s can have important consequences for studying vacuum alignment: in
the vector limit, the vacuum of the SU(6)/Sp(6) theory is unstable. In Sec. 4, we discuss how
unitarity is modified by incorporating light resonances. We argue that the low scale of unitarity
violation in theories with many PNGBs is likely a signal of light scalar resonances rather than
vector modes.

2 The Hidden Locality of Vector Mesons In QCD

We first review the coupling of vector mesons in two flavor QCD in the limit of vanishing quark
masses[6]. The chiral Lagrangian that describes the coupling of the ρ to the light pions will
only depend on a handful of parameters. Among these is a parameter that vanishes in Georgi’s
vector limit. In this limit, the leading cut-off sensitivity to m2

π± −m2
π0 also vanishes, leaving

a residual piece that is not sensitive to cut-off uncertainties. We spend this section exploring
this example before moving to TeV scale physics in the next section.

In QCD with two flavors, ψi
L and ψRj (i, j = 1,2), there is a global SU(2)L×SU(2)R flavor

symmetry that rotates two quarks amongst themselves:

ψL → gLψL, ψR → gRψR. (2.1)

After the QCD gauge coupling goes strong, this chiral symmetry is broken, and the quarks form
a condensate

〈ψi
LψRj〉 ∼ 4πf 3Σi

j . (2.2)

Here Σ parameterizes the QCD pions, which are Goldstone bosons of the broken global sym-
metry

SU(2)L × SU(2)R −→ SU(2)V , (2.3)

where SU(2)V is the unbroken isospin symmetry. Under this symmetry, the transformation of
the Goldstone boson field is

Σ → gLΣg†R. (2.4)

The linearized fluctuations of Σ and global symmetry transformations are given by

Σ ≡ e2iπ/f gL ≡ eiαL , gR ≡ eiαR . (2.5)
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Figure 1: QCD with two flavors has a global SU(2)L × SU(2)R chiral symmetry, which is
broken down to the diagonal SU(2)V (isospin) when the quarks condense. As shown above, the
U(1)EM gauge symmetry is contained within SU(2)V . We have also shown these symmetries
in a “sites and links” theory space representation. The top diagram shows that the quark
condensate transforms as a bi-fundamental under SU(2)L×SU(2)R, and breaks this symmetry
down to the diagonal. The bottom diagram shows that the quark condensate is an adjoint of
the gauged U(1)EM .

The linearized π field transforms under the global symmetries as:

δπ =
f

2
(αL − αR) + · · · . (2.6)

The vector and axial–vector transformations are distinguished by the relationship between αL

and αR. For the axial–vector transformation, we have αL = −αR ≡ αA, while for the vector
transformation, we have αL = αR ≡ αV . Then δπ = fαA. The quarks are also charged under
a weakly gauged group, U(1)EM . U(1)EM is contained within SU(2)V , and is gauged in the τ 3

direction. The symmetry structure of the theory, both global and local, is illustrated in Fig. 1.
To leading order, the chiral Lagrangian describing the pions is:

Leff = −1

4
F 2

µν +
f 2

4
Tr |DµΣ|2 + · · · , (2.7)

where the covariant derivative is given by

DµΣ = ∂µΣ + ieAµ[τ 3,Σ] with Tr τaτ b =
1

2
δab. (2.8)

Σ transforms like (2, 2̄) under SU(2)L × SU(2)R. Parity interchanges SU(2)L ↔ SU(2)R and
takes Σ → Σ†. Note that the f in Eq. 2.7 can be identified with the pion decay constant,
fπ = 93 MeV.

2.1 Incorporating the ρ

Now we include the ρ meson in our low energy theory. The lightness of the ρ mesons also
motivates a description utilizing a gauge invariance, SU(2)ρ. The longitudinal components of
the ρ are kept explicit, and the gauge invariance can be used to determine the natural sizes
of operators in the effective Lagrangian. Of course this gauge symmetry has no physics in it,
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Figure 2: The global (including gρ → 0) and gauge symmetry structure of the QCD pions and
a typical ρ vector meson. This figure is the analogue of Fig. 1, now with the ρ’s included. The
“sites and links” diagrams show the global and gauge symmetries under which the ΣL and ΣR

fields transform as bi-fundamentals.

and going to the unitary gauge makes this clear. A lucid discussion of this point was given in
[6, 9]. We emphasize that it is the lightness of the ρ that constrains its properties– we expect
additional operators in the effective Lagrangian proportional to mρ/Λ. For example, there are
higher derivative operators that can sum into a form-factor that reveals the composite nature
of the ρ. Upon including the ρ in the chiral Lagrangian, the symmetry structure is enlarged to
become:

SU(2)L × SU(2)R × SU(2)ρ −→ SU(2)V , (2.9)

where the SU(2)ρ symmetry is strongly gauged. This structure is displayed in Fig. 2.
The effective theory, now incorporating both π’s and ρ’s, is

Leff = −1

4
F 2

µν −
1

2
Tr ρ2

µν − κ̃Fµν(Tr τ 3ΣLρ
µνΣ†

L + Tr τ 3Σ†
Rρ

µνΣR)

+
f 2

4

(
Tr |DµΣL|2 + Tr |DµΣR|2 +

κ

2
Tr |Dµ(ΣLΣR)|2

)
+ · · · , (2.10)

where κ̃ sets the size of the ρ−γ kinetic mixing. This effective action is the result of integrating
out all heavier resonances. We refer to the operators multiplied by κ and κ̃ as “non-local”: in
the theory-space description of Fig. 2, these operators involve more than one site, and so are
indeed non-local in theory space. For simplicity, we will set κ̃ to zero throughout; however,
retaining it would be important if our goal were to try to match this theory to experimental
QCD. Parity acts on the theory by taking SU(2)L ↔ SU(2)R, leaving SU(2)ρ unchanged, and

taking the Goldstone bosons from ΣL ↔ Σ†
R. We have imposed parity on the Lagrangian in Eq.

2.10. The transformations under the SU(2)L × SU(2)R × SU(2)ρ symmetry are:

ΣL ≡ exp(2iπL/f) ∼ (2, 2̄, 1); ΣL → gLΣLg
†
ρ,

ΣR ≡ exp(2iπR/f) ∼ (1, 2, 2̄); ΣR → gρΣRg
†
R,

ΣLΣR ≡ exp(2i(πL + πR)/f) ∼ (2, 1, 2̄); ΣLΣR → gLΣLΣRg
†
R, (2.11)

where gL, gR and gρ are independent SU(2) transformations. The covariant derivatives that
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appear in Eq. 2.10 are

DµΣL = ∂µΣL + ie0Aµτ
3 ΣL − igρΣL 
τ · 
ρµ,

DµΣR = ∂µΣR + igρ
τ · 
ρµ ΣR − ie0ΣR Aµτ
3,

DµΣLΣR = ∂µΣLΣR + ie0Aµ[τ
3,ΣLΣR]. (2.12)

Here, Aµ is the vector field that mixes with the ρ3. Proceeding to the mass eigenbasis, we find
a zero eigenvalue (the photon) and a massive eigenvalue (the physical ρ).

It is possible to go to the unitary gauge where the new degrees of freedom become the
longitudinal components of the ρ. This gauge is convenient because the physical couplings of
the ρ are manifest; however, their natural sizes are more difficult to infer. We can determine
this gauge by examining the Goldstone-ρ mixing. Ignoring the weakly gauged U(1)EM , the
mixing is given by

Lρπ = gρf Tr ρµ (∂µπL − ∂µπR) . (2.13)

Thus, the physical pion, π, and the Goldstone eaten by the ρ, denoted by ξ, are related to the
gauge eigenstates by

π = N−1
π (πL + πR), ξ = N−1

ξ (πL − πR), (2.14)

where Nπ and Nξ are constants determined by the requirement that the fields be canonically
normalized. Unitary gauge is defined by ξ = 0.

The gauge and global transformations are

gL = eiαL , gρ = eiαρ , gR = eiαR , (2.15)

and act upon the linearized fields as

δπL =
f

2

(
αL − αρ

)
, δπR =

f

2

(
αρ − αR

)
. (2.16)

The vector and axial vector transformations should preserve unitary gauge1. Therefore, we can
parameterize the transformations by the two global ones and the orthogonal one, which can be
used to go to unitary gauge:

Vector : αL = αρ = αR ≡ αV; Axial : αL = −αR ≡ αA, αρ = 0. (2.17)

The leading kinetic term for the pions is given by

L(∂π)2 = Tr (∂πL)2 + Tr (∂πL)2 + κTr (∂(πL + πR))2;

=
1

2
N2

π(1 + κ)Tr (∂π)2 +
1

2
N2

ξ Tr (∂ξ)2 = Tr (∂π)2 + Tr (∂ξ)2, (2.18)

1This is a different definition of these global transformation than [10] used where both the vector and axial–
vector transformations nominally took the theory out of unitary gauge.

5



meaning that the normalization constants are given by

N−2
π =

1 + κ

2
, N−2

ξ =
1

2
. (2.19)

Under an axial transformation

δπ = N−1
π fαA, δξ = 0. (2.20)

Acting on Eq. (2.18), we find:

δL(∂π)2 = 2N−1
π fTr ∂π∂αA = 2fπTr ∂π∂αA. (2.21)

This allows us to identify

fπ =

√
1 + κ

2
f. (2.22)

The only a priori constraint on κ is that κ > −1, so that the physical π has a positive kinetic
term. At this point we can diagonalize the mass mixing with an orthogonal transformation

APhys = cos θÂ+ sin θρ3, ρ3
Phys = − sin θÂ + cos θρ3. (2.23)

where the angles and electro-magnetic gauge coupling are given by

e−2 = e−2
0 + g−2

ρ , sin θ ≡ e

gρ

. (2.24)

So the couplings of the physical ρ and photon to the electro-magnetic current, jEM , are given
by

Lj γ = e jµ EM

[
Aµ

Phys − tan θρ3 µ
Phys

]
, (2.25)

while the masses of the ρ mesons are

m2
ρ± =

g2
ρf

2
π

1 + κ
, m2

ρ0 =
m2

ρ±

cos2 θ
. (2.26)

For large gρ, the difference between the masses of the charged and neutral ρ mesons can be
expanded as

m2
ρ0

m2
ρ±

≈
(
1 +

e2

g2
ρ

)
. (2.27)

The experimental limits on the mass splittings are bounded to be

mρ0 −mρ± <∼ 1 MeV ⇒ 1 − mρ0

mρ±
≤ 3 × 10−3. (2.28)

For small κ̃, the mass splittings place a limit on gρ 
 4π/
√

3. Then, using fπ 
 93 MeV and
mρ 
 770 MeV, we find κ 
 1

3
in QCD. There are other determinations of κ that give roughly

the same answer, e.g. using the KSFR relation for the ρ→ ππ decay width [11].
For future reference we calculate the ρ’s coupling to the isospin current of the π’s

Lint = gja
µρ

±
a ja

µ = Tr τa[∂µπ, π] g =
gρ

1 + κ
. (2.29)
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2.2 Georgi’s Vector Limit

In this section, we discuss an enhanced symmetry of the strong dynamics known as the vector
limit. When this symmetry is exact, the ρ meson acts to cut off the one loop gauge (QED)
quadratic divergence of the charged pion mass. As we will discuss, a similar enhanced symmetry
is possible in general theories of strong dynamics, including theories at the weak scale.

Starting from Eq. 2.10, one can compute the contribution of the photon to the mass of the
charged pion with the Coleman-Weinberg potential [12]. At one loop one finds:

δm2
π± =

3e2

16π2(1 + κ)

( κΛ2

cos2 θ
+m2

ρ0 log Λ2 + · · ·
)
. (2.30)

The term “· · · ” includes a logarithmically divergent piece that is proportional to κ tan2 θ, which
is numerically very small. For the special case of κ=0, the one loop quadratic divergence is
absent, and the counter-term from high energy physics is only necessary to cancel two loop
quadratic divergences. The degree to which the one-loop logarithmic divergence is larger than
the two-loop quadratic divergence is the degree to which the δm2

π± is calculable. When κ �= 0,
a one loop quadratic divergence remains.

This can be explained by studying the symmetry structure of the Lagrangian. For the QCD
Lagrangian of Eq. 2.10, in the limit that gρ and e0 vanish, the global symmetry of the theory is
as shown in Fig. 3. Note if κ = 0, this Lagrangian would allow independent transformations of
the form ΣL → ΣLUL and ΣR → URΣR. A non-zero κ forces UL = UR. We refer to this limit
of enhanced symmetry as the vector limit2.

The global symmetry of the vector limit is

SU(2)L × SU(2)R × SU(2)ρL
× SU(2)ρR

, (2.31)

as shown in Fig. 3. The symmetry structure translates into a constraint on the coupling of the
ρ to the pions.

With κ = 0, this theory has become a two site, two link, “theory space” model. The ρ
cuts off the quadratic divergence to the charged pion mass, just as in traditional Little Higgs
theories, where vector bosons come in to cut off the gauge quadratic divergences to the Higgs
boson mass. The possibility that ρ’s could cut-off quadratic divergences to pseudo-Goldstone
bosons was previously noted, see [13].

2.3 Higher Modes

So far we have limited discussion to the ρ meson, the lightest vector resonance. It is natural to
attempt to extend the methods employed above to more massive spin-one resonances, such as
the a1. However, our technology crucially relies on the lightness of the modes relative to the
scale of strong coupling. As the resonances become heavier, the constraint of gauge invariance
on their interactions is weakened, and the validity of the effective Lagrangian becomes more
precarious.

2This is a slightly different definition of the vector limit taken in [6] where κ and gρ were taken to vanish
simultaneously.
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Figure 3: The global (including gρ → 0) and gauge symmetry structure of the QCD pions and
ρ vector meson in the vector limit (κ → 0). While the vector limit does not change the gauge
symmetry structure of the theory, it does change the global symmetry. This translates into a
relation between mρ, gρ and fπ.
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Figure 4: Chiral Lagrangian with the lightest a1 modeled.

In QCD the a1 might already be too massive to be well-described by hidden local symmetry,
other theories with strong dynamics may have a wider range of states to which hidden local
symmetry can be applied. For instance, the number of light resonances (those with mass
<∼ 4πfπ) scales with the number of colors of the confining theory, Nc; so for large Nc QCD,
there are many light vector resonances and therefore more modes can be faithfully studied.
Likewise, in applications to EWSB, the Nc of the UV completion may be larger than three,
allowing for more light copies of the ρ and a1 to be described within an effective theory.

In [10, 14], an infinite number of sites was considered to model QCD. However, as the
number of sites increases, to keep the interactions of the ρ’s from becoming weak, the gauge
coupling at each individual site must increase. The result, as shown in [15], is that if too many
sites are used in the effective theory, the radiative corrections to operators non-local in the
deconstructed dimensions grow exponentially large except in special supersymmetric examples.
Since locality is crucial to interpreting the theory as extra-dimensional, the large non-local
radiative corrections to the effective action calls into question the whole extra-dimensional
interpretation. In QCD, the physical coupling of the ρ is strong. At best a few sites can be
included while avoiding this pitfall. If the physical coupling of the ρ were weaker, more sites
could be consistently included without encountering this difficulty.

Despite the caveats enumerated here, we will first study the theory space representation
of the a1 in QCD. Our ultimate goal is studying light resonances in a more general setting, but
the a1 in QCD gives a familiar example.

2.3.1 The a1 in QCD and the Generalized Vector Limit

In QCD the heavier spin-one resonances can be modeled by incorporating new gauge symmetries
in the middle of the theory space. This construction is equivalent to the construction in [5] and
is much as [10] attempted in a more ambitious manner.
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With an additional strongly gauged field, we can model the interactions of the a1 (See
Fig. 4). The Lagrangian becomes

L = −1

2
Tr ρ2

1 µν −
1

2
Tr ρ2

2 µν +
f 2

4

(
|TrDµΣL|2 + c2|TrDµΣ0|2 + |TrDµΣR|2

+κ|TrDµΣLΣ0|2 + κ|TrDµΣ0ΣR|2 + κ′|Tr ∂µΣLΣ0ΣR|2
)
, (2.32)

where we are neglecting U(1)EM and also the various kinetic mixings for simplicity. Both ρ1

and ρ2 have the same gauge coupling, g̃ρ. There is another parameter, c, that is a priori
undetermined. The linearized fluctuations of the fields are given by

ΣL = exp
(2i

f
πL

)
, Σ0 = exp

( 2i

cf
π0

)
, ΣR = exp

(2i

f
πR

)
. (2.33)

When modeling the ρ, we had to introduce a single non-locality parameter, κ. Here we have
a pair: κ and κ′. A parity transformation interchanges SU(2)L ↔ SU(2)R. Under this parity,
there is an even field, the ρ, and and odd field, the a1. Note that the two terms with coefficient
κ are set equal by this parity.

The masses of the vector mesons are

m2
ρ =

1 + κ

4
g2

ρf
2, m2

a1
=

1 + 2c2 + κ

4
g2

ρf
2. (2.34)

Note that the a1 is always heavier than the ρ. Setting c = 1 and κ = κ′ = 0, the spectrum
in the vector limit is m2

ρ = g2
ρf

2
π and ma1 =

√
3mρ. While this prediction does differ from the

value predicted by QCD sum rules, ma1 =
√

2mρ, it is not that far from the the experimental
relation ma1/mρ 
 1.65.

In the limit where all of the gauge couplings, κ and κ′ vanish, there are enhanced sym-
metries much like those in Georgi’s vector limit. When the generalized vector limit holds, the
global symmetry of the theory is

SU(2)L × SU(2)ρ1 × SU(2)ρ2 × SU(2)R → SU(2)3
L × SU(2)3

R. (2.35)

Restoring the gauge couplings while keeping κ set to zero gives a finite Coleman-Weinberg
potential because it requires e0, gρ1 , and gρ2 couplings to communicate sufficient chiral symmetry
breaking to the effective Lagrangian:

δm2
π± ∼ 3e2

16π2
m2

ρ log
m2

a1

m2
ρ

. (2.36)

In this limit, the ρ and the a1 cut off both the quadratic and logarithmic divergences from
gauge interactions.

2.4 Effects of Higher Modes on the Vector Limit

We have argued that the κ → 0 limit is of particular interest, partly because the quadratic
divergences vanish in this limit. We would like to understand how likely this limit is to obtain.
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Figure 5: The effect of the a1 on the π − ρ Lagrangian. The π − ρ − a1 theory is in the
generalized vector limit where all non-local couplings are set to zero. The radiatively induced
mass for π± is finite at one loop. Integrating out the a1 at tree level induces a κ term, at loop
level a compensating counter-term is induced for the π± mass.

To do this, we must understand how higher modes can affect the low-energy Lagrangian. We
will see that even if a theory is fundamentally local, integrating out the heavy modes can make
the effective theory for the lightest mode appear non-local.

This is not too surprising. For example, a similar phenomenon occurs in a 5D gauge theory
on a circle. We can Kaluza-Klein (KK) decompose the vector boson into its ladder spectrum,
and form an effective theory by classically integrating out all but the lightest vector boson.
In this truncated theory, a computation of the mass for the Wilson loop operator yields an
answer quadratically sensitive to the cut-off – an answer far larger than the finite one found
by a calculation in the original 5D theory. Locality in the fifth dimension prohibits ultraviolet
contributions to the Wilson line operator. Truncating the theory corresponds to placing a hard
momentum cut-off in the fifth dimension; when Fourier transformed back to position space,
this cut-off induces x−1

5 correlation functions. Truncating the theory induces non-locality in
the fifth dimension; the result is the Wilson loop operator no longer has exponentially small
sensitivity to the cutoff. Properly integrating out the tower of KK modes (at the quantum
level) induces a counter-term for the Wilson line operator that cancels against the quadratic
divergence induced by the interactions of the lightest mode.

To demonstrate how this phenomena occurs in QCD we can return to the formulae of the
previous section and classically integrate out the a1 resonance. Even when starting in the in the
vector limit, a significant deviation from κ = 0 is induced. The Lagrangian of a local ρ−a1 −π
theory is given by

Lρ a1 =
f 2

4

(
|DµΣL|2 + c2|DµΣ0|2 + |DµΣR|2

)
, (2.37)

with gauge couplings g̃ρ for both of the vector bosons. We start by normalizing fπ through a
calculation similar to the one in Sec. 2.1, which gives [10]

fπ =
f√

2 + c−2
. (2.38)

The two mass eigenvalues are

m2
ρ =

g̃2
ρf

2

4
= (2 + c−2)

g̃2
ρf

2
π

4
m2

a1
=

(1 + 2c2)g̃2
ρf

2

4
= (2 + c−2)

(1 + 2c2)g̃2
ρf

2
π

4
. (2.39)
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To relate g̃ρ to gρ we consider the coupling of the ρ to the π isospin current. We find

g =
1 + c−2

2 + c−2

√
2g̃ρ. (2.40)

In the non-vector-limit theory with just the ρ, the mass of the ρ in terms of the isospin current
coupling in Eq. 2.26 and Eq. 2.29

m2
ρ = (1 + κ)g2f 2

π (2.41)

where as in the vector-limit theory with the a1 the mass of the ρ is given by

m2
ρ =

(1 + 1
2
c−2)3

(1 + c−2)2
g2f 2

π (2.42)

keeping the physical quantities fπ and g fixed, we can vary c and observe how κ changes

κ =
(1 + 1

2
c−2)3

(1 + c−2)2
− 1 = −

(
c−2

2

)(
1 + 1

2
c−2 − 1

4
c−4

(1 + c−2)2

)
(2.43)

There are two places where the non-locality becomes small, at c−2 = 0 or at c−2 = 1 +
√

5.
At the prior, it is obvious that the theory is local because the middle link has been contracted
away and ma1 → ∞, while in the later, it is just a cancellation. The ratio ma1/mρ suggests
that c−2 = 0.85 or κ = −0.15.

Summarizing, we started with a local theory including the a1 resonance, but after integrat-
ing out the a1, the effective theory that contains only the ρ is apparently non-local (see Fig. 5).
This deviation from κ = 0 occurs because the ρ and π mix with the a1. This deforms the low
energy effective action of the ρ–π system away from a local/nearest neighbor interacting one.
After truncating the theory, the counter-term to the π mass can be computed in this reduced
theory. The counter-term in this case turns out not to violate isospin because the a1 does not
mix with the photon. The induced counter-term violates does violate SU(2) axial because the
longitudinal components of the a1 mix with π. If a ρ′ was included, then an isospin violating κ
parameter would be induced.

2.5 Vector Limit Moral

In this section, we explore the meaning of Georgi’s vector limit for QCD, and speculate on the
implications for other theories with strong dynamics. It is always possible to use an effective
Lagrangian for those modes that are much lighter than the scale of strong coupling. For QCD,
this means a Lagrangian for the π’s and the ρ meson. Keeping the longitudinal components
of the ρ explicitly in the effective Lagrangian is useful for constraining their interactions when
the mass of the ρ is light compared with the scale of strong coupling. In this gauge, there is a
term that breaks more chiral symmetries than the others because it contains more fields. In the
vector limit this term vanishes. In Naive Dimensional Analysis (NDA) [16], adding non-linear
sigma model fields to any operator does not result in a suppression. Nevertheless, these Σ-laden
terms seem to be small experimentally. So, NDA does not give any reason for the κ parameter
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to be small; insight into the vector limit is beyond the scope of NDA. The suppressed operators
with additional Σ fields are non-local in theory space. One possible reason for this suppression
is that such terms break more chiral symmetries than operators with fewer Σ fields; if there is
a “cost” associated with the breaking a chiral symmetries, then it would be natural to expect
a suppression of these terms.

As shown in the previous section, if there are additional spin-one resonances that mix with
the ρ such as the a1 then the vector limit is typically spoiled. So if Georgi’s vector limit is to
hold, mixing with all heavier modes should be small. A theory space model with many sites
incorporates mixing with many spin-one modes (a1, ρ

′, ρ′′), even if the spectrum is truncated.
To reproduce a model close to the vector limit, we must minimize this mixing. To do this, we
write a model with sites and links for only those modes well-constrained by gauge invariance.
For QCD, this is probably only the ρ. For the vector limit to hold, we must posit that these
particles do not have large mixing with the particles whose interactions are unconstrained by
gauge invariance.

In the next section we will generalize these statements to other strong coupling theories,
such as UV completions of Little Higgs theories. Before doing so, it is useful to recall how
several quantities scale with Nc [17]. We will use slightly non-standard scalings: we keep fπ

fixed as we vary Nc. This is useful because fπ will be an easily measurable quantity and in
Little Higgs theories the ratio of f and v will be kept fixed.

The coupling of the ρ scales as

gρ ∼ 4π/N
1
2
c . (2.44)

With our results from before, we see that

mρ ∝ gρfπ ∼ 4πfπ

N
1
2
c

. (2.45)

If use mρ as the cut-off of the low energy theory, then we recover the standard large Nc relation
that

Λ

fπ


 4π

N
1
2
c

. (2.46)

In general, we will be interested in cases where the gρ, remains large, i.e. the number of colors
is not too big.

With these large Nc scalings in hand, we can now speculate on how Georgi’s vector limit
might extend to other theories. As before, we should write down an effective gauge-invariant
Lagrangian for the PNGBs and the light vector resonances. Because the mass of the ρ scales as
1/
√
Nc, we expect that this Lagrangian will probably contain more than just a single ρ for non-

QCD cases. According to NDA, there would be many non-local operators with unsuppressed
coefficients. On the other hand, if Georgi’s vector limit is somehow fundamental, and indeed
there is a cost for breaking chiral symmetries, we expect that these non-local operators will be
suppressed. This dictates that mixing with the higher modes (those not well described in the
effective theory) is small.

The fundamental importance of the vector limit can in principle be tested experimentally.
If, for example, a EWSB involves a theory at strong coupling, one could check whether or not
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it was close to the vector limit by exploring the relationship between the ρ− π couplings, mρ,
and fπ.

3 The Techni-Vector Limit, Vacuum Alignment and Lit-

tle Higgs Models

Suppose that techni-ρs (henceforth referred to as ρs) are the lightest hadronic states of a multi-
TeV confining gauge theory associated with EWSB. How do they couple to the Goldstone
bosons? In this section, we show how to include techni-ρ’s in the low energy effective theory
for composite Higgs models. We also discuss how to define the analog of the vector limit. As
a first showcase for this formalism, we investigate the problem of vacuum alignment in these
theories. Assuming that the vector limit does obtain, we test some of the results previously
obtained using QCD sum rules and essentially reproduce the major results.

We then study the implications of the vector limit for specific Little Higgs models. As-
suming there is underlying strong dynamics (at ∼10 TeV) which favors the realization of the
near-vector limit, it is possible to construct an effective theory in which some of the divergences
are softened by these vector bosons. This phenomenon is analogous to the way in which the
photon contributions to the charged-pion masses were cut-off by interactions with the ρ.3 In
Secs. 3.2.1 and 3.2.2, we give two examples of Little Higgs models where inclusion of techni-ρ’s
can render previously UV sensitive quantities calculable. First, in the SU(6)/Sp(6) Little Higgs
model[4], there is a quadratic divergence in the Coleman-Weinberg potential. The naive sign
suggests that the potential is unstable. However, the signs of quadratically divergent quanti-
ties are not necessarily to be trusted – with the methods in this paper it is possible to state
what features of the ultraviolet completion are necessary to stabilize the effective potential.
This is the focus of Sec. 3.2.2. Second, in the Littlest Higgs model[3], the vacuum expectation
value (vev) of a electroweak triplet was sensitive to ultraviolet physics. We devote Sec. 3.2.1
to addressing when the vev of the triplet may be smaller than naively expected, as desired by
electroweak precision measurements. We are also able to discuss the size of the quartic coupling
in this model.

3.1 Coupling Techni-ρ’s and Vacuum Alignment

Before proceeding to our specific examples, we discuss how to include techni-ρ’s in coset theories
of electroweak symmetry breaking. We are particularly interested in models that have the global
symmetry structure SU(N)/SO(N) or SU(N)/Sp(N). These symmetry breaking patterns
deviate from the QCD-like structure of [SU(N)× SU(N)]/SU(N) discussed in Section 2, so it
is not obvious how to incorporate light vector resonances into the theory. The primary guide is
that the vectors should be in a representation of the unbroken global symmetry of the strong

3One might hope that the contribution to the Higgs boson mass from Standard Model gauge interactions
could be cut-off by the techni-ρ [8]. This softening of divergences would take place without extending the
fundamental gauge symmetry; only the existence of light composite vector bosons near the vector limit is
required.
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dynamics – i.e. SO(N) or Sp(N). We find it convenient to introduce the techni-ρ’s in the
context of a particular problem: vacuum alignment [18].

In theories of strong dynamics, such as the ones we are considering, vacuum alignment
represents an important issue. Consider a strongly gauged group G, with some weakly gauged
subgroups Gw. As we have discussed, when G reaches strong coupling, it generically breaks
some global symmetries, and may also break some of Gw. The issue of vacuum alignment may
be succinctly stated as: What subgroup Hw of Gw is left unbroken by the strong dynamics?

Solving the vacuum alignment problem requires the minimization of an effective potential.
Unfortunately, this minimization cannot be performed without a knowledge of the bound states
of the strongly coupled theory. Reference [19] utilized sum rules [20] to provide a window on
this non-perturbative physics. To make progress, they assumed that the signs of spectral
integrals could be determined by the lowest lying resonances. In QCD, it is known that this
approximation holds: the ρ and the a1 largely saturate the vector and axial currents.

Incorporating the techni-ρ’s into our effective theory, we too can address vacuum align-
ment. We simply choose different candidates for Hw, and calculate the Coleman-Weinberg
effective potential arising from gauge boson and techni-ρ exchange in each case. An instability
in the potential means that we have chosen the wrong Hw.

At energies beneath mρ, the PNGBs are parameterized as

Σ = exp(iπ/f) Σ0 exp(iπT/f), (3.1)

where Σ0 is the symmetric (anti-symmetric) fermion condensate that breaks SU(N) to SO(N)
(Sp(N)). The leading action for this theory of Goldstone bosons is

L =
f 2

4
Tr |DµΣ|2, (3.2)

where the covariant derivative Dµ is given by

DµΣ = ∂µΣ + igIW
I
µ(TIΣ + ΣT T

I ). (3.3)

Here, the W I are the weakly gauged vector bosons of Gw embedded inside the global SU(N)
symmetry. We can study the question of vacuum alignment by examining the effective Coleman-
Weinberg potential for the Goldstone bosons. The gauge sector gives rise to quadratic diver-
gences in the potential for the Goldstone bosons:

Veff(Σ) � 3Λ2

16π2

∑
I=J

OIJ (3.4)

with

OIJ(Σ) =
f 2

4
Tr
[
(gITIΣ + gIΣT

T
I )(gJΣ†TJ + gJT

T Σ†)
]
. (3.5)

At this point, we cannot say anything definitive about the stability of the effective potential.
The quadratic divergence indicates sensitivity to the ultraviolet, and its sign, central to the
question of stability, is not to be trusted.
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Now we add the techni-ρ’s. By taking these vector mesons to be in the adjoint represen-
tation of the unbroken chiral symmetry, we can incorporate them into the theory by defining a
new multiplet of Goldstone bosons:

S ≡ exp(iΠ/f) with Σ = SΣ0S
T . (3.6)

Now Π is an adjoint of SU(N)2/SU(N) Goldstone bosons, instead of the SU(N)/SO(N) or
SU(N)/Sp(N) Goldstone multiplet we had previously. The longitudinal components of the
techni-ρ’s have filled out the remainder of the multiplet. Σ contains the same set of Goldstone
bosons from Eq. 3.1 because the additional Goldstone bosons commute through Σ0 and cancel.
Note that the SU(N)2 symmetry of the Lagrangian is broken by the vacuum expectation value
Σ0.

The Lagrangian incorporating the ρ’s is given by

LTρ = f 2(Tr |DµS|2 +
κ

4
Tr |DµΣ|2). (3.7)

The covariant derivatives are given by

DµS = ∂µS + ig0
IW

I
µTIS + igρSTAρ

A
µ ,

DµΣ = ∂µΣ + ig0
IW

I
µ (TIΣ + ΣT T

I ), (3.8)

where ρA are the techni-ρ’s and A runs over the adjoint of SO(N) or Sp(N), depending on the
unbroken global symmetry group.

We can now compute the Coleman-Weinberg potential for the theory with the techni-ρ
mesons. The techni-ρ’s mix with the vector bosons of the weakly gauged symmetries and pro-
duce a logarithmic divergence. If κ = 0, then there would be no π2W 2 coupling or π2ρ2 coupling,
only a π2Wρ coupling. This interaction cannot produce a one-loop quadratic divergence. The
resulting Coleman-Weinberg potential is

Veff(Σ) =
3

16π2

(
κΛ2

cos2 θ
+ 2m2

ρ log Λ2

)∑
I=J

OIJ(Σ) + · · · , (3.9)

where we have written the result in terms of the low-energy gauge coupling, gI ≡ g0
I cos θ and

mρ. The “· · ·” includes a logarithmically divergent term, but is proportional to κ. The OI

are the same operators as in Eq. 3.4, there is no explicit dependence on S alone. This should
not be surprising – the additional modes present in S not contained in Σ are eaten (exact)
Goldstone bosons and, as such, cannot have a potential. To put the potential in this form, we
have performed the sum over the SO(N) or Sp(N) adjoint, and the fields arrange themselves
in the form Σ = SΣ0S

T .
Before discussing the implications of Eq. 3.9 for vacuum alignment, we first discuss the

symmetry structure of the techni-vector limit. As in the two-flavor QCD example, the quadratic
divergence vanishes due to an enhanced symmetry of the vector limit when κ = 0. In this limit,
when the weak gauge couplings, gI , and the ρ gauge couplings, gρ, vanish, it is possible to
perform independent SU(N) × SU(N)ρ transformations on S:

S → GSGρ. (3.10)
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The term proportional to κ forces Gρ to be a SO(N) or Sp(N) global transformation.
In the κ = 0 limit, the sole vestige of the breaking of the global SU(N) symmetry by the

strong dynamics is the representation of the techni-ρs. They make up a multiplet of SO(N)
or Sp(N) (rather than the full SU(N)). Having the lightest vector resonance communicate
symmetry breaking offers an interesting view on how global symmetries are dynamically broken
by fermion condensates.

Now we can return to the implications of Eq. 3.9 for vacuum alignment. Since the quadratic
divergence vanishes, the potential is dominated by the logarithmically divergent piece. To
determine the stability of a given the vacuum alignment, one would in principle expand out the
operators, O(Σ) and see whether all PNGB’s receive a positive (mass)2. However, we can take
a shortcut to the result by simply noting that the operators of Eq. 3.9 operators are identical
to those produced in the traditional [19] vacuum alignment studies.

Our agreement with the QCD sum rules results from the ρ’s regulating the quadratic
divergences. To reverse the quadratic divergence, an a1-like resonance should be dominant over
the ρ. At this stage, we have not even incorporated such a mode. In Sec. 3.3 we discuss the
incorporation of higher modes in strong coupling theories, and whether being very far from the
vector limit can change this result.

3.2 Little Higgs Examples

Little Higgs models often contain ultraviolet-sensitive quantities whose values are crucial for
determining the viability of the theory. Because the ultraviolet completions of these models are
unspecified, it seems impossible to comment definitively on the viability of these models. If we
suppose the vector limit obtains, these quantities can be computed within an effective theory.
This allows us to discuss the viability of the models in the vector limit. We will give examples
of how to apply our technology to specific Little Higgs models.

3.2.1 The Littlest Higgs: SU(5)/SO(5)

The Littlest Higgs is the best known Little Higgs model and has been studied in some depth[21,
22]. It is closely related to the Georgi-Kaplan composite Higgs model, which has the same coset
structure[1]. This coset was originally chosen to preserve custodial SU(2), thereby protecting
the T parameter. The primary difference between the Littlest Higgs and the Georgi-Kaplan
model is in the weakly gauged part of SU(5). The Littlest Higgs model we consider gauges
SU(2)1×SU(2)2×U(1)Y in SU(5); because only a single U(1) is gauged, there is an additional
axion–like field beyond the Goldstone bosons discussed in [3]. The gauge symmetry is broken
to SU(2)L × U(1)Y by the condensation. In the Georgi-Kaplan composite Higgs model, only
the standard model SU(2)L ×U(1)Y is gauged. Gauging the additional SU(2) breaks custodial
SU(2). This results in a SU(2)L triplet, hypercharge one scalar acquiring a phenomenologically
problematic vev – however, it is also the reason that the Higgs doublet acquires a large quartic
potential, leading to viable EWSB.

To see how the triplet acquires a vev, consider the gauge quadratic divergence in the
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Coleman-Weinberg potential:

Veff =
3Λ2

16π2

(
O1 + O2 + OY

)
, (3.11)

with

O1 =
g2

1

4

(
Tr

∣∣∣∣φ− i hhT

2
√

2f

∣∣∣∣
2

+ · · ·
)
, O2 =

g2
2

4

(
Tr

∣∣∣∣φ+
i hhT

2
√

2f

∣∣∣∣
2

+ · · ·
)
,

OY = g′2
(
|φ|2 +

1

4
|h|2 − 1

24f 2
|h|4 · · ·

)
, (3.12)

where we have neglected the interactions of the axion-like η.
The triplet vev arises from the term hTφ†h in the expansion of these operators.
Integrating out the massive φ field induces both a Higgs quartic coupling and a dimension

six operator that contributes to a T parameter.

Leff = λ|h|4 +
cT
f 2

|h†Dµh|2, (3.13)

with

λ =
1

16π2f 2

g2
1Λ

2
1g

2
2Λ

2
2

g2
1Λ

2
1 + g2

2Λ
2
2

, cT =
(g2

1Λ
2
1/f − g2

2Λ
2
2/f)2

8(g2
1Λ

2
1 + g2

2Λ
2
2 + 4g′2Λ2

Y )
, (3.14)

where we have allowed for the possibility of different cut-offs for the operators O1 and O2.
Because the coefficients of the operators are quadratically divergent, it is not clear how to
interpret this result – for example, one could imagine physics in the ultraviolet cutting off the
divergences differently. For instance, one might have Λ1,2 ∝ g−1

1,2 that would cancel the induced
T parameter in the above formula.

We now suppose that the vector limit obtains, and repeat the calculation. First, we
have to incorporate the ρ mesons. The ρ’s form an adjoint of SO(5) and decompose under
SU(2)L × SU(2)R and SU(2)L × U(1)Y as

10 → (3, 1) ⊕ (2, 2) ⊕ (1, 3) → 30 ⊕ 10 ⊕ 11 ⊕ 21
2
. (3.15)

The 10 and 11 form an SU(2)R triplet. Although the weakly gauged sector does not respect
custodial SU(2), the strong resonances do, and the strong dynamics is identical to that of the
Georgi-Kaplan composite Higgs model. The additional spin-one resonances do not mediate
large effects to the T parameter precisely because of the custodial SU(2) An analysis similar
to the one used for the gauge sector of a Little Higgs model in Ref. [23] explicitly shows this is
the case.

As in the previous section, in the vector limit the techni-ρs cut off the gauge quadratic
divergence:

Veff =
3m2

ρ

8π2
log Λ2

(
O1 + O2 + OY

)
. (3.16)

17



SU(2) x U(1)
YL

SU(5)

SU(2) x U(1)
Y

2

SO(5)

Figure 6: The global and gauge symmetry structure of the SU(5)/SO(5) composite Higgs
model. The electroweak SU(2)L × U(1)Y gauge sector is embedded within the global SO(5).
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Figure 7: The global and gauge symmetry structure of the SU(5)/SO(5) model with a light
techni-ρ. The left diagram shows the symmetry structure of such a theory, while the right
shows the light techni-ρ in the vector limit.

Note that this does not alter the naive prediction for the triplet vev because it provides the
same cut-off for the quadratic divergences to O1 and O2. The induced dimension six operator
is identical to that of Eq. 3.13, but with Λ2 → m2

ρ log Λ2.
The two SU(2) gauge couplings are related to the Standard Model SU(2) coupling by

g−2 = g−2
1 + g−2

2 . We define the mixing angle tan θ ≡ g1/g2 as the new low energy parameter.
In the vector limit, the triplet mass is

m2
φ =

m2
ρ

8π2

3g2

sin2 2θ
(1 + tan2 θw sin2 2θ) = 6m2

W ′(1 + tan2 θw sin2 2θ)
m2

ρ

Λ2
. (3.17)

where mW ′ is the mass of the TeV scale W ′ vector boson. Then the triplet vev is given by

〈φ〉 =
v2 cos 2θ

4
√

2f(1 + tan2 θw sin2 2θ)
. (3.18)

This vacuum expectation value is independent of the Nc in the ultraviolet completion. It only
depends on the ratio of the two SU(2) gauge couplings; the vev vanishes when the two couplings
are equal. For reference, barring cancellations, the experimental limit on a triplet vev is 3 GeV.
Thus, Eq. 3.18 implies strong constraints for f <∼ 2.5 TeV unless there are cancellations.

The Higgs quartic coupling results from integrating out the triplet field. In the vector
limit, it is given by

λ =
3g2m2

ρ

4Λ2

1 + 2
3
tan2 θw − 1

3
tan4 θw sin2 2θ

1 + tan2 θw sin2 2θ
⇒ mh 


√
6mW (1 +

1

3
tan2 θw)

mρ

Λ
(3.19)

where we have dropped terms proportional to sin2 2θ in the expression for mh because θ needs
to be small from precision electroweak constraints [21, 23, 24]. If the Littlest Higgs theory is to
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produce an adequately heavy Higgs, this points to a UV completion with heavy techni-ρs. This
prediction for the Higgs boson mass is subject to large corrections from the top quark Yukawa
coupling.

Summarizing, the triplet vev is independent of the any details about the ρs as they only
provide a universal cut-off for the gauge quadratic divergences. The Higgs mass and triplet
mass are proportional to the mass of the lightest ρ. As discussed in Sec. 2.5, the ρ mass scales

the number of colors in the confining theory, mρ 
 4πf/N
1
2
c . Thus, a heavy ρ points to a small

Nc UV completion. As a side note, the ρ can mediate an S parameter

δS ∝ v2

m2
ρ

∼ Nc
v2

Λ
. (3.20)

where Λ = 4πf . This indicates heavy techni-ρs, roughly corresponding to a small Nc UV
completion.

3.2.2 The Vacuum of SU(6)/Sp(6)

The Little Higgs model SU(6)/Sp(6) [4] has garnered attention[24] because it possesses many
of the requisite properties to be a minimal Little Higgs model4. However, there is one potential
problem with the model – the Coleman-Weinberg potential is unbounded if one takes the naive
sign. This is worrisome, but not necessarily fatal; the Coleman-Weinberg potential is dominated
by cut-off scale contributions which could potentially reverse the naive sign. In this section we
assume that the lightest ρ is in the vector limit. Then the quadratic divergence vanishes, and
the effective potential becomes calculable. Under these assumptions, we find that the potential
remains unstable.

The SU(2)1 ×SU(2)2 ×U(1)Y quadratically divergent contribution to the scalar potential
is

Veff =
3Λ2

16π2

(
O1 + O2 + OY

)
(3.21)

with

O1 = −g
2
1

4

⎛
⎝
∣∣∣∣∣η +

i h†1h2

2
√

2f

∣∣∣∣∣
2

+ · · ·
⎞
⎠ O2 = −g

2
2

4

⎛
⎝
∣∣∣∣∣η − i h†1h2

2
√

2f

∣∣∣∣∣
2

+ · · ·
⎞
⎠

OY =
g′2

4

((|h1|2 + |h2|2
)

+ · · · ) . (3.22)

In the vector limit, the techni-ρ’s cut-off the gauge quadratic divergence and do not reverse the
naive sign:

Veff =
3m2

ρ

16π2
log Λ2 (O1 + O2 + OY ) ∝ −(g2

1 + g2
2)m

2
ρ|η|2 + · · · . (3.23)

4Note that our definition of f2 is a factor of 2 greater than in [24].
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Figure 8: To extend SU(6)/Sp(6) beyond the lightest ρ to include the a1 one must enlarge
the gauge structure. To include the additional a1, promote the gauged Sp(6)ρ to SU(6)ρ, as
depicted in the left figure. The following ρ′ can be included by adding another Sp(6)ρ, as shown
in the right figure.

This indicates that the vacuum, Σ0 is unstable in the vector limit. In the vector limit, the
gauge sector destabilizes the vacuum. Unless there are other contributions to these operators,
this theory is unstable. The vacuum preferred by the gauge sector is the one that preserves

SU(2)1 × SU(2)2 × U(1)Y ⊂ Sp(6). (3.24)

One possibility is that the theory could be far away from the vector limit with κ < 0 and
reverses the naive sign of the quadratic divergence. Of course the sign can not be trusted
and the theory should be matched on to one that includes a new techni-ρ’ that regulates this
quadratic divergence. We briefly discuss this in Sec. 3.3, where we discuss the incorporation of
higher resonances.

3.3 Higher Modes in Coset Models

Given the discussion on QCD, we expect that the inclusion of an additional gauge field should
allow us to model “techni-a1’s.” After adding this gauge group, the first issue is how to dis-
tinguish between the a1 and ρ. This is easily solved in the coset models we have considered
because they possess a parity that reverses the broken generators, X, while leaving invariant
the unbroken ones, T . We identify the techni-ρ with the state of even parity. The typical
theory space diagram after the inclusion of the a1 is shown in Fig. 8. The way to incorporate
higher modes into coset theories is the natural extension of the way one would do it QCD. In
this section we will use SU(6)/Sp(6) as an example; the extension to other coset models is
straight-forward.

To model resonances beyond the ρ in these non-QCD-like theories it is necessary to enlarge
the gauge structure. To include the a1 we promote the strongly gauged Sp(6)ρ to SU(6)ρ and
include two non-linear sigma model fields: one a bi-fundamental under SU(6)w and SU(6)ρ,
S,and an anti-symmetric tensor under SU(6)ρ, Σ. This action contains a single non-local
operator:

L = −1

2
TrP 2

µν + f 2
(
Tr |DS|2 + c2Tr |DΣ|2 + κTr |DSΣ|2

)
. (3.25)

As in the case with only the ρ incorporated, κ alone determines the one-loop quadratically
divergent counter-term for the effective potential. For κ �= 0, there is a quadratic divergence, and
we cannot reliably calculate the vacuum alignment using our techniques. For κ = 0, the vector
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limit, the contribution to the effective potential from the ρ’s dominate over the contribution
from the a1, and we have the naive vacuum alignment. Thus, we need to introduce resonances
beyond the ρ and the a1 if we wish to study possible modifications of vacuum alignment.

The next simplest theory includes the ρ, a1 and the ρ′. This theory has a strongly gauged
SU(6)ρ and Sp(6)ρ and is depicted in Fig. 8. There are several non-local interactions. The
Lagrangian is given by

L = −1

2
TrW 2

µν −
1

2
TrP 2

µν −
1

2
ρ2

µν + f 2
(
Tr |DS1|2 + c2Tr |DS2|2

+κ1Tr |DS1S2|2 +
κ2

4
Tr |DS2Σ0S

T
2 |2 +

κ′

4
Tr |DS1S2Σ0S

T
2 S

T
1 |2
)
, (3.26)

where we define Sj = ei πj/f .

3.3.1 Salvaging SU(6)/Sp(6) Away from the Vector Limit?

In Sec. 3.2.2 we showed that the vector limit gave the wrong vacuum for the SU(6)/Sp(6)
to be a Little Higgs theory. However, the vector limit can be altered by mixing with heavier
modes as we saw in Sec. 2.4. Given this, can we construct a theory incorporating higher
modes, sufficiently far away from the single ρ vector limit of Sec. 3.2.2, so that the theory has
the vacuum required to be a Little Higgs model? At the same time, we wish to maintain a
good description in terms of an effective Lagrangian of PNGB’s and light resonances without
quadratic divergences in the Coleman-Weinberg potential. In the traditional sum rule picture,
it is assumed that the vacuum is largely determined by the lowest resonances, which saturate
spectral functions. We would like to understand the robustness of this result.

By modeling the a1 resonances in the way we discussed here, it is possible to provide some
more explicit understanding of how the vacuum could be modified from its naive alignment.
Since the effective potential for the PNGB’s of the theory is produced by non-trivial mixing
between spin-1 states after the inclusion of spontaneous and explicit symmetry breaking terms,
it depends not only on the actual masses of the a1 and ρ fields, but also on the mixing with the
low energy states. Most importantly, a1’s and ρ’s contribute to such potential with opposite
sign, so that it is in principle possible to reverse the naive sign of the Coleman-Weinberg potentia
by increasing the realtive importance of the a1’s.

We performed extensive studies trying to reverse vacuum alignment, focusing in particular
on cases in which only local operators are allowed at the effective Lagrangian level, in such a
way as to soften, or even remove, UV cut-off dependences in the Coleman-Weinberg potential.
We found that, indeed, thanks to the complicated form of mixing terms in the spin-1 field mass
matrices, it appears possible to stabilize the vacuum, but only at the price of using negative
values for the κ factors, and somewhat large ratios between the gauge couplings. This implies
that the vacuum can be stabilized only in the parameter space region where the theory starts
to become strongly coupled: some of the states have masses close to the natural cut-off of the
theory, and the validity of the effective field theory description becomes questionable. While
not conclusive, this study does indicate that vacuum alignment seems to be more robust than
what one might have naively expected.
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4 Unitarity and Strong Coupling

Little Higgs models are non-renormalizable non-linear sigma models and so must become
strongly coupled. At some scale, Λ, the low energy description of the theory becomes in-
adequate, and new physics (or strong coupling) sets in. Naive dimensional analysis (NDA) [16]
gives a cut-off of Λ ∼ 4πf . There are many simple refinements of the NDA estimate. One of

the most common is the large Nc refinement, which estimates Λ ∼ 4πf/N
1
2
c . A similar result

applies for a large number of fermions, Nf : Λ ∼ 4π/N
1
2
f .

An alternate approach is to do a partial-wave unitarity analysis, as done for Little Higgs
models in [25]. One examines the amplitudes of the Goldstone bosons scattering, and finds that
the scattering becomes strong at

ΛU ∼
√

4πf/N 1
4 , (4.1)

where N is the number of Goldstone bosons. N roughly scales as N2
f , so this result for Λ

roughly matches the large Nf refinement of NDA, up to a difference of
√

2π. In this large Nf

limit, the difference is due to conservatism – the partial wave analysis is more conservative than
NDA. Note, chiral symmetry breaking cannot produce an arbitrarily large number of PNGBs
for a fixed Nc: the number of PNGBs roughly scales as N ∼ N2

f , and at sufficiently large Nf

the confining theory becomes asymptotically non-free.
Both the NDA and the partial wave analyses attempt to give an indication of where new

physics modifies the scattering behavior of the Goldstone bosons. It is natural to inquire what
form this new physics takes. There are some arguments that vector mesons are responsible
for the unitarization of π2 → π2 scattering at intermediate energies, i.e. ρ mesons soften the
π scattering. In this section we explore whether this possibility obtains. In fact, we find that
incorporating the ρ mesons does not result in a parametric rise in scale where perturbative
unitarity is lost. There are special values of κ where the leading π4 interactions vanish but the
ξ2π2 and ξ4 interactions do not disappear.

While the ρ does not provide a panacea, it can conceivably give a temporary postponement
of the scale of perturbative unitarity violation. Recall that the coupling of the ρ scales as

gρ ∼ 4π/N
1
2
c , so the mass of the ρ scales as

mρ ∼ 4πf

N
1
2
c

. (4.2)

Note, this coincides with the large Nc cut-off. In this large Nc case, one might visualize a series
of vector resonances, starting with the lowest ρ states, serving to postpone unitarity violation.
This is not dissimilar to the “Higgs”-less theories [26] or Randall-Sundrum I models that provide
a window of unitarization mediated by Kaluza-Klein modes. For small Nc, where the vector
resonances are heavy, it seems clear that the techni-ρs are not responsible for unitarizing the
scattering. In this case, incorporating a broad σ-like resonances seems more reasonable. We
discuss this in more detail in Sec. 4.2. In this case, we interpret the partial wave unitarity scale
as where the broad σ resonance appears.
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4.1 ρ’s and Unitarization

We now address the onset of strong coupling in the presence of the ρ’s. Therefore, we expect
that the scale of strong pion scattering is modified by the addition of the ρ mesons to the chiral
Lagrangian. Unfortunately, the energy region where the ρ is important for scattering is not in
the equivalence region where E � mρ, meaning that the transverse components of the ρ matter
for scattering. This complicates the results. For simplicity we ignore this technicality and only
consider the longitudinal component–our results will be most accurate in theories where the ρ’s
are light.

To explore strong coupling, we first expand the original π Lagrangian in Eq. 2.7 to quartic
order in the fields to find how the interactions behave without the influence of the ρ:

Leff ⊃ 2

3f 2
π

Γ(4)(π,Dπ) =
2

3f 2
π

Γ
(4)
abcdπ

aπbDπcDπd, (4.3)

where

Γ
(4)
abcd = Tr τaτbτcτd − Tr τaτcτbτd =

1

4

(
δabδcd − δacδbd

)
. (4.4)

Similarly, the chiral Lagrangian containing the ρ can also be expanded to quartic order. One
must take care to canonically normalize ξ, the longitudinal component of the ρ. In this case,
the quartic interactions are

L ⊃ 2N2
π

3f 2
π

[
Γ(4)

(
(N−1

π π +N−1
ξ ξ), D(N−1

π π +N−1
ξ ξ)

)
+Γ(4)

(
(N−1

π π −N−1
ξ ξ), D(N−1

π π −N−1
ξ ξ)

)
+
κ

2
Γ(4)(2N−1

π π, 2N−1
π Dπ)

]
. (4.5)

This effective Lagrangian will break down due to strong coupling at energies not drastically
different from 4πfπ, even with the incorporation of the ρ’s into the Lagrangian.

In the vector limit the scattering simplifies significantly: the final term in the Lagrangian
is absent and Nπ = Nξ. In the vector limit, the lowest scale of unitarity violation involves the
scattering of the state

|φ〉 =
1√
2
(|π〉 ± |ξ〉). (4.6)

This corresponds to a state localized in πL or πR. This is clear from the geometric picture
where the states with lowest scale of strong coupling are localized wave packets, rather than
mass eigenstate. As localized object, they probe short distances, and thus the highest energies.
As we move away from the vector limit, the most strongly coupled state is more π-like when
κ > 0 and more ξ-like when κ < 0.

The scale of unitarity violation for a localized states is related to the f of the adjacent
link. As more modes are incorporated, the f associated with each link increases relative to fπ:

f = n
1
2
Sfπ, (4.7)
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where nS is the number of sites. This increases the separation between fπ and f , showing
an improvement in the scattering behavior. The introduction of each vector resonance allows
the temporary postponement of the scale of unitarity violation, similar to Higgsless theories
of EWSB [26], where the new KK modes postpone the breakdown of unitarity in longitudinal
WW scattering.

In the generalized vector limit with nS sites, the scale of unitarity violation simply scales
as

ΛU ∝ n
1
2
Sfπ (4.8)

because the Γ(4) tensors are block diagonal and different sets of pions don’t interact at leading
order. On the other hand, if the theory is significantly away from the vector limit, the number
of PNGBs in the final state increases as nS, thus lowering the scale where unitarity violation
would occur. The scale of unitarity violation scales as

ΛU ∝ n
1
4
Sfπ. (4.9)

Thus the vector limit appears to help stave off unitarity violation making the theory healthy
over a larger energy regime.

4.2 The σ Resonance

There are several broad light isospin singlet scalar resonances in QCD, typically called f0

resonances. The first f0 lies in the 500 MeV range with a width roughly as big as its mass.
These states are capable of unitarizing ππ scattering exactly as the Higgs boson does – by being
the fluctuation of the vacuum expectation value.

In QCD Nc and Nf are the same, and the ρ and f0 are roughly degenerate. In this section
we argue that in the limit where there are a large number of pions (corresponding to a large
Nf), the f0 resonance becomes light and is responsible for unitarizing the Nambu-Goldstone
boson scattering. Typically several scalar resonances are necessary to completely unitarize ππ
scattering up to high energies5. We will explore the quantum numbers of these resonances.

We now consider the scattering of the Goldstone bosons in the Littlest Higgs (SU(5)/SO(5))
model in some detail, and show the role a σ resonance could play in unitarizing the theory.
Here we discuss the σ’s in the theory that does not incorporate the techni-ρs; it is possible to
extend this analysis to theories that model these states.

It is useful to decompose the ππ scattering amplitude into representations of the unbroken
symmetry group. In the Littlest Higgs model the ππ → ππ scattering can be decomposed into
various SO(5) channels:

14 ⊗ 14 → 1 ⊕ 10 ⊕ 14 ⊕ · · · . (4.10)

Each of the partial wave amplitudes has a different scale of unitarity violation. It is the fluc-
tuation in the singlet channel (the direction of the vev) that has the lowest scale of unitarity

5However, in the case of the Standard Model a single σ suffices.
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violation. This is because the other channels have smaller Clebsch-Gordon coefficients in the
decomposition. A single, broad scalar should be expected for the lightest σ resonance, unitariz-
ing this singlet channel. Other representations are important for staving off unitarity violation
in the other channels.

We can find the relevant σ model by considering a linear σ model for the breaking of
SU(5) → SO(5). To accomplish this breaking, a symmetric tensor of SU(5) acquires a vev.
The symmetric tensor decomposes under SO(5) as:

30 → 14− ⊕ 14+ ⊕ 1+ ⊕ 1−. (4.11)

We have introduced a “charge conjugation” Z2 symmetry under which the ρ’s are even, but
the a1 is odd. The 1+ is the state responsible for unitarizing the most strongly coupled singlet
channel. The 14− are the pions of the Little Higgs theory. As Nf grows large, we believe
that the σ becomes light and is responsible for unitarity violation. This is very closely related
the restoration of chiral symmetry at large Nf where one still has confinement but no chiral
symmetry breaking. A possible theory for the linear sigma model that displays this behavior
is:

Leff ∼ |∂Φ|2 − V (Φ), V (Φ) = λ(Nfc −Nf )(|Φ|2 − f 2)2. (4.12)

As Nf approaches Nfc the σ resonance becomes light, after Nfc chiral symmetry is restored.
The dynamics is a continuous in Nf , and as Nf approaches the critical number of flavors to
restore chiral symmetry the σ resonances become light and degenerate with the π, filling out an
entire chiral multiplet. Therefore, in the large Nf limit, the scale of unitarity violation seems
closely tied to the presence of additional strongly coupled, broad scalar resonances rather than
new vector mesons. New vector resonances could cut-off gauge quadratic divergences. If they
are mandated to be light to unitarize the theory, then quadratic divergences may be cut-off
well beneath the NDA scale. On the other hand, if the σ is unitarizing the theory, the vector
resonances can be heavy, and the divergences will be cut-off closer to the NDA scale.

4.3 Unitarity Moral

Regardless of whether we place our faith in the NDA analysis or, alternately, the partial wave
unitarity analysis, it is clear that new modes are expected to appear beneath 4πf .

In the previous sections we illustrated the effect of the introduction of ρ-type resonances,
showing that they can soften the cut-off dependence of the theory, thus making previously
incalculable quantities calculable. In this section we analyzed the role of these ρ’s in unitarizing
π − π scattering amplitude, as compared to that of σ-type states.

Our results are well illustrated by Fig 9. It is clear that, as suggested by the intuition, the
scale of unitarization is strongly correlated with the mass of the σ fields. A partial unitarization
can be achieved with the introduction of a tower of vector resonances. If these resonances are
present, the Goldstone boson scattering may remain well-behaved up to higher energies, even
without the introduction of a σ resonance. For the vector resonances to be important for
unitarizing scattering, they should light; however, from discussion about little Higgs models,
this possibility seems phenomenologically disastrous: they contribute to a light Higgs and a
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Figure 9: The left figure illustrates how the mass of the lightest σ and ρ and scale of unitarity
violation in ππ scattering scale with Nf . The σ resonances become light and unitarize the
scattering in a Higgs-like manner. The right figure show how they vary with Nc. The ρ
resonances become light (and simultaneously weakly interacting) in the large Nc limit and can
stave off unitarity violation as in Randall-Sundrum models or Higgsless models.

large S parameter. Thus we expect broad σ resonances for these models to unitarize the
scattering if Little Higgs models are to be phenomenologically viable. So while σ resonances
might be crucial for understanding unitarity, they are essentially invisible and do not affect the
low energy phenomenology.

5 Conclusions

Using effective field theory techniques, we have studied vector resonances, moderately light
relative to the scale of strong dynamics. This approach allows the exploration of the vector
limit, a point of enhanced symmetry. Georgi’s vector limit corresponds to a theory that is local
in its theory space description. In the vector limit, the lightest ρ regulates the leading cut-off
sensitive operators in the chiral Lagrangian. In QCD, this corresponds to a softening of the
divergence in the π± − π0 mass difference.

It is not clear that Georgi’s vector limit is in any way fundamental, and whether we expect
it to hold in a generic (non-QCD) theory of strong coupling. However, if it does apply, then
it can have important phenomenological consequences. We considered these implications by
extrapolating this approach to the structure of techni-ρs in Little Higgs theories. By including
techni-ρs in these theories and assuming the analogue of the vector limit, we were able to discuss
previously ultraviolet sensitive, phenomenologically relevant quantities. For example, by using
large Nc arguments, we argued that the mass of the Higgs boson in the Littlest Higgs theory is
roughly the mass of mW and decreases as the techni-ρs become light. It should be noted that
there are large radiative corrections from the top quark that we did not estimate.

Finally, we briefly explored unitarity violation in Little Higgs models. We argued that
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UV IR

Weak

Figure 10: A schematic depiction of how the techni-ρ resonances turn into deconstructed space
maps into a holographic extra dimension. The weakly gauged group is on the left. The ad-
ditional sites represent strongly gauged techni-ρs. In the IR, chiral symmetry is broken by a
non-linear sigma model field.

the scale of unitarity break-down likely points to broad σ-like resonances. If, instead of σ-like
fields, this scale pointed to the presence of techni-ρ’s, then gauge quadratic divergences would
be cut off at this scale. The result would be a too-light Higgs boson.

We close with a few directions for further work. In principle, the techni-ρ vector resonances
can have masses similar to those of the additional gauge bosons of Little Higgs models. This
could change the collider phenomenology predictions, and conceivably modify precision elec-
troweak predictions. Using the formalism introduced here, it should be possible to pursue this
question further. Also, there is a UV completion for the Littlest Higgs that uses a strongly cou-
pled supersymmetric SO(7) gauge theory [27]. Using the ideas in this note detailed predictions
of the semi-perturbative regime could be analyzed.

These ideas of modeling the the techni-ρ resonances are closely related to deconstructing
AdS [28, 29]. As the number of sites grows large, theory space reconstructs an extra-dimension
as in Fig 10. It would be interesting to explore this structure to see if deconstructing AdS leads
to some insight into the generalized vector limit.
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