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Abstract 
While the parallel finite element eigensolver Omega3P 

has shown to be able to calculate RF cavity mode 
frequencies to very high precision, it has become 
increasingly necessary that wall loss be determined with 
high accuracy as well because: 1) the wall loss leads to 
shunt impedance degradation and 2) excessive wall loss 
results in undesirable RF pulse heating. These issues need 
to be adequately addressed in next generation accelerators 
such as the NLC in which accelerator structures are 
designed to operate at high efficiency and high power. 
This paper will present results from an ongoing effort to 
improve wall loss calculations with Omega3P and with a 
new parallel S-matrix solver S3P through higher order 
mesh elements and adaptive refinement strategies. 

1 INTRODUCTION 
Wall loss calculations are becoming increasingly 

important in accelerator design especially for next 
generation high energy accelerators. This problem 
becomes difficult when external coupling is introduced 
into the cavity as wall currents are distributed in a small 
region around the coupling iris. The increased wall loss 
results in reduction in the cavity shunt impedance and at 
high power, can lead to RF heating. Thus it is necessary to 
determine the loss accurately in order to correctly predict 
the efficiency of the design and its cooling requirements. 

  
  This paper presents the improvement in wall loss 

calculations through the use of parallel finite element 
fields solvers Omega3P and S3P that are based on 
quadratic elements, and the implementation of adaptive 
refinement to accelerate convergence.  

2 WALL LOSS CALCULATION 

2.1 TIME HAMONIC CALCULATION 
Power density around coupling iris in coupler cell is of 

interest in high-gradient structure design. Our new 
parallel S-matrix solver S3P was used to calculate the 
power density of a travelling wave structure (Figure 1) 
with the wall currents being distributed in a small region 
around the coupling iris. In order to simulate the field 
around the iris precisely, we manually generated four 
meshes with different mesh sizes around the iris region. 
The wall loss contours around the iris region for a dense 
mesh and a coarse mesh (Figure 2) showed that S3P with 
the dense mesh can simulate the field around the high- 
gradient region in high accuracy. The plot of power 
density vs. mesh size (Figure 3) showed that the power 

density increases with the decreased mesh size, which 
reflected real physical phenomena. 

 
 
 
 
 
 
 

 

Figure 1: Test structure with high-gradient field at 
coupling iris 
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Figure 2: Wall loss contours around iris region                            
2(a) mesh size = 0.04mm, 2(b) mesh size = 0.16mm 

 
 
 

           

 

 

 

 Figure 3: Power density vs. mesh size 

2.2 EIGENSOLVER CALCULATIONS 
The complexity of the Round Damped Detuned 

Structure (RDDS) for the JLC/NLC main linac is driven 
by the considerations of rf efficiency and dipole wakefield 
suppression. The RDDS consists of 206 cells (Figure 4a) 
connected via slot openings to four pumping manifolds 
that run the length of an accelerator section. Our parallel 
fields solver Omega3P had been successfully used to 
design RDDS cell [1] (0.01% frequency error, 5% Q 
increase due to damping manifold). Using the magnetic 
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fields, one can estimate the temperature rise due to pulse 
heating. For an accelerating gradient of 70MV/m, the 
temperature rise along the RDDS structure is found to 

be CT 00 5525 −=∇ , as shown in Fig. 4b. Wall loss 
distribution of accelerating mode showed high 
concentration at the intersection of cavity and damping 
manifold (Figure 5) 
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Figure 4(a): Fabricated RDDS Cell based on Omega3P 
model. 4(b): Temperature rise at 70MV/m 

CT 00 5525 −=∇  along 206 cells RDDS 

 
 

 
 
 
 
 
 

Figure 5: Omega3P distributed mesh model of the cavity 
and the corresponding wall loss distribution of 
accelerating mode 
 
Some calculations [2] had been done by using MAFIA to 
calculate the Q-drop caused by coupling slots on the 
Trispal cavity geometry. We used our parallel fields 
solvers Omega3P re-calculate the Trispal 4-Petal 
Accelerating Cavity for “0” mode and “Pi” mode (Figure 
6). Comparisons between experiments, structured 
(MAFIA, MWS) and unstructured mesh (Omega3P with 
quadratic FE) models were performed. The results 
showed our unstructured mesh model Omeag3P had the 
best overall agreement (table 1). 
 
 

 
       

 
                       
        
       “0” mode                               “Pi” mode 
Figure 6: Omega3P wall loss distribution 
 

The accuracy of the solution of the finite element method 
depends on how well the finite dimensional space 
approximates the solution space. In general, it improves 
as the mesh is refined. Therefore, the solution accuracy 
can be improved with increase in mesh density in regions 

of fast field variation. By manually refining the mesh, we 
calculated Frequency and Q with a series of meshes. 
Figure 7 shows the Frequency and Q convergence with 
the Degree of Freedom (DOF).  
 

Table 1 Comparisons between Experiments, 
Structured (MAFIA, MWS) & unstructured mesh 
(Omega3P-quadratic FE) models. 

 
 
 

Frequency Q Factor dQ/Q 

Code Pi Zero Pi Zero Pi Zero 

Expt 1064.4 1072.4 11340 12938 -22.5% 0.9% 

MAFIA 1073.9 1081.5 9724 11023 -22.3% -0.2% 

MWS 1063.1 1070.9 13023 14217 -6.8% 11.0% 

Omega3P 1066.1 1074.1 1211 13738 -19.6% 3.4% 

 
Although we can manually make the mesh dense in the 
high-gradient region, manual refinement is inefficient and 
convergence is less than optimal, in particular for high 
wall loss in a narrow surface area. To overcome this 
difficulty, we introduce the Adaptive Mesh Refinement 
(AMR) method in Omega3P and S3P. 
 

 
 
 
 
 
                                      
 
 
Figure 7 Frequency convergence and Q convergence 

3 ADAPTIVE MESH REFINEMENT (AMR) 
Collaboration between SLAC and RPI under the DOE 

SciDAC project (figure 8) to develop an automatic 
adaptive mesh refinement capability for SLAC’s parallel, 
unstructured grid field solvers such as Omega3P and S3P 
to improve convergence on wall loss calculations has 
been done and several test cases will be showed in this 
section. 

To perform Adaptive Mesh Refinement (AMR), an 
initial coarse mesh is generated using an external mesh 
generator. The numerical solution is obtained by applying 
the finite element method to this mesh. The error of the 
numerical solution is estimated for each element, and by 
comparing them with the degree of accuracy degree 
desired, it is determined whether and how the mesh 
should be refined. After a refined mesh is generated, the 
finite element calculation is carried out for the new mesh. 
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This procedure loops until the accuracy requirement is 
met. 

In AMR, the local integral of the gradient of the stored 
energy is used as the measurement of the local error. 
Specifically, once we obtain the numerical solution E and 
H from the finite element computation, the local error for 

any element er  is defined as, 
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We know that large field errors are expected in the area 
where the field energy density varies dramatically. This is 
confirmed in numerical tests shown in the following that 
this algorithm is effective in generating the optimal mesh 
for high accuracy solutions to the problems. 

 
 
 
 
 
 
 
 
 
 

Figure 8 Procedure of AMR 
 
In order to test the AMR’s advantages in generating the 

optimal mesh, we calculated two structures with local 
high power loss.  

Figure 9 shows the field results with adaptive mesh 
refinement method for the DLWG structure[3], the 
corresponding convergence of cavity frequency and Q 
factor (wall loss) with increasing number of elements 
based on the Zienkiewicz & Zhu error indicator are given 
in Figure 10. 

 
 
 
 
 
 
 

 
Figure 9: Field distributions for 3 steps of AMR of 
DLWG  

 
The AMR loop is applied to the Pi mode in the Trispal 

cavity for which Q discrepancy was large and the local 
mesh previously refined by hand. Figure 11 is the field 
results and figure 12 is the corresponding frequency and 
Q convergence with increasing number of DOF. 
Compared AMR with manual refinement, it can be seen 

that AMR uses much less number of DOFs to achieve 
convergence. 

 
 
 
 
 
 
 

Figure 10 Frequency and Q convergence vs. number of 
elements 

 
 
 

 

 
 
 

Figure 11: Field distributions for 3 steps of AMR of the 
Trispal cavity 

 

 

 
   
Figure 12 Frequency and Q convergence vs. number of 
DOF 

4 CONCLUSIONS 
Our parallel finite element eigensolver Omaga3P and 

S-matrix solver S3P are able to perform wall loss 
calculations to very high precision through higher order 
finite elements and adaptive refinement strategies. In 
particularly, AMR is able to provide better convergence 
to the same accuracy on an optimal mesh (less number of 
DOFS) with refinement based directly on field variation 
using the ZZ error metric on both E and H fields 
alternatively. 
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