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We develop the many striking parallels between the dynamics of light streams from

distant galaxies and particle beams in accelerator final focus systems. Notably the

deflections of light by mass clumps are identical to the kicks arising from the

long-range beam-beam interactions of two counter-rotating particle beams (known

as parasitic crossings). These deflections have sextupolar as well as quadrupolar

components. We estimate the strength of such distortions for a variety of circum-

stances and argue that the sextupolar distortions from clumping within clusters

may be observable. This possibility is enhanced by the facts that i) the sextupolar

distortions of background galaxies is a factor of 5 smaller than the quadrupolar

distortion, ii) the angular orientation of the sextupolar and quadrupolar distor-

tions from a mass distribution would be correlated, appearing as a slightly curved

image, iii) these effects should be spatially clumped on the sky.

1. Introduction

The dynamics for a light stream from a distant galaxy which is collected

by an earth-based telescope is shown to be analogous to the dynamics of

a particle beam in a final focus system in an accelerator 1. The beam

emittance is well-defined and is similar to that found in present generation

accelerators. The dynamics is well approximated by drifts and thin-lens

kicks from clusters of matter. The thin-lens kicks are mathematically iden-

tical to the kicks arising from parasitic crossings of beams in accelerators.

The usual weak gravitational lensing analysis ( for recent review see 2, 3

and references therein ) restricts itself to the creation of quadrupole mo-

ments in the observed light bundle, but here we propose that the sextupole

moments, and even octupole moments, may also be observable if the light

stream passes close to a dark matter clump. The clump need only have a

mass of 109 solar masses. We present the mathematics which determines

the map from observed image to the source image, and the relationship
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of that map to the observed moments of the galaxy images. Finally, we

report the beginning of our studies of galaxy images in the Hubble deep

fields. The magnitude of background sextupole-moments is a factor of 5

smaller than the background quadrupole moments.

2. Final focus analogy

The dynamics governing the light stream from a distant galaxy collected by

an earth-based telescope is analogous to the dynamics of a particle beam

for two reasons: the dynamics is governed by a Hamiltonian, and the emit-

tance is small. Paths of photons are determined within general relativ-

ity by an action principle I =
2
∫

1

gµν (x) dxµ

dλ
dxν

dλ dλ, hence there is a Lan-

grangian L = 1
2gµν (x) dxµ

dλ
dxν

dλ , a canonical momentum pµ=gµν (x) dxν

dλ , and

a Hamiltonian H = 1
2gµν (x) pµpν , defining the trajectory given by Hamil-

ton’s equations dxµ

dλ = ∂H
∂pµ

; dpµ

dλ = − ∂H
∂xµ

. Since the metric is changing

very slowly with time and the gravitational fields are weak, the Newto-

nian approximation is adequate g00 = −1−φ. For non-relativistic particles
d2xi

dt2 = − ∂φ
∂xi . Light ray deflections can be calculated from non-relativistic

trajectories by multiplying deflection angles by 2.

The emittance can be calculated at the entrance to the telescope. For a 2

m diameter telescope aperture and a galaxy image that has an rms angular

radius of 0.1”, the emittance is 0.5 mm-mr (millimeter-milliradians). 1”

corresponds to 5 · 10−6 radians. 0.1” is about 2 “drizzled” pixels in the

Hubble deep fields.

Furthermore, the light beam dynamics are similar to those of a final

focus system, because the telescope translates arrival angles into position

on the focal plane rendering the position on the surface of the collecting

aperture irrelevant, i.e. only 2 dimensions of the full 4 dimensional phase

space is important for the dynamics. The system can be approximated by a

series of drifts and thin-lens kicks because the distance between kicks is the

order of 500 Mpc (about 1.5 billion light years) whereas the longitudinal

size of the mass distributions giving rise to the light bending is usually

smaller than 500 kpc (1.5 million light years)( for review see 4).

The deflection angles are rarely larger than 10−4 radian, so one can

integrate along the undeflected trajectory to find the magnitude of the
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thin-lens kick. At a distance x from a point mass the result is

∆

[

dx

ds

]

=
2

c

∫

Fx

m
= −2

∞
∫

−∞

GM

(x2 + s2)

x

(x2 + s2)
1/2

ds = −
4GM

x
. (1)

This 1/r kick is similar to the electric field of a line-charge in electro-

statics. The potential function is 2Φ(r) = 4GM Ln [r], which is the

Green’s function for the 2D Laplace equation, ∇2Φ(~r) = 4π G Σ(~r) =

4π G
∫ ∞

−∞
ρ (~r, s) ds. In other words, the situation is identical to the para-

sitic crossings in beamlines. The factor 2 is inserted to obtain potential for

light ray deflections from the potential for non-relativistic particle deflec-

tions.

3. Multipole analysis

The Ln[r] potential can be written in Cartesian coordinates as Ln[r] =

Re(Ln[x + iy]). This is an example of the fact that solutions to ∇2Φ = 0

can be written as the real part of an analytic function. We will use a

standard complex variable notation, w = x + iy . We will assume that the

light beam is passing the mass distribution at position (x0, y0) and expand

about this position to get a multipole expansion for the deflections. For a

point mass (or outside a spherically symmetric distribution)

Ln [w0 + w] = Ln [w0] + Ln

[

1 +
w

w0

]

= Const −
∑

n≥1

1

n

[

−
w

w0

]n

.

By also introducing the variable w̄ = x − iy, and noting that derivative

operators can be defined by

∂

∂w
=

1

2

(

∂

∂x
− i

∂

∂y

)

≡ ∂ and
∂

∂w̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

≡ ∂̄

to correctly give ∂
∂ww = ∂

∂w̄ w̄ = 1 and ∂
∂w w̄ = ∂

∂w̄w = 0, we are able to

express the horizontal and vertical kicks, given by δx′ = −∂(2Φ)
∂x and δy′ =

−∂(2Φ)
∂y , by the single equation δw′ = −2∂(2Φ)

∂w̄ .

Returning to the logarithmic potential we get

2Φ = 4MG Re(Ln [w0 + w]) = −2MG
∑

n≥1

1

n

{[

−
w

w0

]n

+

[

−
w̄

w̄0

]n}

+ const

from which it follows that

δw′ = −2
∂(2Φ)

∂w̄
= −

4MG

w0

∑

n≥1

[

−
w̄

w̄0

]n−1
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These are the usual multipole kicks (dipole, quadrupole, sextupole, oc-

tupole).

A general potential distribution can be written

Φ(w, w̄) = Φ0 + ∂Φ w + ∂̄Φ w̄ + 1
2

[

∂2Φ w2 + 2 ∂∂̄Φ ww̄ + ∂̄2Φw̄2
]

+ 1
3!

[

∂3Φ w3 + 3 ∂2∂̄Φ w2w̄ + 3 ∂∂̄2Φ ww̄2 + ∂̄3Φ w̄3
]

+ . . .

from which we see there are additional kick terms all of which contain

∂

∂w

∂

∂w̄
Φ =

1

4

(

∂2

∂x2
+

∂2

∂y2

)

Φ =
1

4
∇2Φ = π G Σ(~r).

In other words the additional terms will be zero unless Σ(r) or its derivatives

are unequal to zero at the light-path centroid.

4. Multipole kick-strength estimates

In our sample of deep field galaxies, the average angular size of the core of

distant galaxies in the Hubble deep field is θG ≈ 0.1”. At a distance of 1000

Mpc, where the light path passes a rich cluster, the footprint size would

be about 0.5 kpc. A rich cluster of mass MC = 5 · 1014M� would give a

light-beam passing at its edge, at a distance from the center of rC = 500kpc

, a dipole kick of strength θD
C :

θD
C =

4GMC

rC
≈ 30 arc sec, implying

θD
C

θG
≈ 300.

The strength of the quadrupole kick θQ
C would be:

θQ
C =

4GMC

rC

(

rG

rC

)

≈ 0.03 arc sec, implying
θQ

C

θG
≈ 0.3,

and the sextupole kick-strength θS
C would be

θS
C =

4GMC

rC

(

rG

rC

)2

≈ 3 · 10−5 arc sec, implying
θS

C

θG
≈ 3 · 10−4.

This is a hopelessly small number. On the other hand, if the dark-matter

clump had a mass equal to MC = 5 · 1010M� and a light-beam is passing

at a much smaller distance from the center of the cluster at rC = 5kpc

then the quadrupole kick-strength would be the same but the sextupole

kick-strength would be 100 times larger:

θS
C =

4GMC

rC

(

rG

rC

)2

≈ 3 · 10−3 arc sec, implying
θS

C

θG
≈ 0.03.

As we will see later, this is approximately the value of the rms sextupole

moments of the background galaxies in the Hubble deep field. One could

hope to detect such a kick.



5

5. Finding kick-strengths from image moments

If the source had no quadrupole or sextupole moment one could easily

deduce the strength of the kick that would have produced the measured

moment. Let the superscripts S and T designate the source and telescope

image, respectively. The condition that the source have no quadrupole

moments can be written

0 = MS
20 ≡

∫

w2
S iS(wS , w̄S) dxSdyS .

We will now change from source variables to telescope variables (the map we

can deduce goes from the telescope image to the source, in reverse because

both the position and the slope are known at the telescope), wS = wT +aw̄T .

Under this transformation

iS(wS , w̄S) = iT (wT (wS) , w̄T (wS)) ·

∣

∣

∣

∣

∣

∂wT

∂wS

∂w̄T

∂wS
∂wT

∂w̄S

∂w̄T

∂w̄S

∣

∣

∣

∣

∣

.

We end up with

MS
20 =

∫

wS(wT , w̄T )2 iT (wT , w̄T ) dxT dyT

=
∫

(wT + aw̄T )
2

iT (wT , w̄T ) dxT dyT

=
∫ (

w2
T + 2awT w̄T + a2w̄2

T

)

iT (wT , w̄T ) dxT dyT

= MT
20 + 2a MT

11 + a2 MT
02

.

Under the assumption that the original galaxy had no quadrupole moment

this can be solved for the map coefficient a

a = −
M20

M11

1

1 +
√

1 − |M20|2

M2

11

and a ≈ −
M20

2M11
for

|M20|

M11
� 1.

The coefficient a is related to the kick strength through a geometrical factor

a = DLS

DS

θQ
C

θG
. Here DLS is the distance from the source to the lensing matter

and DS is the distance from the telescope to the source galaxy. The ratio of

these distances reflects the fact that the apparent displacement of a point in

the image due to a kick at the lens plane will be given by the kick strength

time this distance ratio.

Similarly the sextupole strength can be found from

0 = MS
30 ≡

∫

w3
S iS(wS , w̄S) dxSdyS ,
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yielding

MS
30 =

∫

wS(wT , w̄T )3 iT (wT , w̄T ) dxT dyT

=
∫ (

wT + a w̄T + b w̄2
T

)3
iT (wT , w̄T ) dxT dyT

=
∫ (

w3
T + 3b w2

T w̄2
T + 3a w2

T w̄T + . . .
)

iT (wT , w̄T ) dxT dyT

= MT
30 + 3b MT

22 + 3a MT
21 + . . .

For small b and negligible a · M21, b = − M30

3M22

. Note that if M21 is non-

zero, the quadrupole kick can also create a sextupole moment. Non-zero

M21 requires symmetry breaking and in general will be much smaller than

M22, which is equal to < r4 >. Still with a expected to be much larger

than b one must pay attention to the possibility that contributions may

arise from a non-zero M21.

6. The Hubble deep fields

We have used the software SExtractor 5 to identify and extract galaxy

images from the Hubble deep field. This software requires a number of input

decisions that affect which galaxies are selected and how their boundaries

are defined. One will end up with noisy boundaries (and noisy sextupole

moments) for the images unless thresholds are set to be considerably larger

than the noise floor. We have used the factor 10 for this input parameter.

There is also a subtlety with the convolution matrix for the filter that

determines the footprint. In general, less convolution is better.

The extracted images were transferred to the Mathematica(

www.wolfram.com ) computing environment where we could use the full

power of the image processing available there. Figure 1 shows contour

plots and 3-D images of two of these galaxies. Such images gave us a sense

of what we were looking at, and allowed us, for example, to eliminate all

galaxies that had two or more maxima. After filtering we had more than

600 high-z galaxies in our selected sample for each Hubble deep field. We

measured the sextupole moments for these galaxies, and found them to be

about a factor of 5 smaller than the quadrupole moments: they have a di-

mensionless rms strength of about bσ=0.03. The rms size of the galaxy is

introduced to create the dimensionless measure sought. A cautionary note!

Our result for this sextupole strength depends on the threshold setting for

galaxy intensity. Nevertheless, the sextupole moments are small, as we had

hoped (see Figure 2).



7

2 4 6 8 10 12 14

2

4

6

8

10

12

14

5

10

5

10
0

0.05
0.1

0.15
0.2

5

10

2 4 6 8 10 12

2

4

6

8

10

12

14

16

2.5
5

7.5
10

5

10

15

0

0.05

0.1

2.5
5

7.5
10

Figure 1. Two galaxy images (contour plots and 3-D plots of surface brightnessfrom
the Hubble north field).

7. Correlations and clumping

A careful look at the induced quadrupole and sextupole moments from a

kick reveals that together they give a small curvature to the image. This

is equivalent to saying that the orientation of the induced sextupolar dis-

tortion has its minimum aligned with the minimum of the quadrupolar

distortion. We have looked for such a correlation in our galaxy images, and

refer to these as “curved” galaxies. We have taken the sample of “curved”



8

0.02 0.04 0.06 0.08 0.1 0.12
¨b¨

5

10

15

20

25

30

35

# of galaxies

Figure 2. The sextupole strength of faint, z > 0.8 galaxies from Hubble Deep Field
(North) data.

galaxies and investigated how these galaxies are arranged on the sky, look-

ing for evidence of clumping. Our conjecture was that if there were clusters

of dark matter with sub-clumps of order 1010M� then the galaxy light

paths passing through the cluster might pass near a small clump and be-

come curved. Indeed we have observed statistically significant clumping of

curved galaxies in both of the Hubble deep fields. (A random choice of

galaxies would give the observed clumping in each field with a probability

less than 0.03. Taking the fields together, the probability is less than 1 part

per thousand that our result occurs by chance.) However it remains to rule

out other possible sources for this clumping. We have determined that if

one takes a set of galaxies of a certain slice in z having the same number of

members as our curved sample, then clumping is evident as one might ex-

pect, since galaxies are known to be clumped. It is also known that high-z

galaxies have more complex shapes than low-z galaxies. We are currently

investigating whether this correlation can explain our observations.

8. Conclusion ( Future plans )

If indeed one can establish that some of the images of distant galaxies are

curved because of the presence of small dark matter clumps within larger
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dark matter clusters, then one might hope to develop a method that would

determine the power spectrum of mass structure in the universe on a much

smaller angular scale than has been previously possible. To carry out such a

program would require the study of larger fields than it is possible with the

Hubble, though there are plans for enlarging the Hubble deep field studies.

The two fields we have been studying are each about two minutes across,

each corresponding to only one part in 2 107 of its hemisphere.

Our observations indicate it would be difficult to make these measure-

ments in the presence of atmospheric turbulence. Even a good earth-based

point-spread function (PSF) of 0.4” is 6 times larger than the Hubble PSF

of 0.07”. And the radius of the typical galaxy image we are using is only

slightly larger than the Hubble PSF. Fortunately a mission is planned that

would do high-resolution lensing from space, known as SNAP (Supernovae

Acceleration Probe)6. The weak-lensing program for SNAP plans to scan

an area of either 300 or 1000 sq. degrees. This would be from 3 105 to 106

larger than the Hubble deep fields.

We would like to thank Tony Tyson, David Wittman and the Bell-

Lab group for encouraging our work and providing us with the orientation

and tools needed to get started. We thank Ron Ruth and Pisin Chen for

providing support and encouragement for our work at SLAC.
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