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Abstract: Splitting amplitudes are universal functions governing the collinear behavior
of scattering amplitudes for massless particles. We compute the two-loop g → gg split-
ting amplitudes in QCD, N = 1, and N = 4 super-Yang-Mills theories, which describe the
limits of two-loop n-point amplitudes where two gluon momenta become parallel. They
also represent an ingredient in a direct x-space computation of DGLAP evolution kernels
at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitar-
ity sewing method. In contrast to the usual light-cone gauge treatment, our calculation
does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though
the loop integrals contain some of the denominators typically encountered in light-cone
gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts
and Lorentz invariance identities. The master integrals are computed with the aid of
differential equations in the splitting momentum fraction z. The ε-poles of the splitting
amplitudes are consistent with a formula due to Catani for the infrared singularities of
two-loop scattering amplitudes. This consistency essentially provides an inductive proof
of Catani’s formula, as well as an ansatz for previously-unknown 1/ε pole terms having
non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear
behavior of finite remainders in this formula.
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1. Introduction

Gauge theories form the backbone of the standard SU(3)× SU(2)×U(1) model of particle
interactions. The computation of perturbative corrections in gauge theories is thus central
to testing the standard model at high-energy colliders. Such computations are technically
complicated, so a general understanding of properties of the results is very useful.

In the past decades, a number of new approaches have been developed to cope with
this complexity, including helicity methods [1], color decompositions [2, 3, 4, 5, 6], recursion
relations [7], ideas based on string theory [8, 9], and the unitarity-based method [10, 11,
12, 13]. The latter technique has been applied to numerous calculations, most recently the
two-loop calculation of all helicity amplitudes for gluon–gluon scattering [14, 15].

The subject of two-loop calculations has seen tremendous technical progress in the last
five years. Much of the progress has been facilitated by new techniques for performing loop
integrals. Smirnov [16] and Tausk [17] gave closed-form expressions for the all-massless
planar and non-planar double box integrals, respectively. Smirnov and Veretin [18] and
Anastasiou et al. [19] provided algorithms for reducing the corresponding tensor integrals.
More general reduction and evaluation techniques for integrals have followed as well [20,
21, 22, 23, 24]. Using these techniques, several groups have computed the basic two-loop
QCD (and also QED) amplitudes for four external partons [25, 26, 27, 28, 29, 30, 31, 32,
15, 33, 34, 35], and for three partons and one external vector boson [36, 37, 22]. These
amplitudes and matrix elements constitute one of the building blocks for next-to-next-to-
leading order (NNLO) computations in perturbative QCD, in particular of the cornerstone
processes e+e− → 3 jets and pp→ 2 jets.

The two-loop amplitudes contain both ultraviolet and infrared singularities. Both
are conventionally regulated using dimensional regularization. The infrared singularities
correspond to the circulation of gluons in the loops that are nearly on shell and either soft
or collinear with one of the external momenta (or to the circulation of other particles in
the loops that are nearly on shell and collinear with one of the external momenta). The
form and functional dependence of these singularities was predicted by Catani [38]. The
a priori knowledge of these infrared singularities has been of great value in the explicit
computations of two-loop amplitudes cited above.

The singularities in the virtual corrections have a counterpart in the infrared singulari-
ties of phase-space integrals of real-emission amplitudes. In the sum over all relevant (phys-
ically indistinguishable) amplitudes, unitarity in the form of the Kinoshita–Lee–Nauenberg
theorem dictates that the singularities must cancel. The universality of the singularities
in the integrals over real-emission amplitudes in turn reflects the universality of factor-
ization of real-emission amplitudes in soft or collinear limits. For next-to-next-to-leading
order (NNLO) calculations, the double-emission limits of tree amplitudes, and the single-
emission limits of one-loop amplitudes, allow one to organize the singular phase-space
integrations in a process-independent way. The universal functions governing these limits
are all known [39, 40, 41, 42, 43, 44].
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In this paper, we will compute the analogous functions, splitting amplitudes, governing
the universal behavior of two-loop amplitudes as two gluon momenta become collinear.
For example, in the time-like case where momenta ka and kb are both outgoing, we let
ka → zkP , kb → (1 − z)kP , where kP = ka + kb is the momentum of the nearly on-shell
intermediate gluon P , and z is the longitudinal (or light-cone) momentum fraction carried
by gluon a. Splitting amplitudes will be useful in checking two-loop computations beyond
four external legs. A putative result for a higher-point amplitude must satisfy non-trivial
constraints as momenta become collinear. They can also play a role in an alternative
method of computing the NNLO corrections to the Altarelli–Parisi kernel governing the
Q2 evolution of parton distributions and fragmentation functions [45]. The computation of
this kernel is of great importance to a program of precision extraction of parton distribution
functions from experimental data. It has been the object of an ongoing effort by Moch,
Vermaseren and Vogt [46, 47], just recently completed [48]. The Mellin moments of the
Altarelli–Parisi kernel are anomalous dimensions of leading-twist operators whose matrix
elements give rise to parton distributions. One can compute them in a traditional manner,
by computing ultraviolet divergences of loop corrections. Factorization implies, however,
that one could compute the kernels in an infrared approach, directly in x-space [49, 50]. As
in the computation of differential cross sections, there are both ‘virtual’ and ‘real-emission’
contributions to the kernel. The splitting amplitudes we compute in the present paper
provide the doubly-virtual contributions to the NNLO kernel for evolution of the gluon
distribution, P (2)

gg (x) (at x �= 1). Because the gluons have definite helicity, evolution of
polarized distributions is equally accessible.

The computation of the Altarelli–Parisi kernel in N = 4 supersymmetric gauge theo-
ries is also of interest, since its Mellin moments are the anomalous dimensions of classes of
operators. The study of such anomalous dimensions is important to investigations of the
anti-de Sitter/conformal field theory duality [51]. We gave the result for the splitting am-
plitude in N = 4 supersymmetric gauge theory in an earlier Letter [52]. We will document
that calculation in the present paper. The computation revealed an unexpected relation
between splitting amplitudes at different loop orders: the two-loop splitting amplitude can
be expressed algebraically in terms of the one-loop and tree splitting amplitudes, through
O(ε0), where ε is the parameter of dimensional regularization, D = 4 − 2ε. In the planar
(large-Nc) limit, the four-point two-loop amplitude can be expressed in a similar ‘iterative’
form. This is very surprising because in a general massless field theory, the analytic struc-
ture of a two-loop amplitude can be considerably more complicated than that of one-loop
amplitudes. Thus the two-loop amplitude in this theory is much simpler than expected.
The splitting amplitude relation also led to a conjecture of a similar relation between one-
and two-loop amplitudes with an arbitrary number of external legs.

To calculate the g → gg splitting amplitudes, we have used the unitarity-based method.
The method is useful in general loop calculations in gauge theories. Its advantage over
Feynman-diagram calculations is of course most obvious in those calculations which simply
cannot be done by conventional techniques, such as that of infinite series of loop ampli-
tudes [10, 11, 53]. The present calculation furnishes another example where the method has
a clear advantage over conventional diagrammatic techniques. While the splitting ampli-
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tudes could be computed by conventional diagrammatic techniques, such a computation at
two loops would probably require the use of light-cone gauge, because this gauge has simple
collinear factorization properties, even in the presence of infrared singularities [54]. (An
analysis in a covariant gauge is likely to be very difficult; for example, a generalization of
the analysis in ref. [55] would require explicit knowledge of higher-point two-loop integrals.)
As is well-documented in the literature [56, 57], use of light-cone gauge is fraught with sub-
tleties and technical complications. Indeed, following the standard methods for dealing with
light-cone gauge Feynman diagrams, along with any of the popular prescriptions needed to
avoid ill-defined integrals, would lead to an answer with a surviving dependence on the pre-
scription parameters, which cannot describe the collinear behavior of a gauge-invariant and
prescription-parameter-independent amplitude. We will discuss these issues in more detail
in section 3. The unitarity-based method avoids these complications, and ensures that the
calculation can be done in a straightforward way using ordinary dimensional regularization.
The insights furnished by the unitarity method also allow the systematic cancellation of
ill-defined integrals appearing in more traditional light-cone gauge calculations [58].

To evaluate the loop momentum integrals we used integration-by-parts [59] and Lorentz
invariance [20] identities implemented via the Laporta algorithm [23, 60] to solve the system
of equations. With this technique the integrals can be reduced to a set of 13 master
integrals. The master integrals are computed by constructing a set of differential equations
in z, along the lines of refs. [18, 20].

We will organize the calculation in a color-stripped formalism, in which the color
factors are separated from the kinematic content of amplitudes. At loop level, this leads to
a hierarchy of terms, from terms leading in the number of colors, down through subleading
contributions. The leading-color terms, which would dominate in the Nc → ∞ limit,
correspond to planar diagrams. These leading-color terms contain only a single color trace,
with additional explicit powers of Nc. The two-loop splitting amplitude enters only into
the collinear limit of single-trace terms (whether leading or subleading in color). The
collinear limits of terms with multiple traces depend only on the tree-level and one-loop
collinear splitting amplitudes. The full color-dressed splitting amplitude also factorizes into
a color factor multiplied by a factor which is a function solely of the external momenta and
helicities. The color factor for the g → gg splitting amplitude, in the language of Feynman
diagrams, is always just a Lie algebra structure constant, fabc. At two loops, the pure-glue
result is purely leading-color; there are no subleading-color corrections. Adding quarks in
the loops does generate subleading-color terms. However, non-planar diagrams do not give
any contribution to the g → gg collinear behavior at two loops, because their color factors
all vanish. (This feature will not hold for g → gg at three loops, and already fails to hold
at two loops for splittings with external quarks, q → qg and g → qq̄.)

As noted above, Catani [38] gave a formula which predicted the infrared singularities
of renormalized two-loop amplitudes, which appear as poles through fourth order in ε.
One can take the collinear limit of the n-point formula, and compare it with the (n − 1)-
point formula, to obtain a prediction for the infrared singularities of the two-loop splitting
amplitude. The Catani formula is expressed in terms of color-space operators. One term
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arising at order 1/ε (denoted by Ĥ
(2)
n ) contains a rather non-trivial color structure, and

was known previously only for the four-point case. We have constructed a simple ansatz
for its generalization to n-point amplitudes. A comparison of the Catani formula with our
result requires an untangling of color correlations. We have performed this analysis, and
find complete agreement. One can interpret this agreement as a proof of Catani’s formula
(including our ansatz for Ĥ

(2)
n ) for the case of two-loop n-gluon amplitudes. The proof is

inductive in the number of legs n, and requires certain reasonable assumptions about the
types of functions that can appear in singular terms. (The functions should not vanish
in all collinear limits. Such vanishing is unlikely to happen for functions which are equal
to the tree amplitude times pure logarithms or polylogarithms, for example.) This proof
complements the verification based on resummation given in ref. [61].

Given the consistency of our results with Catani’s formula, we can subtract the singular
behavior in ε, to obtain a set of relations which control the finite remainder terms in the
formula. We have checked that these relations are satisfied, up to overall normalization,
by the finite remainder for the two-loop H → ggg amplitude [62] for the case of identical-
helicity gluons.

In the next section, we review the structure of gauge-theory amplitudes in their
collinear limits. In section 3, we consider a hypothetical Feynman-diagram calculation,
both in a covariant gauge and in light-cone gauge. We discuss the difficulties that would
be encountered in these calculations, and how a unitarity-based method can circumvent
them. In section 4, we review the unitarity-based sewing method, and present a detailed
algorithm. (Appendix B describes a simple relabeling algorithm, used in the sewing pro-
cess to bring integrands into a canonical form.) In section 5, we discuss the application of
the sewing algorithm to the calculation of the two-loop splitting amplitude. In section 6,
we describe the calculation of the required two-loop integrals, and the reduction of tensor
integrals. We present our results in section 7. These contain the complete set of helicity-
decomposed g → gg splitting amplitudes in QCD with Nf fermions, as well as in N = 1
and N = 4 supersymmetric gauge theories. We present separately the collinear behavior
of the finite terms in a two-loop amplitude. In section 8, we present the comparison of
the singular parts of the color-trivial terms to those predicted by Catani’s formula, as well
as the collinear behavior of the finite remainder terms. (The precise definition of ‘color-
trivial’ is given in that section. The full color dependence of the singular terms, including
the ansatz for Ĥ

(2)
n , and their collinear behavior, are discussed in appendix A.) We discuss

the dressing of the splitting amplitudes with color factors, and the collinear behavior of
the color-non-trivial parts of amplitudes, in section 9. We give some concluding remarks
in the final section.

2. Splitting Amplitudes

Gauge-theory amplitudes are singular when external momenta become soft, or when a
number of momenta become collinear. In these limits, the amplitudes factorize in a univer-
sal way. In collinear limits, the factorization is governed by splitting amplitudes depending
only on the legs becoming collinear, and not on the remaining legs of the hard process. The
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surviving hard amplitude, in turn, depends only on the merged leg, whose momentum is
the sum of the collinear momenta. In this paper, we will consider the splitting amplitude
governing the behavior of amplitudes as two momenta become collinear. (The tree-level
behavior as three or four momenta become collinear has been derived by Campbell and
Glover [40], Catani and Grazzini [41], and by Del Duca et al. [63]. The one-loop behavior
as three momenta become collinear has recently been considered by Catani, De Florian
and Rodrigo [64].)

We find it most natural to discuss collinear factorization in the context of a trace-based
color decomposition of the n-gluon amplitudes [2, 3, 4, 5]. Although the external gluons are
in the adjoint representation, this color decomposition is given in terms of traces of matrices
T a in the fundamental representation of SU(Nc), which we normalize by Tr(T aT b) = δab.
We begin by discussing the behavior of terms leading in the number of colors, Nc, where
we scale the number of fermions, Nf , with Nc. The full color behavior is a straightforward
extension, which we defer to Section 9.

The loop expansion of the n-gluon amplitude is

Aa1...an
n (k1, λ1; . . . ; kn, λn) = gn−2

∞∑
L=0

[
g2 2e−εγ

(4π)2−ε

]L
A(L) a1...an
n (k1, λ1; . . . ; kn, λn) , (2.1)

where ai is the color index of the i-th external gluon, and the factor of [2e−εγ/(4π)2−ε]L,
with γ = −ψ(1) = 0.5772 . . ., corresponds to the normalization convention of ref. [38]. The
trace-based color decomposition of the L-loop amplitude is

A(L) a1...an
n (k1, λ1; . . . ; kn, λn) = NL

c

∑
σ∈Sn/Zn

Tr(σ(1) . . . σ(n))A(L)
n (σ(1), . . . , σ(n)) +

+ O(NL−1
c ) , (2.2)

where A(L)
n are L-loop color-ordered (sub-)amplitudes; where Tr(1 . . . n) ≡ Tr(T a1 . . . T an);

and where σ runs over the non-cyclic permutations Sn/Zn of {1, 2, . . . , n}. The latter
correspond to the set of inequivalent traces. The permutation σ acts both on the gluon
momenta ki and helicity labels λi, implicit on the right-hand side of eq. (9.1). At tree
level (L = 0), expression (2.2) is exact, and has no subleading-color corrections. At loop-
level (L > 0), there are subleading-color terms containing products of two or more traces
(see eqs. (9.4) and (9.9)). Also, the amplitudes must be evaluated in D = 4−2ε dimensions
to regulate the virtual singularities. We extract in a prefactor the leading NL

c behavior.
The normalization of An, and hence of the splitting amplitudes we present below, differs
from that in refs. [10, 11]. Note that A(L>0)

n will in general contain terms proportional to
powers of Nf/Nc and 1/N2

c .
The color-ordered amplitudes in eq. (2.2) have a universal behavior as legs become

collinear [65]. At tree level, the amplitudes behave as [66]

A(0)
n (. . . , aλa , bλb , . . .)

a‖b−→
∑
λ=±

Split(0)−λ(z; a
λa , bλb)A(0)

n−1(. . . , P
λ, . . .) , (2.3)

in the limit where the momenta ka → zkP and kb → (1 − z)kP with kP = ka + kb. Here
Split(0)−λ(z; a

λa , bλb) is a tree-level splitting amplitude. Legs a and b carry helicities λa and
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Figure 1: The collinear factorization of a tree-level amplitude. The thick line represents a slightly
off-shell gluon.

λb, while the merged leg P carries helicity λ. In the sum λ runs over the two helicities
of the intermediate state. The factorization of an n-point tree amplitude into a splitting
amplitude and an (n− 1)-point amplitude (2.3) is depicted schematically in figure 1.

The pure-glue tree-level splitting amplitudes are [67, 4, 66]

Split(0)− (z; a−, b−) = 0, (2.4)

Split(0)− (z; a+, b+) =
1√

z(1 − z) 〈a b〉 , (2.5)

Split(0)− (z; a+, b−) = − z2√
z(1 − z) [a b]

, (2.6)

Split(0)− (z; a−, b+) = − (1 − z)2√
z(1 − z) [a b]

. (2.7)

These splitting amplitudes are expressed in terms of spinor inner products [1, 66], 〈i j〉 =
〈i−|j+〉 and [i j] = 〈i+|j−〉, where |i±〉 are massless Weyl spinors of momentum ki, labeled
by the sign of the helicity. The spinor products are antisymmetric, with norm | 〈i j〉 | =
| [i j] | =

√
sij, where sij = 2ki · kj . A key advantage of the spinor formalism is that it

makes the square-root behavior of the splitting amplitudes manifest. The remaining tree-
level splitting amplitudes, with λ = −, may be obtained from the above ones by parity,
which states (for general loop order L) that

Split(L)
−(−λ)(z; a

−λa , b−λb) = − Split(L)
−λ (z; aλa , bλb)

∣∣∣
〈a b〉↔[a b]

. (2.8)

In quoting explicit results in this paper, we use parity to assume that the intermediate
state P always has positive helicity, λ = +. As we shall discuss further in section 9,
Bose symmetry implies that the color-stripped splitting amplitude is antisymmetric under
exchange of its two arguments (including z ↔ 1 − z),

Split(L)
−λ (1 − z; bλb , aλa) = − Split(L)

−λ (z; aλa , bλb) . (2.9)

This relation allows us to obtain the results for P+ → a+b− from those for P+ → a−b+.
At one loop the structure is similar. In this case the the collinear limits are [10, 55, 65]

A(1)
n (. . . , aλa , bλb , . . .)

a‖b−→
∑
λ=±

(
Split(0)−λ(z; a

λa , bλb)A(1)
n−1(. . . , P

λ, . . .) +

+ Split(1)−λ(z; a
λa , bλb)A(0)

n−1(. . . , P
λ, . . .)

)
, (2.10)
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Figure 2: Two types of terms appear in the collinear factorization of a one-loop amplitude. The
thick lines represent slightly off-shell gluons.

where Split(1)−λ is a one-loop splitting amplitude. Figure 2 displays eq. (2.10) schematically.
Except for Split−(z; a−, b−), which vanishes at tree level (along with Split+(z; a+, b+)),

the ratio of the g → gg one-loop splitting amplitudes to the tree-level ones is well-defined.
The ratio depends trivially on the Lorentz invariant sab, and non-trivially on z, but it does
not involve spinor products. For the helicity configuration whose tree splitting amplitude
vanishes we have,

Split(1)− (z; a−, b−) = +ĉΓ
√
z(1 − z)

〈a b〉
[a b]2

2
(1 − 2ε)(2 − 2ε)(3 − 2ε)

×

×
(

µ2

−sab

)ε(
1 − εδR − Nf

Nc

)
, (2.11)

where

ĉΓ =
eεγ

2
Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
. (2.12)

Notice that in the ε-expansion of (µ2/(−sab))ε, ln(−sab) appears. For time-like kinematics,
this expression has an imaginary part according to the prescription,

ln(−sab) = ln sab − iπ, sab > 0. (2.13)

The remaining splitting amplitudes, for λ = +, are conveniently written in terms of
their ratios to the tree-level ones,

Split(1)− (z; aλa , bλb) = r
(1)λaλb

S (z, sab) × Split(0)− (z; aλa , bλb), (2.14)

where

r
(1)++,QCD
S (z, s) = r

(1),N=4
S (z, s) +

+ ĉΓ

(
µ2

−s
)ε 2z(1 − z)

(1 − 2ε)(2 − 2ε)(3 − 2ε)

(
1 − εδR − Nf

Nc

)
, (2.15)

r
(1)−+,QCD
S (z, s) = r

(1),N=4
S (z, s) , (2.16)

and

r
(1),N=4
S (z, s) = ĉΓ

(
µ2

−s
)ε 1
ε2

[
−
(

1 − z

z

)ε πε

sin(πε)
+

∞∑
m=1

2ε2m−1Li2m−1

(
z

z − 1

)]

= ĉΓ

[
− 1
ε2

( µ2

z(1 − z)(−s)
)ε

+ 2 ln z ln(1 − z) − ζ2

]
+ O(ε) . (2.17)
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(Here, ζn is the Riemann zeta function.) The label N = 4 on r
(1),N=4
S means that it is

the appropriate function for N = 4 super-Yang-Mills theory, for both ++ and −+ cases
(see also section 7.1). At one loop this expression also happens to serve as the splitting
amplitude for pure N = 1 super-Yang-Mills theory, for both nonvanishing cases,

r
(1)++,N=1
S (z, s) = r

(1)−+,N=1
S (z, s) = r

(1),N=4
S (z, s) . (2.18)

This relation will be violated at two loops. The parameter δR selects the particular variant
of dimensional regularization (see eq. (7.1)). For δR = 1 the scheme is the ’t Hooft-Veltman
(HV) [68] scheme, while for δR = 0 it is the four-dimensional helicity [8, 69] (FDH) scheme.
We always quote results for supersymmetric theories in the FDH scheme, which is related
to, but distinct from, Siegel’s dimensional reduction scheme [70]. (As noted above, the
normalization of the splitting amplitudes differs from that in ref. [10]; to recover the earlier
normalization for Split(1), replace ĉΓ by cΓ, defined in eq. (2.12) of that reference. To
recover the earlier normalization of r(1)S , replace ĉΓ by unity.)

These one-loop splitting amplitudes were first obtained from the collinear limits of
five-point amplitudes [10]. Subsequently they were obtained to all orders in ε, as required
for NNLO calculations [55, 42, 43]. We will express divergent parts of the two-loop splitting
amplitudes in terms of one-loop quantities. Hence we have retained all the terms in the ε
expansion in these expressions.

At two loops, the subject of this paper, the amplitudes behave as [65],

A(2)
n (. . . , aλa , bλb , . . .)

a‖b−→
∑
λ=±

(
Split(0)−λ(z; a

λa , bλb)A(2)
n−1(. . . , P

λ, . . .) +

+ Split(1)−λ(z; a
λa , bλb)A(1)

n−1(. . . , P
λ, . . .) +

+ Split(2)−λ(z; a
λa , bλb)A(0)

n−1(. . . , P
λ, . . .)

)
, (2.19)

where Split(2)−λ is the two-loop splitting amplitude. One of the goals of this paper is to
calculate this two-loop splitting amplitude in QCD. To do so we will use the unitarity
sewing method [10, 11, 12], as applied to splitting amplitudes [43]. In a previous paper
we presented the result of this calculation for the special case of N = 4 super-Yang-Mills
theory. For this theory the unique two-loop splitting amplitude has the remarkable property
of being an iteration of the one-loop result (2.17), which led to a conjecture that a similar
iterative property holds for the planar contributions to amplitudes [52]. This conjecture was
shown to be correct for the four-point amplitude using a previously-derived [71] expression
for the two-loop integrand. In section 7 we shall present the explicit values of the two-loop
splitting amplitudes for g → gg in QCD, as well as in N = 4 and N = 1 supersymmetric
gauge theories.

As in the one-loop case, we write the two-loop splitting amplitudes in terms of their ra-
tios rS to the corresponding tree-level splitting amplitudes (when the latter do not vanish).
Taking λ = + by parity, we define r(2)S via,

Split(2)− (z; aλa , bλb) = r
(2)λaλb

S (z, sab) × Split(0)− (z; aλa , bλb) . (2.20)
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We give the explicit expansions of the functions r(2)λaλb

S , as Laurent expansions in ε, for
the various theories in question, in eqs. (7.16), (7.28), (7.29) and (7.38), and the expression
for Split(2)− (z; a−, b−) in eq. (7.43).

Although we shall not discuss higher-loop splitting amplitudes here, we remark that
the obvious L-loop generalization of the collinear behavior,

A(L)
n (. . . , aλa , bλb , . . .)

a‖b−→
L∑
l=0

∑
λ=±

Split(l)−λ(z; a
λa , bλb)A(L−l)

n−1 (. . . , P λ, . . .) , (2.21)

can indeed be proven correct [65]. These splitting amplitudes govern the collinear behavior
of the entire amplitude, including all multiple color trace terms. We will discuss this more
fully in section 9. With our normalizations the leading-color contributions to Split(l) are
of order N0

c , but in general the splitting amplitudes have contributions of higher order in
1/N2

c , as well as quark-loop contributions of order (Nf/Nc)p, with p ≤ L, or higher in
1/N2

c .

3. Difficulties with Feynman Diagram Approach

Before turning to our calculation of the two-loop g → gg
b

a

a+b

Figure 3: The three-
point vertex diagram for
obtaining the tree-level
splitting amplitude. The
thick line represents an
off-shell gluon.

splitting amplitudes using the unitarity-based sewing method, it
is instructive to consider how one would proceed using a stan-
dard Feynman diagram approach. Heuristically, one might try
to ‘factorize’ an n-point amplitude on the collinear pole, i.e. to
construct the L-loop splitting amplitudes by summing up all L-
loop Feynman diagrams with three external legs, one of which is
off-shell. While this might seem to be the most straightforward
approach, a number of complications arise in practice, as we shall
see in this section. In section 5 we shall sidestep these complica-
tions using the unitarity-based sewing procedure [10, 11, 12, 13],
outlined in section 4. This method has previously been applied

to splitting amplitudes at one loop [65, 43].

3.1 Tree-Level Splitting Amplitudes

At tree level, factorization works without any subtleties. That is, we can compute the split-
ting amplitude directly from the Feynman diagram three-point vertex depicted in figure 3.
The only diagrams for an n-point amplitude with a pole in sab are those containing this
vertex as one factor. Such calculations have appeared elsewhere, for example in ref. [66].

As two color-adjacent momenta ka and kb become collinear, we factorize an n-point tree
amplitude on the sab kinematic pole in terms of a three-point vertex and an (n− 1)-point
amplitude,

A(0)
n (1, 2, . . . , a, b, . . . , n)

a‖b−→ εµ(a)εν(b)V µνρ

(
i
∑
λ

ε−λρ (P )ελσ(P )
sab

)
×

× ∂

∂ελσ(P )
A

(0)
n−1(1, 2, . . . , P

λ, . . . , n) , (3.1)
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a

a+b
b

a
a+b

b

a
a+b

Figure 4: Three non-vanishing Feynman diagrams contributing to the pure-glue splitting ampli-
tude. The thick gluon line is slightly off shell.

where the kinematics is the same as in eq. (2.3). In setting up the calculation the merged
leg should be left slightly off-shell. Otherwise the putative splitting amplitude would be
ill-defined, since the 1/sab pole diverges. This basic structure is independent of the particle
type, although we have written eq. (3.1) for the case of an intermediate gluon. Here ελσ(P )
is the polarization vector for the gluon P with helicity λ. For the case of g → gg, the
ordinary Feynman gauge three-point vertex is

V µνρ(ka, kb) =
i√
2

(
ηµν (ka − kb)ρ + ηνρ (2kb + ka)µ − ηµρ (2ka + kb)ν

)
. (3.2)

After inserting an explicit representation of the helicity states [1], we obtain from eq. (3.1)
precisely the collinear behavior (2.3), together with the explicit values of the splitting
amplitudes (2.4)–(2.7). In this limit the helicity algebra in the numerator of the vertex
causes it to vanish like

√
sab, partially canceling the pole in sab. Physically, this cancellation

is due to an angular momentum mismatch between λ and λa + λb. Overall, we are left
with the 1/

√
sab behavior evident in the splitting amplitudes. Other gauge choices, such

as light-cone gauge or the non-linear Gervais-Neveu gauge [72], give the same final result
as Feynman gauge.

3.2 Difficulties at Loop Level

The simplicity of a conventional diagrammatic calculation at tree level might lead one to
believe that a similar approach should work at loop level. Such a calculation would involve
Feynman diagrams of the type depicted in figure 4. This expectation, however, turns out
to be incorrect. At loop level, the situation is not quite this simple.

In covariant gauges, such as Feynman gauge, one immediately runs into trouble [55],
because there are contributions to collinear behavior from Feynman diagrams of the form
shown in figure 5, with no single-particle pole in sab. The required pole emerges only after
carrying out the loop integration. Moreover, the ε-expansion of some of the integrals has
discontinuous behavior as sab → 0, because of the interchange of this limit with the limit
ε → 0. The appearance of more complicated loop integrals is reflected in the structure of
the known results for the splitting amplitudes (2.15)–(2.17), which contain polylogarithms
in the variable z. Such functions simply cannot occur in the integrals encountered in the
triangle or bubble graphs in figure 4, which in a covariant gauge produce only logarithms,
in the variable sab. Clearly, the polylogarithms must come from elsewhere. They do in
fact arise from non-factorizing diagrams of the type shown in figure 5 [55]. This peculiar
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absence of factorization is tied to the presence of soft and collinear virtual divergences in the
theory, reflected as poles in ε in the loop amplitudes. At one loop, the non-factorizing pieces
may be reconstructed using knowledge of all the possible integral functions that appear in
amplitudes, along with the universal structure of the infrared divergences. Indeed, such
a reconstruction was used to prove universal factorization of the one-loop amplitudes [55]
and to compute their explicit values [42]. This reconstruction, however, does not generalize
straightforwardly to higher loops.

As the next logical choice of a method for calculating
b

a

Figure 5: In covariant
gauges, diagrams without
single-particle factoriza-
tion can contribute to the
splitting amplitude.

a splitting amplitude directly from Feynman diagrams, one
might turn to light cone-gauge. This gauge is known [73, 54]
to have simple factorization properties. A key advantage of
light-cone gauge is that only physical states propagate. This
can help clarify various formal properties. Moreover, light-
cone gauge vertex integrals do contain polylogarithms of the
type appearing in the one-loop splitting amplitude. Light-
cone gauge has a long history and has been used to address
a wide variety of problems. For example, the first proofs of
factorization in QCD between the hard and soft parts of a
process were performed in this gauge [54]. Another important

example is the next-to-leading order (NLO) calculation of the Altarelli–Parisi evolution
kernel in x-space [73, 74, 75, 76]. Light-cone gauge has also been used for more formal
purposes, such as the proof of finiteness of maximally supersymmetric (N = 4) Yang-Mills
gauge theories [77].

In describing the collinear limit of amplitudes, light-cone gauge is useful because, as
a physical gauge, it can prevent the non-factorizing graphs of figure 5 from contribut-
ing. In a general covariant gauge, such graphs would inevitably mix under residual gauge
transformations with the graphs in figure 4.

In light-cone gauge, the one-loop splitting amplitude is given by the sum of the three
Feynman diagrams shown in figure 4. In this gauge there are no ghost contributions.
Furthermore, all cactus diagrams, as well as bubbles attached to the massless external
lines a and b, vanish in dimensional regularization, leaving only the three diagrams shown.
The light-cone gauge Feynman vertices are the same as those in Feynman gauge. The
propagator is now

Dµν = − idµν
p2 + iε

(3.3)

where the light-cone projector is,

dµν = ηµν − nµpν + pµnν
p · n . (3.4)

Here p is the particle momentum, η is the Minkowski metric, and n is a null vector (n2 = 0)
defining the light-cone direction.

In carrying out a light-cone gauge calculation, one quickly runs into well-known techni-
cal difficulties [56] arising from regions of loop integration where the light-cone denominator
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p ·n ≡ p+ vanishes. The light-cone denominators introduce a new set of singularities in the
Feynman integrals, some of which are not regulated by dimensional regularization. In order
for a generic light-cone gauge diagram to be well-defined, a prescription for dealing with
these singularities is needed. For example, the principal-value (PV) prescription replaces

1
p · n → lim

δ→0

1
2

(
1

p · n+ iδ
+

1
p · n− iδ

)
, (3.5)

where δ is a regulator parameter. Another choice, better founded in field theory, is the
Mandelstam-Leibbrandt prescription [77, 56]. A comparison of these two prescriptions may
be found in ref. [78].

The introduction of an additional prescription in a splitting amplitude calculation is
problematic for a number of reasons:

• The additional prescription complicates the calculation, and requires the computation
of more difficult Feynman integrals.

• At higher loops the validity of the prescription is less clear [57].

• After expanding in small δ, the results contain factors of ln δ, where δ is the pre-
scription parameter. In general these cancel only after combining virtual and real
emission contributions.

Further to the last point, a calculation of the splitting amplitudes that retains depen-
dence on a prescription parameter cannot match the splitting amplitudes extracted from
the collinear limits of scattering amplitudes. An on-shell n-point scattering amplitude is
gauge invariant, and depends only on the external momenta and on the dimensional regu-
lator parameter ε, not on any light-cone prescription parameter δ. The same is true of its
collinear limits. Thus loop splitting amplitudes defined via the collinear limits of scattering
amplitudes cannot depend on the parameter δ.

If we had been computing the Altarelli–Parisi kernel, which receives contributions
from both virtual and real emission contributions, then the dependence on δ would cancel
between them [74, 75, 76, 78]. However, since we are interested in computing the collinear
behavior of the virtual contributions on their own, in general the δ dependence would not
cancel. This difficulty makes it unclear how the desired splitting amplitudes can emerge
from a light-cone gauge calculation.

It is helpful to consider a few examples in order to illustrate the structure of inte-
grals with light-cone denominators, and to help explain how we will later sidestep these
difficulties, using the unitarity-based sewing method.

3.3 One-Loop Light-Cone Integral Examples

Consider the scalar integrals shown in figure 6. In the figure, an arrow on an internal line
indicates the insertion of the light-cone factor 1/(pi · n), with pi the momentum carried by
the marked line. Such integrals appear in a light-cone gauge calculation of the one-loop
splitting amplitude, using the Feynman diagrams of figure 4. We shall see that there is a
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Figure 6: One-loop triangle diagrams containing light-cone denominators. The arrow indicates
the line containing a light-cone denominator. Integral (a) contains an unregulated singularity, but
does not appear in the unitarity-based sewing method.

big difference between the two types of integrals in figure 6; one is properly regulated by
dimensional regularization without any additional prescriptions, and one is not [78].

The explicit expressions for the two integrals are,

J (a)(z, s) = −i
∫

dDp

πD/2
1

p2(p − k1)2(p− k1 − k2)2 (p− k1) · n , (3.6)

J (b)(z, s) = −i
∫

dDp

πD/2
1

p2(p − k1)2(p− k1 − k2)2 p · n , (3.7)

where s = (k1 + k2)2 = 2k1 · k2 and, for consistency with the collinear kinematics, z is
defined by

k1 · n = z (k1 + k2) · n , k2 · n = (1 − z) (k1 + k2) · n . (3.8)

For J (a)(z, s) the light-cone denominator involves the loop momentum between the two
massless legs, while for J (b)(z, s) the light-cone denominator involves a loop momentum
adjacent to the merged off-shell external leg.

In order to evaluate these integrals it is helpful to make use of their properties as n is
rescaled [43], which imply that

J (a)(z, s) =
1

(−s)1+ε (k1 + k2) · nf
(a)(z) ,

J (b)(z, s) =
1

(−s)1+ε (k1 + k2) · nf
(b)(z) , (3.9)

where f (a), f (b) are functions to be determined. Without loss of generality we may set

(k1 + k2) · n = −s . (3.10)

At the end of the evaluation we can use eq. (3.9) to replace one factor of 1/(−s) with
1/[(k1 + k2) · n]. (The splitting amplitudes are independent of n, so the light-cone vector
n must cancel from final expressions.)

One might be tempted to switch to light-cone coordinates, as is commonly done when
performing light-cone gauge calculations. In these coordinates we take p+ = p · n and
p− = p · n∗ where n∗ is dual to n, i.e.

nµ = (n0, �n) , n∗µ = (n0,−�n) . (3.11)
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In light-cone coordinates, the integral J (b)(z, s), for example, is given by

J (b)(z, s) = −i
∫
dD−2p

πD/2
dp+dp−

1
p2 (p− k1)2 (p− k1 − k2)2 p+

, (3.12)

which is ill-defined because of the unregulated longitudinal integral
∫
dp+/p+. However,

with this choice of coordinates we have switched to a version of dimensional regularization
where only the transverse coordinates are regulated. This does not correspond to covariant
dimensional regularization: dp+dp−dD−2p �= dDp. This difficulty is relatively minor, and
may be dealt with by reverting to covariant dimensional regularization. Alternatively, we
could introduce the principal-value prescription, to justify intermediate steps, but then
remove it prior to performing the final Feynman-parameter integration (see for example
eq. (34) of ref. [78]). In either case, care is required because of the ill-defined nature of
expressions.

Even covariant dimensional regularization, however, does not suffice to properly reg-
ulate all light-cone integrals. Let us first compare the behavior of J (a) and J (b) in their
momentum-space forms (3.6) and (3.7). In momentum space, singularities arise whenever
two or three denominator factors vanish. The light-cone denominator vanishes when p

becomes proportional to n, p → ζn. In this region p2 also vanishes, but the other two
denominators do not vanish. The singularity that arises here thus looks very much like the
collinear singularity that arises when p becomes collinear with k1, p→ ζk1. This singular-
ity is regulated by covariant dimensional regularization, and so we may expect the same to
be true for the new singularity that arises in the presence of the light-cone denominator.
This will indeed turn out to be the case. In contrast, for J (a), after shifting the momentum
p′ = p− k1 we can see that in the soft region p′ → 0 we have four vanishing denominators,
which is indicative of the difficulties that will be encountered in evaluating this integral.

We can see the difficulty with J (a) more explicitly using its Feynman-parametrized
form. We begin by Schwinger parametrizing,

J (a)(z, s) = −i
∫ ∞

0

4∏
i=1

dti

∫
d4−2εp

π2−ε exp
[
(t1 + t2 + t3)p2 − 2p · (t2k1 + t3k1 + t3k2) −

− t4p · n+ t3s+ t4k1 · n
]
. (3.13)

To integrate out the loop momentum we perform the shift

p = p′ +
t2k1 + t3k1 + t3k2

T
+
t4n

2T
, (3.14)

where T = t1 + t2 + t3. (Note that the Schwinger parameter t4 associated with the light
cone denominator is absent from T .) Wick rotating and then integrating out the shifted
loop momentum p′ gives

J (a)(z, s) =
∫ ∞

0

4∏
i=1

dti T
−D/2 exp

[
−(t2 + t3)t3s

T
− t4(t2k1 + t3k1 + t3k2) · n

T
+

+ t3s+ t4k1 · n
]
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=
∫ ∞

0

4∏
i=1

dti T
−D/2 exp

[
t1t3s

T
+
st4(t3(1 − z) − t1z)

T

]
, (3.15)

where we have used the replacements (3.8) and (3.10) to obtain the last line. The integral
over the Schwinger parameter t4 associated with the light-cone denominator is now trivial,
and yields

J (a)(z, s) =
∫ ∞

0

3∏
i=1

dti T
−D/2+1 1

s(t1z − t3(1 − z))
exp
[
t1t3s

T

]
. (3.16)

As usual we may convert the Schwinger parameters to Feynman parameters by defining
ai = ti/T and integrating out the overall scale T , yielding a compact Feynman parameter
representation,

J (a)(z, s) = −Γ(1 + ε)(−s)−2−ε
∫ 1

0

3∏
i=1

dai δ
(
1 −

3∑
j=1

aj

) (a1a3)
−1−ε

a1z − a3(1 − z)
. (3.17)

The reader will observe that for time-like kinematics, the integrand blows up inside the
region of integration. For example, if z = 1/2 there is a singularity at a1 = a3. This
singularity could be regulated by analytically continuing in z; in the space-like region,
where z > 1, it is in fact absent. This is not, however, the only singularity in the integrand.
It is also singular in the corner of the integration region where a2 → 1, as can be made
manifest by changing variables a2 = 1 − v, a1 = vu, a3 = v(1 − u), with jacobian v,

J (a)(z, s) = Γ(1 + ε)(−s)−2−ε
∫ 1

0
dvdu v−2−2ε [u(1 − u)]−1−ε

1 − u− z
. (3.18)

The singularity as v → 0 is stronger than the v−1−ε that would correspond to a logarithmic
divergence, and would give rise to a pole in ε. Formally, analytic continuation in ε will
regulate this divergence (in fact the v integral will not give rise to a pole at all), but this
requires a large analytic continuation, and effectively happens through the subtraction of
an infinite constant. (There is of course no associated bare coupling here into which such
an infinite constant could be absorbed.) Note that this pathology is independent of z, and
so cannot be cured by analytically continuing in the latter variable.

The principal-value prescription (3.5) is a widely-used method to deal with this prob-
lem. For this integral it would give rise to a ‘naked’ 1/δ singularity. Absent such a
prescription, which as discussed above we must avoid for other reasons, care would be re-
quired in a complicated calculation to ensure that all integrals are continued in a consistent
manner, and that these continuations do not violate any symmetries. It would be much
simpler if we do not have to confront this issue at all. As we shall see, our approach to the
calculation indeed allows us to avoid integrals like J (a) altogether.

In contrast, the integral J (b) in figure 6(b) is properly regulated by dimensional reg-
ularization. To see this explicitly, follow similar steps as in the computation of J (a) to
obtain,

J (b)(z, s) = Γ(1 + ε)(−s)−2−ε
∫ 1

0

3∏
i=1

dai δ
(
1 −

∑
j

aj

)(a1a3)
−1−ε

a2z + a3
. (3.19)
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In this case, the integrand diverges no worse than a−1−ε
i near any boundary, and so di-

mensional regularization renders the integral finite for small negative ε without infinite
subtractions. Indeed, this integral is well-defined and its value is [43],

J (b)(z, s) = 2
Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
(−s)−2−ε 1

z

{
1
ε2

− 1
ε

ln z +
1
2

ln2 z + Li2(1 − z)
}

+

+ O(ε) , (3.20)

so there is no need for an additional prescription here. We will also encounter the integral
J (b)(1 − z). In the space-like case, with 1 − z < 0, the latter’s integrand will be singular
inside the region of integration. As explained above, this can be regulated by analytic
continuation in z from z < 1.

Although it is not necessary, it is still possible to use an additional prescription for
dealing with the light-cone denominator singularity in J (b). Had we, for example, used the
principal-value prescription we would have obtained instead

J
(b)
PV(z, s) = Γ(1 + ε)(−s)−2−ε

∫ 1

0

3∏
i=1

daiδ
(
1 −

∑
j

aj

)
(a1a3)−1−ε a2z + a3

(a2z + a3)2 + (δ/s)2
,

(3.21)
following the discussion in e.g. ref. [78]. For δ → 0 this integral evaluates to

J
(b)
PV(z, s) = (−s)−2−ε Γ(1 + ε)

z

{
1
ε

(1
ε

+ ln
∣∣∣δ
s

∣∣∣− 2 ln z
)
− ln

∣∣∣δ
s

∣∣∣ ln z +

+ ln2 z + Li2(1 − z)
}

+ O(ε) . (3.22)

Compared with the result in dimensional regularization (3.20), the 1/ε singularity arising
from the light-cone denominator has been traded for a ln δ singularity. The ln δ would
then appear in the result for the splitting amplitude. As mentioned earlier, such a result
cannot match the splitting amplitude describing the collinear limits of gauge-invariant,
dimensionally-regulated one-loop amplitudes, because the latter depend only on ε, not δ.
We therefore wish to avoid additional prescriptions, which are in any event unnecessary
for J (b). They would be required only for integrals like J (a).

What distinguishes the integrals (a) and (b) in figure 6? Could it be that the appear-
ance of ill-defined integrals like (a) is purely an artifact of the gauge choice and would not
appear in a more physical construction of the splitting amplitudes? We will see that the
answer to the latter question is yes.

A general difficulty with diagrammatic approaches is that gauge-invariant results are
chopped up and separated into gauge-dependent pieces by the decomposition into diagrams.
For example, for a fully on-shell scattering amplitude calculation at tree level, each light-
cone gauge Feynman diagram contains light-cone denominators. Yet by gauge invariance
their sum must be free of such denominators. Unitarity then implies that similar cancel-
lations should happen at loop level. For splitting amplitudes, one leg is off-shell. Hence
the cancellation of light-cone denominators is not complete; nevertheless, there will be a
partial cancellation. In order to understand which light-cone denominators may appear
and which should not, we use unitarity.
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On dimensional grounds, the result for the split-
b

a

a+b

Figure 7: The two-particle cut of a
one-loop splitting amplitude. The cut
is represented by the dashed line. On
the left-hand side all legs, including
the cut ones, are on-shell. On the
right-hand side the merged leg repre-
sented by a thick line is slightly off-shell.

ting amplitude must have the form

f(ε, z) (−s)−ε, (3.23)

for some f(ε, z), where the epsilonic power of (−s)
follows from the integration measure d4−2εp. In
the time-like region, s > 0, we have (−s)−ε = 1 −
ε ln(−s)+ . . . = 1− ε(ln s− iπ)+ . . ., so any desired
order in the Laurent expansion in ε of f(ε, z) can
be computed by extracting the absorptive part of
the function to one higher order in ε. If we can
compute the absorptive part, via unitarity cuts, to
all orders in ε, we can completely determine f(ε, z).

The two-particle cut of the one-loop splitting amplitude is depicted in figure 7. Using the
Cutkosky rules [79] we obtain,

Absp
[
Split(1)(z; a, b)

]
∼ (3.24)∫

dDp

(2π)D−2
δ+(21)δ

+(22)A
(0)
4 (a, b, ν2 ,−µ1 ) × dµα(1) dνβ(2) × V αβγ(1,−2) ,

where 1 = p, 2 = p − ka − kb, the vertex V αβγ is defined in eq. (3.2), dµν is the physical
state projector given in eq. (3.4), and δ+(2) = Θ(0)δ(2). This is the only non-trivial cut
of the one-loop splitting amplitude and therefore yields the complete absorptive part. On
the left-hand side of the cut, A(0)

4 is a gauge-invariant amplitude — all legs including the cut
ones are on-shell. Any light-cone denominator appearing to the left of the cut must there-
fore be spurious: gauge invariance dictates that light-cone denominators cannot appear
after combining all Feynman diagrams, because such denominators would not appear in a
covariant gauge. Because the full one-loop splitting amplitude can be reconstructed from
its absorptive part, the light-cone denominator appearing in the integral in figure 6(a) must
also be spurious (absent from the sum over all diagrams) in the full calculation, not just
the absorptive part. In contrast, light-cone denominators on the cut lines are introduced
by the Cutkosky rules via the sum over polarizations across the cut line,∑

σ

ε(σ)
µ (p)ε(σ)∗

ν (p) = −ηµν +
pµnν + nµpν

p · n = −dµν . (3.25)

This physical state projector is the on-shell version of the one appearing in the light-cone
gauge propagator (3.3). The light-cone denominators that appear here can survive. This
is the type of light-cone denominator that appears in the integral of figure 6(b). (Indeed,
as noted earlier, some light-cone denominators must survive in order to get an answer of
the sufficient polylogarithmic complexity.)

The unitarity argument indicates that only light-cone denominators associated with a
cut line need survive. (In the multi-loop case, denominators associated with lines to the
right of all cuts can also survive.) Thus it should be possible to perform calculations where
dangerous light-cone denominators of the sort depicted in figure 6(a) do not appear. The
unitarity-based sewing method, which we present in section 4, has exactly this property.
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Figure 8: Sample three-point integrals at two loops containing light-cone denominators. Integral
(a) is ill-defined without additional prescriptions, but integral (b) is rendered finite by dimensional
regularization alone.

3.4 Two-Loop Light-Cone Integrals

At two loops we encounter a similar situation: some integrals are properly regulated solely
by covariant dimensional regularization, and others are not.

As concrete examples consider the two-loop integrals in figure 8, given by

L(a)(z, s) = i

∫
dDp

(2π)D
dDq

(2π)D
1

p2(p− k1)2(p+ q)2(q + k1 + k2)2(q + k1)2(p− k1) · n , (3.26)

L(b)(z, s) = i

∫
dDp

(2π)D
dDq

(2π)D
1

p2(p− k1)2(p+ q)2(q + k1 + k2)2(q + k1)2p · n . (3.27)

In our calculation of the two-loop splitting amplitude from the unitarity sewing method, we
encounter only integrals similar to L(b). Following similar steps as at one loop, we obtain
the Feynman-parameterized form,

L(a)(z, s) = Γ(1 + 2ε)(−s)−2−2ε

×
∫ 1

0

6∏
i=2

dai δ
(
1 −

∑
j

aj

) ∆3ε(a2a3a6)−1−2ε

z[a6(a2 + a3) + a3(a2 + a4)] − a2a6
, (3.28)

where
∆ = (a2 + a4)(a3 + a5) + a6(a2 + a3 + a4 + a5). (3.29)

This integral has an insufficiently regulated divergence in the region a5 → 1. To see this,
make the change of variables a5 = 1 − v, aj=2,3,4,6 = vbj , for which the jacobian is v3:

L(a)(z, s) = Γ(1 + 2ε)(−s)−2−2ε

×
∫ 1

0
dv
∏

i=2,3,4,6

dbi δ
(
1 −

∑
j

bj

)
v−2−3ε ∆3ε

b (b2b3b6)−1−2ε

z[b6(b2 + b3) + b3(b2 + b4)] − b2b6
, (3.30)

where
∆b = vb3(b2 + b4) + vb6(b2 + b3 + b4) + (1 − v)(b2 + b4 + b6). (3.31)

Like J (a) of the previous subsection, the integral has a power-law divergence for v ∼ 0
which would require a large analytic continuation, or equivalently the subtraction of an
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Figure 9: The three-particle cut of a two-loop splitting amplitude. On the left-hand side of the
cut, the amplitude is gauge invariant since all legs including the cut ones are on-shell.

 

 

(a)

 

 

(b)

Figure 10: The three-particle cut of the two-loop three-point integrals of figure 8.

infinite constant. This divergence is again independent of z, and hence cannot be cured by
analytic continuation in that variable.

On the other hand, for integral (b) in figure 8 we have the Feynman parametrized form

L(b)(z, s) = −Γ(1 + 2ε)(−s)−2−2ε

×
∫ 1

0

6∏
i=2

dai δ
(
1 −

∑
j

aj

) ∆3ε(a2a3a6)−1−2ε

a2a6 + z[a4a6 + a5(a2 + a4 + a6)]
. (3.32)

In this case the integral is well-defined; at all boundaries, the integrand goes like v−1−mε,
m = 1, . . . , 4. For example, as a3 = 1− v → 1, the presence of a3 in the numerator lessens
the singularity to v−1−ε.

But need we concern ourselves with the possible appearance of ill-defined integrals
like L(a)? As at one loop, light-cone denominators at two loops can be separated into
two categories, depending on whether they appear in unitarity cuts or not. For example,
consider the three-particle cut of a two-loop splitting amplitude shown in figure 9. The
three-particle cuts of the two integrals in figure 8 are shown in figure 10. Since all legs of
the five-point amplitude on the left-hand side of the cut, including the cut ones, are fully
on-shell, then following the same logic as in the one-loop case, the light-cone denominator
appearing in the integral in figure 8(a) is a light-cone gauge artifact which can be eliminated.
(This type of argument cannot be used on the right-hand side of the cut, because the merged
leg is off-shell.) The light-cone denominator appearing in figure 8(b), on the other hand,
is allowed because it corresponds to a physical-state projector on a cut line.

The use of the unitarity-based sewing method, which we describe in detail in the fol-
lowing section, allows us to avoid the use of any prescription for light-cone denominators
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Figure 11: Additional three-point integrals at two loops containing light-cone denominators. Both
integrals are well-defined using dimensional regularization alone.
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Figure 12: The three-particle cuts of the two-loop three-point integrals of figure 11.

in the calculations in following sections. But one can also imagine applying the insights
above to a more standard diagrammatic calculation in light-cone gauge. One could pro-
ceed as follows: introduce one of the standard prescriptions for dealing with light-cone
denominator singularities. Then, attempt to combine diagrams algebraically to remove
those light-cone denominators which by unitarity cannot appear in the desired quantity.
Once all denominators leading to ill-defined integrals have canceled, one can remove the
additional prescription (for example, by taking δ → 0 in the PV prescription), and only
then perform the loop integrals.

The unitarity arguments above can be applied not only to ill-defined integrals, but
also to rule out certain well-defined integrals. As an example, consider the two integrals in
figure 11. Both turn out to be well-defined (for integral (a), this is clear from momentum-
space power-counting). If we examine their cuts, shown in figure 12, however, we see that
integral (a) has a light-cone denominator to the left of the cut, and hence cannot appear.
Integral (b) has a light-cone denominator on the cut, and hence is not ruled out by the
unitarity argument. Indeed, it is the master integral Wedge(z, s) of figure 31, whose explicit
expansion in ε is given in eq. (6.49).

In summary, the unitarity cuts point to a method that sidesteps the prescription issues
associated with light-cone denominators, because only a restricted set of integrals appear.
In the next section we explain in some detail how to construct loop-momentum integrands
using the unitarity method. In our calculation of two-loop splitting amplitudes in sections 5
and 6, such loop integrals are reduced to a linear combination of master integrals. There are
several equivalent bases that are convenient for different aspects of the calculation; one of
the equivalent forms contains only integrals well-defined using dimensional regularization
alone, and not requiring any additional prescriptions. All singular boundaries lead to
logarithmic singularities in the ε → 0 limit, just as for the integral J (b) discussed in the
previous subsection, or the integral L(b) above.
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4. Review of the Unitarity-Based Sewing Method

4.1 Overview

The unitarity of the scattering matrix in a quantum field theory is the statement that
probability is conserved. It is an essential property of any sensible and consistent theory.
It relates the non-forward part T of the scattering matrix S to its square, −i(T−T †) = T †T ,
where T is defined via S = 1 + iT . In Feynman diagrams, unitarity is expressed by the
Cutkosky rules [79, 80], which express the ‘imaginary’ or absorptive part of a diagram1 in
terms of phase-space integrals over products of lower-loop diagrams. The product is given
by ‘cutting’, replacing specified sets of propagators by delta functions in the propagator
momentum. Loop amplitudes are computed, of course, by summing over appropriate
collections of Feynman diagrams. Their absorptive parts are given by sums of products
of lower-loop diagrams. Collecting all diagrams on each side of a cut into amplitudes, we
see that the absorptive parts of loop amplitudes are just sums over products of lower-loop
amplitudes.

This observation is particularly powerful in gauge theories (and in gravity as well). In
gauge theories, there are extensive cancellations between different diagrams in the com-
putation of scattering amplitudes for on-shell states. These simplifications can be made
manifest at early stages of a tree-level calculation using the spinor helicity representa-
tion for gauge-boson polarization vectors. (These simplifications may be understood using
twistor space [9].) The final answers in massless theories are particularly simple, some-
times simpler than the expression for a single Feynman diagram out of the hundreds or
thousands that contribute, and have a natural expression in terms of spinor products. We
may then express the cut of an on-shell one-loop amplitude, given by a product of on-shell
tree amplitudes (or a sum of such products), in simple form as well. This simplicity carries
through order-by-order in perturbation theory. The sewing technique aims to exploit this
simplicity, by turning the process around, and building loop amplitudes out of their cuts,
in turn given by lower-loop amplitudes.

The full amplitude can in principle be reconstructed using dispersion relations. For
general gauge theories in four dimensions, the dispersive reconstruction of an amplitude
suffers from an additive ambiguity related to divergent ultraviolet behavior. One can
add a rational function, free of cuts, to the amplitude. This problem has traditionally
hampered the use of dispersion relations to obtain complete amplitudes. It is solved in
massless theories2 through the use of dimensional regularization, which effectively tames
the ultraviolet behavior of the bare integrand [81] and thereby removes the need for explicit
subtractions. This represents a third role for the dimensional regulator beyond its usual
roles as a regulator for ultraviolet and infrared divergences. The sewing technique we review
is equivalent to the use of dispersion relations in dimensional regularization, although for
practical purposes it is preferable to make use of ordinary Feynman-integral techniques for

1By ‘imaginary’ we mean the discontinuities across branch cuts.
2In massive theories, there is an additional source of ambiguities (from masses inside bubbles on ex-

ternal legs). When there is only one mass in a calculation, this problem can be resolved through simple

adjustments [12].
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Figure 13: Color-ordered Feynman diagrams for the one-loop four-point amplitude in Trφ3 field
theory: (a) the box diagram (b) the s-channel bubble diagram (c) the s-channel triangle diagrams.
The two t-channel triangle diagrams and the t-channel bubble diagram are not shown explicitly.
Bubbles on external legs vanish in dimensional regularization and are not shown here either.

performing the necessary integrations rather than doing explicit dispersion integrals. (At
one loop, for example, knowledge of the complete decomposition of n-point integrals in
dimensional regularization in terms of a basis of known integrals [82] reduces the problem
to an algebraic one.) Sewing back together cut amplitudes, with the cut lines on shell but
treated exactly in D = 4 − 2ε dimensions, will reproduce the full gauge-theory answer.
(The different ways of continuing the amplitude to D dimensions correspond to the use of
different variants of dimensional regularization, such as CDR [83], HV [68], or FDH [8, 69].)
One can then expand in ε to obtain the answer through O(ε0), including the rational terms.
A more pedestrian way to understand how the rational terms are included properly is to
observe that in dimensional regularization, these terms are not purely rational, but rather
are rational functions of the momentum invariants, multiplied by (−s)Lε at L loops, for
some invariant s (e.g. as in eq. (3.23)). At O(ε), this factor contains a logarithm, and
hence an imaginary part for s > 0. Only when the ε → 0 limit is taken at the end of the
calculation, does the term become purely a rational function, free of discontinuities.

4.2 Sewing at One Loop

Consider first the sewing method at one loop. Before explaining it in generality, it will be
useful to examine the procedure in a simple example. In each example here and in later
subsections, we will make contact with standard methods by starting with an amplitude
expressed in terms of conventional Feynman diagrams. In the examples, we will work
in a massless Trφ3 field theory (with φ transforming under the adjoint of SU(Nc)), but
as discussed above the method applies to general theories, and indeed is relatively more
powerful precisely in field theories with many redundant variables in their covariant form,
such as gauge theories and gravity.

Let us start by considering the four-point one-loop amplitude. The full amplitude has
Bose symmetry, which just as in the gauge-theory case we can exhibit most concisely by
rewriting it as a sum over color permutations of a more basic quantity. The leading-color
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Figure 14: Diagrams depicting the s-channel cut of the one-loop four-point amplitude in Trφ3

field theory.

contributions (leading in a 1/Nc expansion) involve only planar diagrams. We will focus on
these contributions in the examples. In particular, we focus on the coefficient of the color
trace Tr(T a1T a2T a3T a4) given by color-ordered diagrams [66, 13] with the 1234 ordering
of legs.

There are seven color-ordered diagrams contributing to this one-loop partial amplitude.
The ones with cuts in the s channel are depicted in figure 13. The ordered amplitude has
cuts in only two channels, s and t. If we examine the s channel, we see that only four of the
diagrams contribute to the cut: the box, two triangles, and one of the bubbles. Similarly,
four diagrams contribute to the cut in the t channel. The s-channel cut may be obtained
by replacing the propagators cut in figure 14 via

1
p2 + iε

→ −2πiδ+(p2). (4.1)

This replacement converts the loop integral to one over the phase space of the two cut legs,
which are placed on shell. We can also see that the sum of terms factors, so that on each
side of the cut we obtain a tree amplitude as the sum of diagrams, as shown in figure 15.
In each channel, the cut is thus given by a phase space integral of the product of two tree
amplitudes,

A(1)(1, 2, 3, 4) =
∫
dD1d

D2
(2π)D−2

δ+(21)δ
+(22)δ

D(1 + 2 + k1 + k2) ×

×A(0)(1, 2, 2, 1)A(0)(−1,−2, 3, 4) ,
where

A(0)(1, 2, 3, 4) = −i
( 1
s12

+
1
s14

)
, (4.2)

and we have suppressed powers of the three-scalar coupling.
The sewing procedure reverses this process. We start, for example, in the s channel.

Multiply the tree amplitude on the left-hand side of figure 15 by that on the right-hand
side,

A(0)(1, 2, 2, 1)A(0)(−1,−2, 3, 4) = −
( 1
s12

+
1
s1
1

)( 1
s34

− 1
s
14

)
, (4.3)
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where 1 = −2 − k1 − k2. Put in the two propagators crossing the cut, and integrate over
the loop momentum  ≡ 1, to yield,
∫

dD

(2π)D
( 1
s12

+
1
s1


) 1
2

( 1
s34

− 1
s
4

) 1
(+ k1 + k2)2

=
∫

dD

(2π)D

[
1
s212

1
2(+ k1 + k2)2

+
1
s12

1
2(− k4)2(+ k1 + k2)2

+ (4.4)

+
1
s12

1
(+ k1)22(+ k1 + k2)2

+
1

(+ k1)22(− k4)2(+ k1 + k2)2

]
.

Similarly, from the t-channel cut, we obtain,
∫

dD

(2π)D

[
1
s223

1
2(+ k2 + k3)2

+
1
s23

1
2(− k1)2(+ k2 + k3)2

+

+
1
s23

1
(+ k2)22(+ k2 + k3)2

+
1

(+ k2)22(− k1)2(+ k2 + k3)2

]
. (4.5)

The first three terms have no cut in the s channel, but the last term does: it is given by
the residue of the poles as − k1 and + k2 simultaneously go on shell,

− 1
2(− k1) · k1 2(− k1) · k4

. (4.6)

Alternatively, we can shift  → + k1, upon which the last term becomes identical to the
last term in eq. (4.4).

We cannot simply add the contributions from the s and t channels, because this would
correspond to the sum of eight diagrams, double-counting the box diagram 13(a), given
by the last terms in eqs. (4.4) and (4.5). Accordingly, we must find a function which has
the correct cuts in all channels. We can do this either before or after integration, although
in general it is easier to do it before loop integration. One way is simply to sum both

2

1  

 

+
2

1  

 

 

 4

3

+
 

 4

3

Figure 15: The s-channel cut of the one-loop four-point amplitude in Trφ3 field theory, seen as a
product of tree amplitudes.
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contributions, and then remove the overlap: terms in one cut channel which also have a
‘cut’ — in the sense of having the propagators which give rise to a cut — in the other
channel. One can alternatively think of this as ‘merging’ the two expressions, taking a
term if present in either cut or in both, but taking it only once in the latter case.

The net effect is to drop one of the two equivalent terms; we obtain the sum of the
remaining terms for the ordered one-loop amplitude,

A(1)(1, 2, 3, 4) =∫
dD

(2π)D

[
1
s212

1
2(+ k1 + k2)2

+
1
s12

1
2(− k4)2(+ k1 + k2)2

+

+
1
s12

1
(+ k1)22(+ k1 + k2)2

+
1

(+ k1)22(− k4)2(+ k1 + k2)2
+

+
1
s223

1
2(+ k2 + k3)2

+
1
s23

1
2(− k1)2(+ k2 + k3)2

+ (4.7)

+
1
s23

1
(+ k2)22(+ k2 + k3)2

]
,

exactly as would have emerged from a Feynman-diagram computation. Of course, in a φ3

field theory, there are no cancellations between different diagrams, so the sewing method
is also equivalent in complexity to the usual approach. In gauge theories, the sewn on-shell
tree amplitudes are much simpler objects than the one-loop diagrams, and so the sewing
approach helps minimize the complexity of intermediate steps.

In the above examples, the procedures for sewing and removing any overlaps or double-
counting are completely mechanical. Note that none of them make any reference (to use
an old-fashioned language) to double dispersion relations. Indeed, only in an abstract
sense are dispersion relations used at all, since we do not perform the dispersion integrals
explicitly, but rather implicitly via construction of appropriate Feynman integrals. We will
next explain how to formalize these procedures, and then give an algorithm which can be
used to implement them in practice.

To formalize the sewing procedure, introduce the basic promotion operator
⌈⌋
A. It

will be applied to products of amplitudes (or to terms from a product). It represents the
combined operations of summing over helicity states (and over different particle states if ap-
propriate), re-expressing spinor products in terms of the cut momentum, multiplication by
the cut-crossing propagators, and completion of dot products in denominators to standard
propagator denominators. It does not introduce the phase-space integral over the product
of amplitudes. The result of the promotion operation is an integrand which depends on the
external momenta and on the loop momentum. Note that the sum over intermediate states
must in general be carried out in D = 4 − 2ε dimensions, and that it is a sum only over
physical states. This implicitly introduces a physical projection operator. In calculations
of full amplitudes, the resulting operators leave little trace, but in calculations of splitting
amplitudes such as the one we carry out in the present paper, these operators will give rise
to light-cone-like denominators in integrals.

We will also need to introduce the cut-projection operator Ps, which yields the part
of its argument that has a cut in the s channel, where s denotes an arbitrary invariant
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of m consecutive external momenta. At one loop, it extracts the joint pole term in two
propagator denominators 1


21

2
2
, where (1 + 2)2 = s. It corresponds to requiring that a pair

(any pair) of propagators yielding a cut in the s channel be present in the diagram.
In a computation with n external massless momenta, there are in general n(n − 3)/2

independent invariants in D dimensions. Denote by C the ordered set of these invariants,

C = {s12, s23, s123, . . .}. (4.8)

(We will denote the number of elements in C by nC .) We will sew the channels in the
specified order, with the notation sj ∈ C denoting the j-th invariant in C. The optimal
ordering (from the viewpoint of computational efficiency) depends on the process and the
particle content of the theory, but of course the final answer is independent of this ordering.
Let Kj = kaj + · · · kbj be the momentum whose square is the given invariant sj. The first
momentum (within the cyclic order of external momenta) we will denote aj, and the last
momentum by bj . The momentum before aj will be labeled aj − 1, and the one after bj ,
bj + 1.

The analytic behavior in different invariants is independent even if the invariants are
related by Gram determinant conditions arising from the restriction to four dimensions.
Thus even if we take all external momenta to be in four dimensions, we must still take the
full set of D-dimensional invariants.

The complete integrand of the one-loop amplitude A(1)(1, . . . , n) is then given by the
sum over all channels,

I(1) =
nC∑
j=1

∏j−1
l=1

(
1 − Psl

)
Psj

⌈⌋
A(0)(, aj , . . . , bj ,−−Kj) ×

×A(0)(+Kj, bj + 1, . . . , aj − 1,−) . (4.9)

That is, we sum over all channels, each time removing all terms already found in previous
channels. The amplitudes in this equation must in general have the sewn legs ( or +Kj)
in D dimensions. Whether the external legs are taken to be in four dimensions or in D

dimensions depends on the variant of dimensional regularization employed. In practice, it
is best to use a four-dimensional scheme, and convert later if necessary.

Indeed, there are several practical aspects not addressed by the formal expression
above. These include questions of diagram labeling, classification, and the use of a basis
for organizing numerators of terms in the integrand. As the formal expression hints, none
of these tools are intrinsically required by the unitarity-based sewing method. The cut
projection can be performed by extracting residues of poles; and the promotion involves
simple algebraic manipulations. Furthermore, non-manifestly vanishing expressions still
vanish, and do not affect the final answer. In a practical calculation, however, we would
like the cut projection to be simple, ideally just amounting to the identification of the
formal coefficient of a pole. We would like to avoid the appearance of complicated expres-
sions which actually vanish. Furthermore, the integrand produced by the sewing method
will ultimately be fed to an integration machinery which does require the corresponding
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diagrams to be labeled and classified by topology. We therefore might as well incorporate
these aspects into an algorithm.

To do so, start with all color-ordered graphs with a maximal number of propagators
containing the loop momenta. We will call these ‘parent’ diagrams. All other topologies can
be obtained by canceling propagators, that is by multiplying the numerator by an inverse
propagator. These we will call ‘daughter’ diagrams; below, we will also include the parent
in its set of all daughters. At one loop, if all external particles are massless, there is in fact
only one parent diagram. (Recall that we are restricting attention to processes where all
internal masses vanish.) If we have two or more massive external particles (for example,
W bosons), we will have different parent diagrams corresponding to the different ways of
attaching the massive legs to the loop. At two loops, there are n(n + 1)/2 planar parent
diagrams when all external particles are massless. (Integrals that reduce to products of
one-loop integrals, such as bowtie integrals, have intrinsically two-loop integrals as parent
diagrams.) Examples are shown in figure 16.

Each cut will in general start with a different labeling of any given parent diagram,
because the loop momentum  may denote a different propagator. The algorithm will make
use of a simple relabeling operation, reviewed in appendix B, to bring these into canonical
form. The labeling of propagators must incorporate a notation for the parent diagram,
because the algebraic relations of dot products to inverse propagators differ from diagram
to diagram.

The external gluon legs we may choose to treat using formal polarization vectors εi(ki),
or using the spinor-helicity method. The external fermion legs we may choose to treat using
formal spinor wavefunctions u(ki), ū(ki), or again using a helicity basis. Either choice
(or a mixture) may be employed with the algorithm we will present below. The basis
one should use for expressing numerator polynomials depends slightly on the external leg
treatment, because there can be different numbers of independent invariants from which
the polynomials are built. The algebraic processing of expressions will also be somewhat
different. In all cases, the basis at one loop will contain all inverse propagators containing
the loop momentum. These are sufficient to express all dot products of the loop momentum
with external momenta. Note that Levi-Civita tensors involving the loop momentum can be
converted to Gram determinants (and thence to dot products) by multiplying by another
Levi-Civita tensor involving only external momenta. (The latter object is just another

(a) (b) (c) (d)

Figure 16: Examples of parent and daughter diagrams: (a) a parent diagram at one loop; (b)
a daughter diagram at one loop, which is a daughter of the diagram in (a); (c) and (d) parent
diagrams at two loops.
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constant as concerns the manipulations we perform.) We will also need the square of
(−2ε)-dimensional components of the loop momentum, (−2ε)2. We must add dot products
of the loop momentum with formal external polarization vectors (if any). These will not
give rise to expressions that can cancel propagator denominators. (We could have taken
these to be in D dimensions, after all, in which case they would clearly be independent.) In
all algebraic manipulations, one should be sure to use momentum conservation, eliminating
one external momentum, and re-expressing invariants in terms of an independent set, in
order to avoid the appearance of zero in obscure forms. (For formal expressions εj · ki, one
should pick a momentum other than kj to eliminate, so as to impose the on-shell conditions
too.)

For example, in computing the an n-point gluon amplitude, we can pick the standard
labeling to have the loop momentum between legs n and 1. If we treat all external legs in
the spinor-helicity basis, then the basis set will simply be,

{2, (− k1)2, (− k1 − k2)2, . . . , (− k1 − · · · − kn−1)2, (−2ε)2}; (4.10)

if we choose to treat legs 1, . . . , j using formal polarization vectors, we should add

{ε1 · , . . . , εj · } (4.11)

to this set.
Amplitudes with fermions in a loop arise from sewing amplitudes with pairs of external

fermions on either side of a cut. Sewing will include closing a fermion loop. (The usual
minus sign must be included explicitly.) This yields a spinor trace, which can be expanded
in terms of dot products and Levi-Civita tensors. The latter can be converted to dot
products as described above. Internal fermions thus do not require any new basis elements.

Amplitudes with external fermions will contain in different terms, factors of a ‘spinor
string’ consisting of an external spinor wavefunction (either formal u, ū or in the helicity
basis), a product of gamma matrices dotted into various D- or four-vectors (momenta,
polarization vectors, the light-cone vector, or other spinor strings), and an ending spinor
wavefunction. Roughly speaking, we need to perform sufficient manipulations on these to
ensure that no difference of two such objects contains a factor of an inverse propagator.
A basis for spinor strings involving spinor wavefunctions can be obtained by commuting
loop momenta to the left; commuting /−2ε, if present, to the next position; and commuting
formal polarization vectors (if present) to an ordered sequence following them. The spinor
string can end with either a spinor carrying an external momentum or the light-cone vector,
or another external fermion wavefunction. Alternatively, one can convert the spinor string
to a trace by multiplying by appropriate spinorial factors involving only external momenta
and spins, and then expanding the trace into dot products and Levi-Civita tensors as above.
(The spinorial factors are just spinor products in a helicity basis.) In this case, no spinor
strings are needed in the basis.

The projection Psj of the promoted integrand in eq. (4.9) back onto the same channel
which was sewn, ensures that no (spurious) terms lacking a cut in the sewn channel are
generated. This projection is not really needed in the purely formal expression, but ensures
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Figure 17: Sewing together two tree-level amplitudes to produce a contribution to the one-loop
integrand.

that algebraic manipulations when working in the basis required for a practical algorithm
do not create unwanted terms.

The basis will be used to identify terms that have cuts in different channels. A term
with uncanceled propagators corresponding to the cut channel will have a cut in that
channel.

For a practical algorithm, one may proceed as follows:

1. Form the ordered set of all independent channels in D dimensions. (That is, in
determining the independence of different invariants, one should use only momentum
conservation, and not integer-dimension-specific Gram determinant relations.)

2. Associate a labeling of internal lines to each distinct Feynman-integral parent which
has a daughter appearing in the integrand. (Because of cancellations in gauge theo-
ries, not every topology that appears in the set of the usual Feynman diagrams for a
given process will necessarily appear in the sewn integrand.)

3. For each parent integral, form a basis set for expanding numerators, consisting of the
inverse propagators; the square of the (−2ε)-dimensional components of the loop mo-
mentum, (−2ε)2; and dot products of the loop momentum with any formal external
polarization vectors. For external fermions with formal wavefunctions, spinor strings
should be added as described above.

4. Initialize the integrand’s value to zero.

We will form the integrand by iterating over channels. For a color-ordered amplitude,
each channel corresponds to a consecutive set of external momenta, kaj , . . . , kbj , the cut
invariant being sj = (kaj + . . . + kbj )

2.
For each channel,

5. Sew. Form the product of the two on-shell tree amplitudes A(0)(1, aj , . . . , bj , 2) and
A(0)(−2, bj + 1, . . . , n, 1, . . . , aj − 1,−1), where 1 + 2 +Kj = 0, summing over the
products of amplitudes for the different particle types and helicities that can circulate
in the loop. The sum must in general be performed in D = 4 − 2ε dimensions. Use
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polarization-vector identities (eq. (3.25), etc.),

∑
σ

ε(σ)
µ ()ε(σ)∗

ν () → −ηµν +
µnν + nµν

 · n ,

u()ū() → /, u(−)ū(−) → −/, (4.12)

to express everything in terms of the cut momentum . Here, n is the light-cone
reference vector. (If all external legs are on shell, different ni may be used for dif-
ferent cut legs if desired, and indeed the light-cone denominators can be removed
algebraically.) The dimensionality of η — the value of ηµµ — depends on the variant
of dimensional regularization (see eq. (7.1)). Multiply by −1 when a fermion loop is
created by sewing. Put in the propagators crossing the cut, i


2
for each cut leg. Com-

plete dot products in the denominator to form propagator denominators adjacent to
the cut, 2 ·ki → ±(± ki)2, the + corresponding to ki on the left side of the cut, the
− sign to those on the right side of the cut. Rewrite the expression in terms of the
basis set, and expand sums so that each term can be classified as the daughter of a
single parent diagram. The sewing operation is depicted schematically in figure 17.
In eq. (4.9), it corresponds to the promotion operator

⌈⌋
.

6. Put into canonical form. Use momentum conservation to reduce the number of cut-
crossing momenta (now loop momenta) appearing in spinor traces, and then expand
spinor traces and all dot products in terms of the basis. (As explained above, this
expansion may not always be necessary.) When using the spinor-helicity method for
external polarization vectors, or explicit helicity states, we will obtain spinor strings of
the form 〈j−1 |/j2 · · ·/ · · · /j3|j±4 〉. As explained above, one can complete these to a trace,
then convert the trace to dot products and Levi-Civita tensors. The latter should be
converted to Gram determinants (and thence to dot products) by multiplying (and
dividing) by a Levi-Civita tensor involving only external momenta. (Spinor strings
involving only external momenta need not be manipulated, obviously.)

7. Relabel. For each term in the sewn expression for a given channel, relabel the mo-
menta to the standard labeling for its parent integral. Where required, insert factors
of squared momenta in the numerator and denominator to match a ‘parent’ diagram.
In some cases, it will be possible to obtain different parents by inserting different
factors; it doesn’t matter which one is picked.

8. Clean. Remove all terms which have no cut in the current channel. (Such terms
might have been introduced by earlier algebraic manipulations.) That is, using a
canonical basis as described above, remove any terms which do not contain both cut
propagators. This step corresponds to the operator Psj in eq. (4.9).

9. Merge. Remove all terms in the current-channel sewn expression that already appear
in the net integrand. That is, remove any term which has cuts in a previously-
processed channel. Using a canonical basis as described above, it suffices to pick
out and remove terms that have a pair of propagators corresponding to a cut in a
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previously-processed channel. This step corresponds to the operator
∏j−1
l=1

(
1 − Psl

)
in eq. (4.9).

10. Accumulate. Add the remaining terms in the current-channel sewn expression to the
integrand. This step corresponds to the sum in eq. (4.9).

11. Continue with the next channel at step #5.

In special cases (for example, massless supersymmetric theories at one loop), it may
be possible to compute the cuts using four dimensional helicity states, and to make use of
spinor-helicity simplifications for the cut-crossing momenta [10, 11]. (It is always possible
to use such simplifications for the external momenta at an early stage of the calculation.) In
this case, one must re-express spinor products involving 1 and 2 in terms of dot products
of these momenta with other vectors, 〈a 1〉 [1 b] → 〈a−|/1 |b−〉. (This is always possible
because the cut-crossing momenta will appear with opposite phase weight in the two tree
amplitudes on either side of the cut.) It may also happen that some channels are redundant;
this will happen when all integrals appearing in the answer have cuts in multiple channels.
In the computation of splitting amplitudes, one side of the cut will have an on-shell tree
amplitude, while the other side contains a tree-level splitting amplitude. The sewing pro-
cedure will introduce physical-projector denominators. These resemble light-cone gauge
denominators. In the computation of on-shell amplitudes, these physical-projector denom-
inators will disappear algebraically. (This is a consequence of gauge invariance.) In the
computation of splitting amplitudes, in contrast, these denominators will survive into the
integration, and in fact play a crucial role in obtaining the right sort of integral. However,
as discussed in section 3, at one loop they will only arise in lines corresponding to cut
momenta. As we have seen in the example of the 1 → 2 splitting amplitude, integrals with
such projectors have no singularities beyond those regulated by dimensional regularization.

In general, the integrand has cuts in many different channels. Indeed, the resulting loop
amplitudes are expressed in terms of polylogarithmic functions that have discontinuities
in several different invariants. Accordingly, any given term in the integrand may have
combinations of propagators leading to cuts in different channels, and thus might emerge
from sewing in any of those channels. The different ways of sewing must all yield the same
answer. The simplest way of seeing this is to consider a gedanken calculation of a one-loop
amplitude from Feynman diagrams. We can extract the cut of the sum of all diagrams in
any given channel. Putting the cut legs on shell, the sums of diagrams on either side will
yield a product of tree amplitudes. Because of their origin in a unique expression, however,
reconstructions of the analytic functions from different channels will yield the same answer.

In terms of the cut projection operator introduced earlier, this amounts to the state-
ment that

Ps1
⌈⌋
A1(s2)A2(s2) = Ps2

⌈⌋
A3(s1)A4(s1), (4.13)

where A(s) is an abbreviation for the amplitude with two adjacent legs 1,2 satisfying
21 · 2 = s. Checking the consistency of different cuts in intermediate steps, as expressed
by this equation, is a good way of verifying the correctness of code implementing the
algorithm.
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The consistency of different cuts also shows that the order of evaluation of channels,
i.e. the ordering in C in eq. (4.8), does not affect the final result. For example, if we were
to evaluate two channels in the order {s1, s2}, we would obtain,⌈⌋

A3(s1)A4(s1) + (1 − Ps1)
⌈⌋
A1(s2)A2(s2). (4.14)

(Recall that the projection back onto the sewn channel is not really needed in the formal
expression, and has been omitted here.) In the other order, we would obtain⌈⌋

A1(s2)A2(s2) + (1 − Ps2)
⌈⌋
A3(s1)A4(s1). (4.15)

The difference of the two evaluations is

Ps2
⌈⌋
A3(s1)A4(s1) − Ps1

⌈⌋
A1(s2)A2(s2), (4.16)

which vanishes using eq. (4.13).
Many terms (all, in an N = 4 supersymmetric theory) may have cuts in more than one

channel. The cut consistency condition can be used to cross-check these terms, and is often
of great utility in debugging computer code implementing a calculation. Note that when
using the spinor-helicity techniques, the use of non-trivial (Gram determinant) identities
may be required to show cut consistency.

Each sewn and integrated cut is gauge invariant independently when all external legs
are on shell. Its absorptive part is, after all, equal to the phase-space integral of a gauge-
invariant non-forward matrix element. The dispersion integral of such a quantity is gauge
invariant as well. At the integrand level, this is reflected in the disappearance of any
dependence on the light-cone vector n introduced by the sum over gluon polarizations.
(One typically needs to make use of momentum conservation to see this explicitly.) The
same statement is not true if we are computing an object with off-shell legs, as is the case
for the splitting amplitude. In that case, some light-cone denominators will survive. As
we will discuss in a later subsection, others will cancel algebraically, and it is possible to
predict in advance which must disappear.

The procedure we have described above is not the only way to merge information from
different cuts to yield a single function with the correct cuts in all channels. One can also
imagine performing the merging step after integration. That is, one could integrate the
sewn integrand in each channel separately, and then search for a function whose branch-
cut discontinuities match those found in each of the separate invariants. This requires
the use of a nonredundant basis of master integrals. Operationally, one would rewrite the
result of integration in each channel in terms of this basis, throwing away integrals with
no discontinuity in the given channel. One could verify cut consistency by checking that
the coefficients of a given master integral with discontinuities in multiple channels are in
fact the same in the different computations in these channels. In combining channels, one
would then take the result from any of the channels (that is, pick one, rather than adding
together the different contributions). This is in fact the procedure that was presented in
ref. [11]. It may be advantageous for some calculations, though in general it will require
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Figure 18: Color-ordered Feynman diagrams for the two-loop four-point amplitude in Trφ3 field
theory: (a) planar box diagrams (b) triangle-in-box diagrams (c) bubble-in-box diagrams (d) s-
channel ladder triangle diagrams (e) s-channel bubble-in-bubbles. (f) s-channel bubble-in-triangle
diagrams (g) s-channel triangle-pair diagram (h) s-channel lizard-eye bubble (i) s-channel double
bubble (j) s-channel triangle-bubble diagram (k) s-channel triangle-in-triangles. The corresponding
t-channel diagrams for (d–k) are not shown explicitly.

the computation of superfluous integrals. As with the basic sewing procedure, there are
adjustments that would be required in a two-loop computation, which we will discuss in
the next subsection.
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Figure 19: The s-channel two-particle cuts of the planar double box.

4.3 Sewing at Two Loops

As for the one-loop case, we start our two-loop discussion with the example of a four-
point amplitude. We again consider the contribution with a given ordering of the external
legs, and restrict attention to planar diagrams. In the one-loop example, we saw that we
must pay attention to potential double-counting in assembling contributions from different
channels. At two (and higher) loops, we must also confront potential double-counting in
contributions to a given channel. To understand how this arises, start once more with the
Feynman diagrams for this planar ordered amplitude, shown in figure 18.

Consider in particular the planar double box shown in figure 18(a). It has both two-
and three-particle cuts. The two-particle cuts, shown in figure 19, contain a product of a
one-loop amplitude and a tree amplitude, with four external legs apiece. There are two
separate cuts.

The three-particle cut in the planar double box is a sum of two terms, shown in
figure 20. It corresponds to a product of two five-point tree amplitudes. The complication
here arises from the fact that a given term in the two-loop amplitude may contribute to
both terms in the two-particle cut; both terms in the three-particle cut; or to both two- and
three-particle cuts. In such a case, when we reconstruct the original integrand, we must
count it only once. A simple analogy would be an integrand of the form X2; since cutting
is analogous to differentiation, we would have

[X2]
∣∣
cut

= 2X|cutX, (4.17)

and promoting the latter back to an integrand requires a factor of 1/2 just as it would
for integration. Note that if we denote the cut momenta by 1,2,3, then the terms which
contribute to both two- and three-particle cuts necessarily contain the propagators

1
21

2
2

2
3(1 + 2)2(2 + 3)2

, (4.18)

using the labeling of legs in the three-particle cut.
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Figure 20: The s-channel three-particle cuts of the planar double box.

We will focus here on the leading-color (planar) contributions to the two-loop am-
plitude, though of course an analogous procedure applies to the subleading contributions
(which include non-planar integrals). Let us begin the sewing procedure with the two-
particle cuts in the s channel. We must take the one-loop amplitude (4.7), with legs (3, 4)
replaced by legs (2, 1), and  replaced by p in the integral, and sew it to the tree amplitude
A(0)(−1,−2, 3, 4), obtaining

i

∫
dDp

(2π)D
dD

(2π)D
×

×
[

1
s212

1
p2(p+ k1 + k2)2

+
1
s12

1
p2(p− )2(p+ k1 + k2)2

+

+
1
s12

1
(p+ k1)2p2(p + k1 + k2)2

+
1

(p+ k1)2p2(p− )2(p+ k1 + k2)2
+

+
1

[(+ k1)2]2
1

p2(p − − k1)2
+

1
(+ k1)2

1
p2(p− k1)2(p− − k1)2

+ (4.19)

+
1

(+ k1)2
1

(p+ k2)2p2(p− − k1)2

]
1

(+ k1 + k2)22
( 1
s34

+
1

(− k4)2
)

where we have relabeled 1 → . Restricting attention to those terms with explicit powers
of 1/s212 or 1/s312, we have

i

∫
dDp

(2π)D
dD

(2π)D
1

s212(+ k1 + k2)22

[
1
s12

1
p2(p + k1 + k2)2

+
1

p2(p− )2(p+ k1 + k2)2
+

+
1

(p + k1)2p2(p + k1 + k2)2
+

1
p2(p+ k1 + k2)2(− k4)2

]
+ · · · (4.20)

These terms are sufficient to illustrate the issues associated with potential double-counting.
There is a similar contribution from sewing A(0)(1, 2, 2, 1) to A(1)(−1,−2, 3, 4). If

we now take the cut of the expression (4.19), however, we discover that we can cut not only
the  loop, but also the p loop. The corresponding terms would appear not only in this
sewing, but also in the other contribution (with the loop amplitude on the right-hand side
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Figure 21: The s-channel ‘double’ two-particle cuts of the planar double box.

of the cut). This would be a source of double-counting. To correct for it, we must subtract
from the sum of the two contributions those terms that can be cut both ways. These are
the terms extracted by a ‘double cut’ (shown in figure 21), again in the sense of requiring
that the propagators giving rise to a two-particle cut be present in both the  and p loops,

( i

s12
+

i

sp1

)( i

s12
− i

sp


)( i

s34
− i

s
4

)
, (4.21)

or promoted back to a two-loop integral,

i

∫
dDp

(2π)D
dD

(2π)D
1

s212(+ k1 + k2)22p2(p+ k1 + k2)2
×

×
[

1
s12

+
1

(p+ k1)2
+

1
(p − )2

+
1

(− k4)2

]
+ · · · , (4.22)

which is identical to the terms in eq. (4.20), obtained from the first of the two-particle cut
contribution. Counting the contribution only once then gives eq. (4.22) as the result of
combining the two two-particle cut contributions.

Next, we must consider the three-particle cuts. We begin with the product of two
five-point amplitudes,

A(0)(1, 2, 3, 2, 1) = i

[
1

s
2
3s
11
+

1
s
1
2s12

+
1

s
1
2s
32
+

1
s
2
3s12

+
1

s
11s
32

]
, (4.23)

and A(0)(−1,−2,−3, 3, 4).
Let us focus on the terms containing a factor of 1/s212. These are

i

∫
dD1
(2π)D

dD3
(2π)D

1
s212

1
21

2
3(1 + 3 + k1 + k2)2

× (4.24)

×
(

1
[(3 + k1 + k2)2]2

+
2

(3 + k1 + k2)2(1 + k1 + k2)2
+

1
[(1 + k1 + k2)2]2

)
.

The first and last of these terms correspond to the diagrams of figure 18(e). The middle
term corresponds to the diagram of figure 18(h); but it appears in the product with a
(superfluous) factor of 2. This factor is due precisely to the fact that this term can be
cut in two different ways, corresponding to the two terms depicted in figure 22. We must
remove this double counting, by subtracting those terms which contribute twice; this leaves
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Figure 22: The s-channel three-particle cuts of the lizard-eye bubble.

us with

i

∫
dD1
(2π)D

dD3
(2π)D

1
s212

1
21

2
3(1 + 3 + k1 + k2)2

× (4.25)

×
(

1
[(3 + k1 + k2)2]2

+
1

(3 + k1 + k2)2(1 + k1 + k2)2
+

1
[(1 + k1 + k2)2]2

)
.

Finally, we must combine the two- and three-particle cuts. Again, we can add the two
contributions, and remove terms which appear in both, for example by removing terms in
the three-particle cuts which have (any) two-particle cut. Of the terms listed explicitly in
eq. (4.25), only the middle term has a two-particle cut. Removing it (thereby performing
the required merging), and relabeling 1 → , 3 → −p− k1 − k2, we obtain,

i

∫
dDp

(2π)D
dD

(2π)D
1
s212

1
2(p + k1 + k2)2

×

×
[

1
s12

1
p2(+ k1 + k2)2

+
1

p2(p− )2(+ k1 + k2)2
+

+
1

(p+ k1)2p2(+ k1 + k2)2
+

1
p2(− k4)2(+ k1 + k2)2

+ (4.26)

+
1

(p− )2[p2]2
+

1
(p− )2[(+ k1 + k2)2]2

]
+ · · · ,

again in exact agreement with the terms that would emerge from a Feynman-diagram
calculation. (The reader may wonder why the first and last terms in eq. (4.25), which
correspond to the diagrams in figure 18(e), do not contain two-particle cuts. Naively,
these diagrams do contain two-particle cuts; but a closer inspection shows that such a cut
would have a bubble on an external line; such bubbles are scale-free and hence vanish in
dimensional regularization.)

Note that not all contributions will require these subtractions to match overlaps; for
example, the t-channel cut of the planar double box shown in figure 23 has only one
contribution, a three-particle cut.
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Figure 23: The t-channel cut of the planar double box.

In practice, it appears to be more efficient to start with the two-particle cuts, and then
merge in additional terms from the three-particle cuts. In addition to the cut projection
operator Ps, which yields the part of its argument that has any cut (two- or three-particle)
in the specified channel s, we will also make use of four additional projection operators.
These are P(2)

s , which extracts terms containing a two-particle cut; P(3)
s , those containing

a three-particle cut; P(2)
s|| , those containing a ‘double cut’, that is whose two-particle cut

can be cut again (for example, figure 21); and P(3)
s× , those containing a contribution to both

terms in the three-particle cut (corresponding to terms which have all the propagators cut
in figure 21 and the center propagator in addition). Note that these projection operators
do not necessarily remove terms with other cuts; for example, P(2)

s may yield an expression
containing three-particle cuts in addition to the two-particle cut. In cases where there is
only a single two-particle cut, or where there is only a single contribution to the three-
particle cuts, P(2)

s|| and P(3)
s× are understood to vanish.

Using these projection operators, we can define a complete promotion operator
⌈⌋
C

for
a given channel,⌈⌋

C
A(·)({i}, aj , . . . , bj)A(·)(bj + 1, . . . , aj − 1, {−i}) =(

1 − 1
2
P(2)
s||
)⌈⌋[

A(0)(, aj , . . . , bj ,−−Kj) ×
×A(1)(+Kj, bj + 1, . . . , aj − 1,−) + (4.27)

+A(1)(, aj , . . . , bj ,−−Kj) ×
×A(0)(+Kj, bj + 1, . . . , aj − 1,−)

]
+

+
(
1 − P(2)

s

)(
1 − 1

2
P(3)
s×
)

⌈⌋
A(0)(1, 2, aj , . . . , bj ,−1 − 2 −Kj) ×
×A(0)(1 + 2 +Kj , bj + 1, . . . , aj − 1,−2,−1) ,

where A(1) denotes the integrand for the one-loop amplitude. Here we consider only the
planar case, so that all cut-crossing momenta are color-adjacent; but the construction
generalizes in a straightforward way to non-planar amplitudes. As in the example discussed
earlier, the role of the factors of 1/2 in front of P(2)

s|| and P(3)
s× is to remove double-counting

that occurs in cutting, ensuring that each term contributes to the integrand with the correct
coefficient.
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Figure 24: The two contributions wherein one sews a one-loop amplitude to a tree-level amplitude
to produce a contribution to the two-loop integrand.

Using this complete promotion operator, the complete integrand for the two-loop am-
plitude A(2)(1, . . . , n) is given by an expression very similar in form to that for the one-loop
amplitude (4.9),

I(2) =
nC∑
j=1

∏j−1
l=1

(
1 − Psl

)
Psj

⌈⌋
C
A(·)({i}, a(sj), . . . , b(sj)) × (4.28)

×A(·)(b(sj) + 1, . . . , a(sj) − 1, {−i}) ,

but with the complete promoted cut being used where the basic one was in the one-loop
case.

A practical algorithm is similar in structure to that at one loop, but requires additional
merging over two- and three-particle cuts. The first three steps (construct ordered set of all
channels, determine labelings, initialize integrand to zero) are the same. As in the one-loop
case, from a formal point of view, the relabelings below are not required by the method, but
since we will ultimately be feeding the resulting integrands to an integration machinery,
we might as well incorporate the standardization at an early stage in the calculation.

In the two-loop case, ‘irreducible numerators’ appear. These are dot products of loop
momenta and external momenta that cannot be written as linear combinations of inverse
propagators. Such terms must be added to the basis of expressions described just before
the one-loop algorithm. With this modification, the algorithm again continues after the
first four set-up steps by iterating over all channels. For each channel (kaj , . . . , kbj ),

5. Sew first two-particle cuts. Form the product of the integrand for the on-shell one-loop
amplitude A(1)(1, aj , . . . , bj , 2) and the tree amplitude A(0)(−2, bj +1, . . . , n, 1, . . . ,
aj − 1,−1) (where 1 + 2 + Kj = 0), summing over the different particle types
and helicities that can circulate in the loop. The sum must in general be performed
in D = 4 − 2ε dimensions. Use the polarization-vector identities (4.12) to express
everything in terms of the cut momenta 1, 2 and the light-cone vector n. (As in the
one-loop case, this will introduce physical projectors into the integrand.) Multiply by
−1 for each fermion loop is created by sewing. Put in the propagators crossing the
cut, i


2
for each cut leg. Note that in general four-dimensional Fierz identities may

not be used. Fermion traces over internal fermion lines should be performed first,
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re-expressing the result in dot products, with summation over gluon polarizations
performed afterwards. Rewrite terms using the basis expressions, and expand sums so
that each term can be classified as the daughter of a single parent diagram. Complete
dot products in the denominator to form propagator denominators adjacent to the
cut, 2 · ki → ±( ± ki)2, the + corresponding to ki on the left side of the cut,
the − sign to those on the right side of the cut. The sewing operation is depicted
schematically in figure 24(a), and corresponds to the promotion of the second term
in brackets in eq. (4.27).

6. Put into canonical form. Use momentum conservation to reduce the number of cut-
crossing momenta (now loop momenta) appearing in spinor traces, and then expand
spinor traces and all dot products in terms of the basis. (As explained above, this
expansion may not always be necessary.) When using the spinor-helicity method for
external polarization vectors, or explicit helicity states, we will obtain spinor strings
of the form 〈j−1 |/j2 · · ·/ · · · /j3|j±4 〉. As explained earlier, one can complete these to a
trace, then convert the trace to dot products and Levi-Civita tensors. The latter can
be converted to Gram determinants (and thence to dot products) by multiplying (and
dividing) by a Levi-Civita tensor involving only external momenta. (Spinor strings
involving only external momenta need not be manipulated, obviously.)

7. Relabel. For each term obtained in step 6, relabel the momenta to the standard
labeling for its parent integral. Where required, insert factors of squared momenta
in the numerator and denominator to match a ‘parent’ diagram. In some cases, it
will be possible to obtain different parents by inserting different factors; it doesn’t
matter which one is picked.

8. Sew second two-particle cuts. Form the product of the on-shell tree amplitude
A(0)(1, aj , . . . , bj, 2) and the integrand for the on-shell one-loop amplitude A(1)(−2,
bj + 1, . . . , n, 1, . . . , aj − 1,−1) (where 1 + 2 + Kj = 0), again summing over the
different particle types and helicities that can circulate in the loop. As in step 5,
put in fermi minus signs and the cut propagators, complete dot products to propa-
gators, and rewrite terms using basis expressions. The sewing operation is depicted
schematically in figure 24(b), and corresponds to the promotion of the first term in
brackets in eq. (4.27).

9. Put into canonical form. Use momentum conservation, the cut condition, and ex-
pansion of spinor traces, along the lines of step 6.

10. Relabel. For each term obtained in step 9, relabel the momenta to the standard
labeling for its parent integral, inserting factors of squared momenta in the numerator
and denominator where required.

11. Merge two-particle cuts, removing double-counting. To the result obtained in step 7,
add those terms obtained in step 10 not present in the result from step 7. (Equiv-
alently, add the results of steps 7 and 10, and then subtract terms present in both
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Figure 25: Sewing together two tree-level amplitudes to produce the three-particle cut contribution
to the two-loop integrand.

expressions. These latter terms are those with two pairs of propagators present, i.e.
those cut through in the ‘double’ two-particle cut.) This step corresponds to the
operator (1 − 1

2P
(2)
s|| ) in eq. (4.27), and yields the sewn two-particle cut in the given

channel.

12. Sew three-particle cuts. Form the product of on-shell tree amplitudes A(0)(2, 1, aj ,
. . . , bj , 3) and A(0)(−3, bj+1, . . . , n, 1, . . . , aj−1,−1,−2) (where 1+2+3+Kj =
0), summing over the different particle types and helicities for the i. As in step 5, put
in fermi minus signs and the cut propagators, complete dot products to propagators,
and rewrite terms using basis expressions. This operation is depicted schematically in
figure 25, and corresponds to the promotion operation in the last term in eq. (4.27).

13. Put into canonical form. Use momentum conservation, the cut condition, and ex-
pansion of spinor traces, along the lines of step 6.

14. Relabel. For each term obtained in step 13, relabel the momenta to the standard
labeling for its parent integral, inserting factors of squared momenta in the numerator
and denominator where required.

15. Remove double-counting. Multiply by one-half those terms (if any) which contribute
to both terms in the three-particle cuts. These are the terms that contain all five
propagators 1/21, 1/22, 1/23, 1/(1 + 2)2, and 1/(2 + 3)2. As before, in gen-
eral, identification of these terms may require expansions of numerators, and use of
momentum-conservation identities. This step corresponds to the operator (1− 1

2P
(3)
s× )

in eq. (4.27), and yields the sewn three-particle cut in the given channel.

16. Merge two- and three-particle cuts. To the two-particle cut obtained in step 11, add
those terms in the three-particle cut not present in the two-particle cut. (Equivalently,
add the two expressions, then subtract those terms in the three-particle cut also
present in the two-particle cut, corresponding to the action of the operator P(2)

s in
eq. (4.27).) This yields the complete sewn expression (4.27) in the current channel.

17. Clean. Remove all terms which have no cut in the current channel. (Such terms might
have been introduced by earlier algebraic manipulations.) Using a canonical basis as
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described above, remove any terms which do not contain both cut propagators. This
step corresponds to the operator Psj in eq. (4.28).

18. Merge. Remove all terms in the current-channel sewn expression that already appear
in the net integrand. That is, remove any term which has cuts in a previously-
processed channel. Using a canonical basis as described above, it suffices to pick out
and remove terms that have a pair or triplet of propagators corresponding to a cut in
a previously-processed channel. This step corresponds to the operator

∏j−1
l=1

(
1−Psl

)
in eq. (4.28).

19. Accumulate. Add the remaining terms in the current-channel sewn expression to the
integrand. This step corresponds to the sum in eq. (4.28).

20. Continue with the next channel at step #5.

As in the one-loop case, one could alternatively do the merging after integration rather
than before. One again needs a nonredundant basis of master integrals; but here, one
needs to adjust the coefficients of some integrals to account for the double-counting issues
discussed in the earlier example, and handled in steps 11 and 15 of the two-loop algorithm
above. The master integrals must be chosen so that each is associated with a definite
overall correction for double-counting; and one must keep track of the original set of cut
lines in each term, alongside the integral result. In performing integral reductions, one
must eliminate integrals in which cut propagators are cancelled. In the computation of a
given cut in an amplitude, one first needs to merge the different two-particle cuts, as there
is now more than one contribution. Those master integrals with two contributions to the
three-particle cuts in the given channel would have their coefficients decreased by a factor
of two. The three-particle cuts must then be merged with the two-particle cuts to obtain
the full set of terms for the given channel. One can check cut consistency between different
channels just as at one loop. Master integrals with discontinuities in two or more channels
must appear with the same coefficient in each channel. The merging of contributions from
different channels also proceeds in the same manner as at one loop: for those master
integrals with discontinuities in multiple channels, one would take the result from any of
the channels (that is, pick one, rather than adding together the different contributions).

4.4 Merging with Legs Off Shell

When computing splitting amplitudes, we have an off-shell leg in the problem, and not
all light-cone denominators cancel from the final integrand as they do for fully on-shell
scattering amplitudes. For two-loop splitting amplitudes, one side of the cut will have
an on-shell tree or one-loop amplitude integrand, while the other side contains a tree-
level splitting amplitude or one-loop splitting amplitude integrand. The three-particle cuts
require the use of 1 → 3 tree-level splitting amplitudes, which should be calculated in
light-cone gauge. This introduces additional light-cone gauge denominators into certain
integrals. As at one loop, sewing gluons across the cut using eq. (4.12) will introduce
similar denominators. These denominator factors will survive into the integration, and in

– 42 –



2

1

(a)

2

1

(b)

2

1

(c)

Figure 26: The three-particle cut (a) contains a light-cone denominator on the leg indicated by
an arrow, but the two-particle cut (c) will not contain one on that leg. Cut consistency demands
that the light-cone denominator indicated in (a) must cancel from all terms where the two-particle
cut (c) does not vanish. The light-cone denominator arising in the three-particle cut indicated in
(b) is compatible with the ones in the two-particle cut (c) and therefore does not need to cancel.

fact play a crucial role in obtaining the right ‘complexity’ of integrals. However, as we
shall discuss in section 5, they will only arise in lines corresponding to cut momenta or
connected directly to the off-shell vertex.

The presence of non-canceling light-cone denominators does not alter the merging
procedure described above: these denominators simply go along for the ride. Following the
discussion in section 3, we may expect all surviving light-cone denominators to produce
integrals properly regulated by covariant dimensional regularization, and this is indeed
the case in the calculation we have performed. In contrast, a light-cone gauge Feynman
diagram approach would contain ill-defined diagrams requiring an additional prescription
such as the PV or ML prescriptions. The ill-defined contributions may cancel in the sum
over all diagrams before integration, if a great deal of care were taken to align momenta
properly across different diagrams, as guided by the unitarity cuts.

As discussed in section 4.2, if all legs are on shell then all light-cone denominators
cancel from the integrands of each cut. Even if some legs are off shell, some light-cone
denominators (introduced by the physical-state projector a cut) can be canceled prior to
integration by combining information from different cuts. The possibility of these cancella-
tions is dictated by cut consistency. If a given term in an integrand has a cut in more than
one channel then it must appear with the same coefficient in each such cut. A light-cone
denominator absent in a term in any one of the cuts must also cancel in all other cuts.
This cancellation may, however, not be manifest. To cancel the denominators, in general,
momentum conservation rearrangements are required. We note that in performing the
calculation it is generally helpful to explicitly cancel as many light cone-denominators as
possible, to reduce the number and complexity of integral types that need to be evaluated.
(This goes beyond the automatic absence of dangerous light-cone denominators discussed
at the end of section 3.)

As an example, consider the contributions to the two-loop splitting amplitude depicted
in figure 26, with both two- and three-particle cuts. In the cuts a light-cone denominator
will appear on each sewn gluon line. The three-particle cut contains contributions with the
light-cone denominators indicated in figure 26(a) and (b). However, if these contributions
also have the two-particle cut indicated in figure 26(c), then the light-cone denominator
indicated in (a) must cancel algebraically in the three-particle cut after suitably combining
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Figure 27: The three contributing cuts.

terms using momentum conservation. The reason is cut consistency: in terms which have
both two- and three-particle cuts, we must obtain identical results. In the two-particle
cut (c) everything to the left of the cut is gauge invariant, and cannot contain light cone-
denominators. (If we consider, instead of figure 26, a contribution for which either of the
two cut propagators in (c) are absent, then we cannot determine from that two-particle
cut whether the denominator (a) should cancel or not. However, by considering the other
contribution to the three-particle cut we find that the absence of the top cut propagator
in (c) allows the denominator in (a) to be present; but in the absence of the bottom cut
propagator alone, the denominator in (a) has to cancel.) More examples of arguments of
this type can be found in the discussion of the types of integral topologies encountered in
figure 30 in section 6.

5. Generation of Splitting Amplitude Integrands

Using the unitarity-based method described in the previous section we have generated
the integrand for the two-loop splitting amplitude. Here, instead of sewing together two on-
shell amplitudes, we sew an on-shell amplitude to a splitting amplitude. The tree splitting
amplitudes are given by a current with one leg off shell [7], or equivalently, an amplitude
with one leg off shell divided by the squared momentum of that leg. In general, the current
should be evaluated in light-cone gauge. It can be computed either recursively [7], or
via color-ordered Feynman rules. In a computation of the one-loop splitting amplitude,
only the 1 → 2 tree splitting amplitude enters; in the computation of the two-loop one,
both the 1 → 2 and 1 → 3 splitting amplitudes enter. The 1 → 2 tree-level splitting
amplitude is basically just a vertex, and so has the same expression in both covariant and
light-cone gauges; but the expression for the 1 → 3 amplitude is not the same in different
gauges [41, 84].

The 1 → 3 splitting amplitude governs the universal behavior of tree-level gauge-theory
amplitudes in triply-collinear limits, where three color-adjacent momenta k1,2,3 become
collinear, and all invariants t123, s12, s23 are comparably small. These limits have been
described previously in refs. [40, 41].

There are three basic types of contributions we need to consider:

(a) two-particle cuts with an on-shell one-loop four-point amplitude integrand sewn onto
the tree-level 1 → 2 splitting amplitude, depicted in figure 27(a);

(b) two-particle cuts with an on-shell tree-level four-point amplitude sewn onto the one-
loop 1 → 2 splitting amplitude integrand, depicted in figure 27(b);
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Figure 28: Examples of non-planar contributions to the two-loop g → gg splitting amplitude, all
of which have vanishing color factors.

(c) three-particle cuts with an on-shell tree-level five-point amplitude sewn onto the tree-
level 1 → 3 splitting amplitude, depicted in figure 27(c).

In our calculation, there is a cut in only one channel (the invariant s12 in figure 27),
so cross-channel projection and consistency issues do not arise. However, the three con-
tributing cuts do need to be constructed and merged as described in the previous section,
as there are terms that are common to different contributions. As in the one-loop case,
the light-cone denominators inserted by the physical projection operators on the cut are
crucial to getting the correct answer. This is also true for the light-cone denominator on
a line connected to the off-shell vertex, contained in the 1 → 3 splitting amplitude. Its
absence would result in different and inconsistent integrands emerging from the two- and
three-particle cuts.

In principle, non-planar topologies could enter into the g → gg splitting amplitude, for
example the crossed triangle graphs shown in figure 28. However, it turns out that all such
non-planar graphs, for both pure-glue and fermion-loop contributions, have vanishing color
factors: one simply dresses the diagrams with their color factors and performs the color
algebra to demonstrate this. Accordingly, we only need to sew amplitudes into planar
configurations for our calculation. As we shall show in section 9, the only color factor
that arises in the pure-glue contributions is the leading-color one, namely C2

A = N2
c , for

the simple reason that there are no other color Casimirs at this order. The fermion-
loop contributions can be divided into leading-color (CANf = NcNf ) and subleading-color
((CA − 2CF )Nf = Nf/Nc) terms. Both types arise from planar diagrams. Each planar
diagram contributing to the subleading-color terms can be drawn with the virtual gluon on
the inside of the fermion loop, whereas each for the leading-color terms can be drawn with
the virtual gluon on the outside. (Some diagrams with bubble insertions can be drawn both
ways, and are proportional to CF = (N2

c − 1)/(2Nc).) We discuss the full color dressing of
the splitting amplitudes in section 9.

For splitting amplitudes with external quarks, g → qq̄ and q → qg, the non-planar
color factors no longer vanish. Non-planar two-loop three-point integrals with light-cone
denominators will be required. However, these integrals should be amenable to the same
methods used in the present computation.

In carrying out the calculation, we group terms in each sewn cut into different inte-
gral topologies, according to their propagators and light-cone denominators. To reduce
the number of independent topologies, we perform a partial-fraction decomposition when
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certain multiple light-cone-denominators appear. For example, if p1 + p2 = k1 + k2 for two
internal momenta p1, p2, we substitute

1
p1 · n p2 · n → 1

(k1 + k2) · n
[

1
p1 · n +

1
p2 · n

]
. (5.1)

Although the physical-state projectors for a two-particle cut generate two different light-
cone denominators, the use of eq. (5.1) allows us to consider only one at a time. For
triplets of light-cone denominators associated with a three-particle cut, only two have to be
considered at a time. We also use a symmetry of the integrals under k1 ↔ k2 (z ↔ 1 − z)
to restrict the number of integral topologies to those described in figure 30 in the next
section.

After relabeling momenta circulating in the sewn cut (see appendix B) to match the
labeling used by the integration routine for a given topology (see the next section), we
obtain an integrand of the form

f(p2, p · q, q2, p · ki, εi · p, εj · q)∏
i p

2
i

, (5.2)

ignoring factors that come out of the integral such as εi · εj . Here p and q are the loop
momenta;

∏
i p

2
i is shorthand for the set of both Feynman propagators and light-cone

denominators for the topology. The polarization vectors for particles i = 1, 2, P are denoted
by εi, and are taken to satisfy the light-cone-gauge condition εi · n = 0, as well as the
transverse condition εi · ki = 0. (Note that although kP is slightly off shell, any terms
arising from εP · kP �= 0 will not be sufficiently singular in the k2

P → 0 limit to contribute
to the splitting amplitude, and hence we may as well set εP · kP to zero.)

In the dot products of polarization vectors with loop momenta, εi · p and εi · q, the
D-dimensional loop momenta are effectively projected into four dimensions, because the
external physical polarizations are four dimensional. Following the discussion of ref. [8], we
write the loop momenta in these dot products as linear combinations of four independent
momenta: k1, k2, n, and the dual vector

vµ ≡ εµν1ν2ν3k
ν1
1 k

ν2
2 n

ν3 . (5.3)

Then we have, for example,

εi · p = cp1 εi · k1 + cp2 εi · k2 + cpn εi · n+ cpv εi · v , (5.4)

where

cp1 =
1

2k1 · k2 k1 · n
[
−k2 · n p · k1 + k1 · n p · k2 + k1 · k2 p · n

]
,

cp2 =
1

2k1 · k2 k2 · n
[
k2 · n p · k1 − k1 · n p · k2 + k1 · k2 p · n

]
,

cpn =
1

2k2 · n k1 · n
[
k2 · n p · k1 + k1 · n p · k2 − k1 · k2 p · n

]
,

cpv = − 1
2k1 · k2 k1 · n k2 · nεµν1ν2ν3p

µkν11 k
ν2
2 n

ν3 = − 1
2k1 · k2 k1 · n k2 · np · v . (5.5)
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After this substitution we use momentum conservation to express each integrand in terms
of a basis consisting of:

1. inverse propagators;

2. light-cone denominators and numerators;

3. irreducible numerators (dot products of loop momenta with k1 and k2 which cannot
be written in terms of inverse propagators); and

4. dot products of loop momenta with the dual vector (5.3), coming from cpv and cqv .

Following the merging procedure described in the previous section, at the integrand level,
we obtained a single expression with correct cuts in all channels. Using the formulæ in
section 4 of ref. [8], we then replaced dot products of loop momenta with the dual vector,
p · v and q · v, by other elements of the basis. (These formulæ are valid at the level of
integrals, not integrands, so they should only be applied after checking cut consistency.)
Typical propagator momenta, light-cone dot products, and irreducible numerators that
appear in the calculation are given in eqs. (6.4) and (6.6). This produces an expression
ready to be integrated. We describe the integration method in the next section.

6. Integrals

6.1 Introduction

All the integrals encountered in our computation of the two-loop splitting amplitudes are
3-point integrals with one external massive leg, and two massless legs. The massless legs
carry momenta k1 and k2. The massive leg carries momentum kP = k1 + k2 with k2

P =
(k1 + k2)2 = 2k1 · k2 ≡ s. We consider the time-like case, s > 0. For the space-like case,
we take the splitting to be (−k1) → (−kP ) + k2, with k2

P = s < 0. Here (−kP ) and k2

carry longitudinal momentum fractions x and 1−x respectively, with x = 1/z. The space-
like case may be obtained from the time-like case using analyticity. As there is no other
dimensionful parameter in the problem, the dependence on s is determined by dimensional
analysis to be ∝ (−s)−2ε. To reach the physical range 0 < x < 1, it is also necessary to
continue the momentum fraction z to values larger than 1, as we shall discuss in section 7.4.

In addition to standard propagator factors of the form 1/p2 in the denominator, and
tensors in the numerator, there can also be denominator factors from light-cone gauge (or
physical state projection, of the form 1/(p · n) where nµ is the light-cone gauge vector,
n2 = 0. The vector n is also used to define the collinear momentum fraction z, according
to the kinematic relations (3.8). We also rescale n so that it obeys eq. (3.10), kP · n = −s.

Two-loop 3-point integrals containing light-cone denominator factors have not been
encountered previously, and contain non-trivial dependence on z. For the case of a gluon
splitting to two gluons, we shall see that the non-planar topologies all have vanishing color
factor, and hence the corresponding integrals do not need to be calculated. The integrals
from the planar topologies can be reduced to a set of 13 master integrals, using identities
based on integration by parts (IBP) [59] and Lorentz invariance [20]. The master integrals
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can be evaluated as Laurent expansions in ε with the aid of differential equations in z,
along the lines of refs. [18, 20].

The Laurent expansions of each master integral, through the order in ε required to
obtain the splitting amplitudes to order ε0, can be expressed in terms of logarithms, plus
the polylogarithmic functions defined [85] by,

Lin(x) =
∞∑
i=1

xi

in
=
∫ x

0

dt

t
Lin−1(t) , (6.1)

Li2(x) = −
∫ x

0

dt

t
ln(1 − t) . (6.2)

Here we need Lin(x), for n = 2, 3, 4, and the argument x can be z, 1 − z or −(1 − z)/z.
(For n < 4, identities relate some of these polylogarithms to each other.) For the order ε1

terms in the splitting amplitudes, the corresponding set of functions (with n extending up
to 5) is not sufficient; instead harmonic polylogarithms [86, 20] are required.

In section 6.2 we describe the procedure for reducing the two-loop three-point integrals
with light-cone denominators to master integrals, and give a list of master integrals required
for the g → gg splitting amplitude. In section 6.3 we illustrate how to derive differential
equations for the master integrals, and present the differential equations. We also give the
Laurent expansions of the master integrals.

6.2 Reduction Procedure

A typical integral encountered is the two-loop nested double triangle integral with two
light-cone denominators inserted,

L(ν1, ν2, ν3, . . . , ν9) ≡
∫

dDp

πD/2
dDq

πD/2

9∏
i=1

1
(p2
i )
νi
, (6.3)

where D = 4 − 2ε,

p1 = q, p2 = q + k1 + k2, p3 = p, p4 = p− k1 − k2,

p5 = p− k1, p6 = p+ q,

p2
7 = q · n, p2

8 = 2q · k1, p2
9 = (p − k1 − k2) · n, (6.4)

and the νi are integers. The momentum routings for this integral are depicted in fig-
ure 29(a). The off-shell external momentum k1 + k2 flows in from the right of the diagram,
and splits into on-shell momenta k1 and k2 flowing out to the left. The uncircled numbers
adorning the internal lines label the internal momenta pi, whose squares are the ‘ordinary’
denominators p2

i , i = 1, 2, . . . , 6, appearing in eq. (6.3). The circled numbers correspond to
the light-cone denominators, in this case p2

7 and p2
9, which are linear in n. Associated with

each circled number is an arrow on an internal line. The arrow is a reminder of the direc-
tion of the internal momentum which is Lorentz-contracted with n to form the light-cone
denominator. One of the p2

i in eq. (6.3) is not shown in figure 29(a): p2
8 = 2q · k1. In this
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L

p2
8 = 2q · k1

(b)
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p2
9 = 2p · k2k1
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Figure 29: (a) The planar double triangle integral L(νi) defined in eq. (6.3). (b) The planar double
triangle integral LPB(νi) defined in eq. (6.5). In each case k1 and k2 are the two outgoing massless
external lines. The internal lines, or ‘ordinary’ propagators, labelled with an uncircled integer i,
i ∈ {1, 2, . . . , 6}, carry momenta pµ

i . The special light-cone denominator factors pi ·n which can be
present are marked with an arrow on an internal line, and the corresponding integer label is circled.
The arrow serves to remind one of the direction of the loop-momentum used in their definition.
Propagators 8 (in case (a)) and 9 (in case (b)) do not appear in denominators in these integrals.
The expressions for p2

8 and p2
9 are given explicitly.

topology, it only appears in the numerator, i.e. ν8 ≤ 0. It will appear as an irreducible nu-
merator in the tensor integrals arising from the numerator algebra generated in evaluating
the cuts. Its presence is also required to close the IBP equations.

We also encounter the ‘pentabox’ integral topology [87] (but with one ordinary prop-
agator cancelled), again with two light-cone denominator insertions,

LPB(ν1, ν2, ν3, . . . , ν9) ≡
∫

dDp

πD/2
dDq

πD/2

9∏
i=1

1
(p2
i )
νi
, (6.5)

where

p1 = q, p2 = q + k1 + k2, p3 = p, p4 = q + k1,

p5 = p− k1, p6 = p+ q,

p2
7 = (q + k1 + k2) · n, p2

8 = p · n, p2
9 = 2p · k2. (6.6)

The momentum routings for this integral are depicted in figure 29(b). In this case p2
7 and

p2
8 are the circled, light-cone denominators, and p2

9 only appears in the numerator, ν9 ≤ 0.
Besides the two types of integrals depicted in figure 29, there are several more types,

which differ from either L or LPB only in the location of the light-cone denominators. All
the light-cone configurations are shown in figure 30. The leftmost two cases, L and LPB,
are equivalent to figure 29(a) and figure 29(b). The momentum routings and the labels for
the external legs and for propagators 1 to 6 are exactly the same as in figure 29, so we have
suppressed them in figure 30. The remaining cases define the integrals D(νi), F (νi), G(νi),
H(νi), J(νi) and M(νi), by analogy to eqs. (6.3) and (6.5). As in the L and LPB cases,
one extra propagator, linear in the loop momentum but not a light-cone denominator, is
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L
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9

D

7
9

×

G

7
9 ×

H

7
9 × p2

8 = 2q · k1

LPB

7

8

F

7
8

J

7

8 ×

M

7

8 × p2
9 = 2p · k2

Figure 30: List of required light-cone denominator insertions for the g → gg splitting amplitude.
The leftmost two cases are equivalent to figure 29(a) and figure 29(b). The labels for the external
legs and for propagators 1 to 6 are suppressed. The expression for the extra propagator required for
tensor reductions is the same for L, D, G and H topologies: p2

8 = 2q · k1. The extra propagator for
LPB, F , J and M topologies is p2

9 = 2p ·k2. For the D, G, H , J and M topologies, the ‘×’ signifies
that the marked ordinary propagator is not required in the denominator, only in the numerator.

required for tensor integral reduction and for the IBP equations to close; the expression
for this propagator is shown explicitly in the figure.

The symbol ‘×’ on a line in figure 30 indicates that that ordinary propagator never
appears in the denominator, when the light-cone denominators indicated by the arrows are
present. As discussed in section 4.4, the unitarity cuts guarantee these facts. For example,
suppose the propagator marked with a ‘×’ in the J topology were present. Then such
an integral has a 2-particle cut to the right of the circled propagator 8. (If propagator
2, which also must be present in the 2-particle cut, did not appear in the denominator,
then the integral would become a massless external leg integral, which vanishes trivially in
dimensional regularization.) But we know that no light-cone projectors should appear to
the left of such a cut, so either the circled propagator 8 or the ×-marked propagator must
be absent in J . If the circled propagator 8 is absent from the denominator, we consider
the integral to belong to the F topology instead.

Note that we have not explicitly shown integrals that are related to the ones in figure 30
by the external leg permutation k1 ↔ k2, which also takes z ↔ 1 − z. We always use this
permutation to map such integrals into those shown in figure 30.

There are three independent external four-vectors in the light-cone integrals, k1, k2 and
n. Due to momentum conservation, the same number of vectors appear in the two-loop
four-point integrals needed for 2 → 2 scattering, k1 + k2 → k3 + k4. In fact, n may be
thought of as a fictitious momentum vector k3, if desired. Then the derivation of IBP and
Lorentz invariance identities follows straightforwardly from previous work on four-point

– 50 –



integrals [59, 18, 20, 19]. The IBP equations for the L topology are derived by considering

0 =
∫

dDp

πD/2
dDq

πD/2
∂

∂aµ

[
bµ

9∏
i=1

1
(p2
i )
νi

]
, (6.7)

where the p2
i are given in eq. (6.4), aµ ∈ {pµ, qµ} are the two independent loop momenta,

and bµ can be any of the five available vectors, bµ ∈ {pµ, qµ, kµ1 , kµ2 , nµ}. Thus for each
value of {νi}, there are 2 × 5 = 10 IBP equations, which are linear in the L(νi). They can
be written as

0 = (D − 2ν3 − ν4 − ν5 − ν6 − ν9) + ν4(s− 3−)4+ − ν53−5+ +

+ ν6(1− − 3−)6+ + ν9 s9+ , (6.8)

0 = ν3 − ν6 + ν3(1− − 6−)3+ − ν4(s− 2− − 3− + 6−)4+ + ν5(1− + 3− − 6− + 8−)5+ −
− ν6(1− − 3−)6+ − ν9 7−9+ , (6.9)

0 = −ν3 + ν5 + ν35−3+ + ν4(s− 3− + 5−)4+ − ν53−5+ −
− ν6(3− − 5− + 8−)6+ + ν9 zs9+ , (6.10)

0 = ν4 − ν5 − ν3(s− 4− + 5−)3+ − ν45−4+ + ν54−5+ +

+ ν6(1− − 2− + 4− − 5− + 8−)6+ + ν9 (1 − z)s9+ , (6.11)

0 = ν3(s− 9−)3+ − ν49−4+ + ν5((1 − z)s− 9−)5+ + ν6(s− 7− − 9−)6+ , (6.12)

0 = ν1 − ν6 + ν1(3− − 6−)1+ − ν2(s− 1− − 4− + 6−)2+ + ν6(1− − 3−)6+ +

+ ν7(s− 9−)7+ − ν8(3− − 5−)8+ , (6.13)

0 = D − 2ν1 − ν2 − ν6 − ν7 − ν8 + ν2(s− 1−)2+ − ν6(1− − 3−)6+ , (6.14)

0 = −ν18−1+ − ν2(s+ 8−)2+ − ν6(3− − 5− + 8−)6+ + ν7 zs7+ , (6.15)

0 = ν1 − ν2 + ν1(s− 2− + 8−)1+ + ν2(1− + 8−)2+ + ν6(1− − 2− + 4− − 5− + 8−)6+ +

+ ν7 (1 − z)s7+ − ν8 s8+ , (6.16)

0 = −ν17−1+ + ν2(s− 7−)2+ + ν6(s − 7− − 9−)6+ + ν8 zs8+ . (6.17)

Here i± are operators taking νi → νi± 1; for instance, in eq. (6.8) the expression −ν53−5+

is shorthand for the term −ν5L(ν1, ν2, ν3 − 1, ν4, ν5 + 1, ν6, ν7, ν8, ν9).
Three Lorentz invariance identities for each value of {νi} can also be derived, by

requiring

0 =
∫

dDp

πD/2
dDq

πD/2
εµj ν

(
kν1

∂

∂kµ1
+ kν2

∂

∂kµ2
+ nν

∂

∂nµ

) 9∏
i=1

1
(p2
i )
νi
, (6.18)

where

εµ1 ν = kµ1 k
ν
2 − kµ2 k

ν
1 ,

εµ2 ν = kµ1n
ν − nµkν1 ,

εµ3 ν = kµ2n
ν − nµkν2 . (6.19)

The three identities are

0 = (ν2 + ν4 − ν5 − ν8) − ν2(s+ 1− + 28−)2+ − ν4(s− 3− + 25−)4+ + ν5 3−5+ +
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+ ν7(zs + z 1− − z 2− + 8−)7+ − ν9(zs− (1 − z)3− − z 4− + 5−)9+ , (6.20)

0 = z(ν5 − ν7 + ν8 − ν9) + ν2(7− + 8−)2+ + ν4(s− 3− + 5− − 9−)4+ −
− ν5 z 3−5+ + ν9 zs9+ , (6.21)

0 = ν2 + ν4 − (ν5 + ν8)z − (ν7 + ν9)(1 − z) − ν2(s + 1− − 7− + 8−)2+ −
− ν4(5− + 9−)4+ + ν5((1 − z)s+ z 4− − 9−)5+ −
− ν8(zs + z 1− − z 2− − 7−)8+ + ν9 (1 − z)s9+ . (6.22)

There are analogous sets of equation for the other integral topologies: LPB, D, G, H, F ,
J and M .

The next step is to solve the linear system of IBP and Lorentz equations for each
topology. We use a Gauss elimination algorithm first introduced by Laporta [23]. We have
used a customized version of this algorithm [60], written in MAPLE [88] and FORM [89].
After performing the reductions, we obtain 13 master integrals for the g → gg problem:

L(1, 1, 1, 1, 0, 0, 0, 0, 0) = Spec(s) =
ε2 s2

(1 − 2ε)2
Btie(s) ,

L(1, 0, 0, 1, 0, 1, 0, 0, 0) = LPB(0, 1, 1, 0, 0, 1, 0, 0, 0) = Sset(s) ,

L(1, 1, 0, 0, 1, 1, 0, 0, 0) = Btri(s) ,

L(0, 1, 1, 1, 0, 1, 1, 0, 0) = Fish(s) ,

L(1, 0, 0, 1, 1, 1, 1, 0, 0) = −LPB(0, 1, 1, 1, 0, 1, 0, 1, 0) = Wedge(z, s) ,

L(1, 1, 0, 0, 1, 1, 1, 0, 0) = LBtri(z, s) ,

L(0, 1, 1, 0, 1, 1, 1, 0, 0) = WedgeF(z, s) ,

L(1, 1, 1, 0, 1, 1, 1, 0, 0) = Zig(z, s) ,

L(1, 1, 1, 1, 1, 1, 1, 0, 0) = Ptri(z, s) ,

L(1, 1, 1, 1, 1, 2, 1, 0, 0) = Ptri2(z, s) ,

L(1, 0, 0, 1, 1, 1, 0, 0, 1) = −LPB(0, 1, 1, 0, 1, 1, 0, 1, 0)|z→1−z = −LPBWedge(z, s) ,

LPB(0, 1, 1, 1, 1, 2, 1, 1, 0) = LPBDtri2(z, s) ,

F (0, 1, 1, 1, 1, 1, 1, 1, 0) = FDtri(z, s) . (6.23)

(Btie(s) is an integral with two independent one-loop triangles, which is trivially related
to Spec(s).)

The master integrals are depicted in figure 31. The first three of the master integrals
have no light-cone denominators present, so they do not depend on z and were encountered
long ago in the computation of the quark form factor [90]. The next master integral, Fish(s),
has a light-cone denominator, but nevertheless does not depend on z. The remaining master
integrals depend on z. The next six come from the L topology, although they can also
come from other topologies. In the L topology labeling the have light-cone denominator
7, but not 9, present. The next master integral after that, LPBWedge(z, s) can come from
either the L or LPB topology. but in the L labeling it has light-cone denominator 9, but
not 7, present. Finally, the last two master integrals come from the LPB and F topologies
and have two light-cone denominators present, 7 and 8.
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Spec(s) Sset(s) Btri(s)

Fish(s) × Wedge(z, s) LBtri(z, s)

WedgeF(z, s) × Zig(z, s)

Ptri(z, s) Ptri2(z, s) LPBWedge(z, s)

LPBDtri2(z, s) FDtri(z, s) ×

Figure 31: The planar master integrals required for computing two-loop leading-color splitting
amplitudes. An arrow indicates a light-cone propagator, a dot indicates a doubled ordinary propa-
gator, and a ‘×’ indicates an omitted ordinary propagator.

In intermediate steps, two other master integrals appear, J(0, 1, 1, 1, 1, 1, 1, 1, 0) ≡
JDtri(z, s) and M(0, 1, 1, 1, 1, 1, 1, 1, 0) ≡ MDtri(z, s). However, there is a partial fraction
equation relating FDtri, JDtri and MDtri. Consider the identity

1
(p+ q) · n

1
q · n =

1
p · n

1
q · n +

1
(p+ q) · n

−1
p · n . (6.24)

It implies, after inspecting figure 30, that

JDtri(z, s) = FDtri(z, s) + MDtri(1 − z, s). (6.25)

After using this relation to eliminate JDtri, we find that the coefficient of MDtri cancels
out of all g → gg splitting amplitude expressions.

6.3 Differential Equations for Master Integrals

Since s is the only dimensionful scale entering the master integrals, their dependence on s
is fixed simply by dimensional analysis. The z-dependence of the master integrals can be
determined by differentiating their Schwinger-parametrized form with respect to z. This
produces an integral where some of the νi and the dimensionD have been shifted by integers
(D is always shifted by an even integer). The effect of shifting D can also be converted
into a shift of νi. Integrals with shifted νi are again reducible to master integrals. Thus
we first derive ‘dimension-shifting’ relations, and then differential equations in z, for the
master integrals.
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Consider a case where all the νi are non-negative. Schwinger parametrization is
achieved by inserting (for νi > 0)

1
(p2
i )
νi

=
(−1)νi

Γ(νi)

∫ ∞

0
dti t

νi−1
i exp(tip2

i ), (6.26)

into the loop-momentum integrals, Wick rotating, and then performing the integrals over
p and q, to arrive at the generic result

X(νi) = −
∫ ∞

0

nν∏
i=1

(
dti(−1)νi

tνi−1
i

Γ(νi)

)
×
[
∆(ti)

]−D/2
exp

[
−(−s)QX(z, ti)

∆(ti)

]
. (6.27)

Here X stands for one of the integral topologies, nν is the number of positive νi, and
QX(z, ti) is a cubic polynomial in the ti. Also,

∆(ti) ≡ TpTq + TpTpq + TqTpq , (6.28)

where Tp, Tq, Tpq are the sums of Schwinger parameters along the lines carrying loop
momenta p, q, p+ q, respectively. For the L, D, G and H integrals,

Tp = t3 + t4 + t5, Tq = t1 + t2, Tpq = t6. (6.29)

For the LPB, F , J and M integrals,

Tp = t3 + t5, Tq = t1 + t2 + t4, Tpq = t6. (6.30)

From eq. (6.27) we see that shifting D → D − 2 is equivalent to inserting a factor of ∆
into the Schwinger-parametrized result. Breaking up ∆ into monomials in the Schwinger
parameters ti, these integrals can be rewritten using shifted indices νi. For example,

Ptri(z, s)|D→D−2 = L(1, 1, 1, 1, 1, 1, 1, 0, 0)|D→D−2

= L(2, 1, 1, 1, 1, 2, 1, 0, 0) + L(1, 2, 1, 1, 1, 2, 1, 0, 0) + L(1, 1, 2, 1, 1, 2, 1, 0, 0) +

+ L(1, 1, 1, 2, 1, 2, 1, 0, 0) + L(1, 1, 1, 1, 2, 2, 1, 0, 0) + L(2, 1, 2, 1, 1, 1, 1, 0, 0) +

+ L(1, 2, 2, 1, 1, 1, 1, 0, 0) + L(2, 1, 1, 2, 1, 1, 1, 0, 0) + L(1, 2, 1, 2, 1, 1, 1, 0, 0) +

+ L(2, 1, 1, 1, 2, 1, 1, 0, 0) + L(1, 2, 1, 1, 2, 1, 1, 0, 0). (6.31)

The latter combination of integrals can be reduced to a linear combination of Ptri(z, s),
Ptri2(z, s), and the eight master integrals preceding them in eq. (6.23) or figure 31. We
have worked out such dimension-shifting relations for all of the master integrals, but we
refrain from presenting them all here. We shall give two examples in eqs. (6.43) and (6.44)
below.

Once the z-dependence of QX(z, ti) in eq. (6.27) is known, the derivative of X(νi) with
respect to z may be computed from the parametric representation (6.27). The polynomial
QX(z, ti) is always linear in z,

QX(z, ti) = Q0
X(ti) + z Q1

X(ti), (6.32)
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where Q0
X and Q1

X are independent of z. For the integrals encountered in the calculation,
the QX(z, ti) have a definite sign for 0 < z < 1. Hence all the master integrals are real
in the time-like region, apart from the overall factor of (−s)−2ε. For the first ten master
integrals in eq. (6.23), Q1

X(ti) = t5t6t7, unless any of ν5, ν6, ν7 vanishes. In these cases,
Q1
X(ti) = 0 and the master integral is independent of z. Thus Fish(s) is independent of z,

despite containing a light-cone denominator. For the non-trivial cases where ν5ν6ν7 > 0,
using eq. (6.27), the derivatives of the master integrals are simply obtained by inserting
(−s)Q1

X/∆ into the Schwinger-parametrized forms. (There is an extra minus sign from
Wick rotation.) For example,

∂

∂z
Ptri(z, s) =

∂

∂z
L(1, 1, 1, 1, 1, 1, 1, 0, 0) = (−s)L(1, 1, 1, 1, 2, 2, 2, 0, 0)|D→D+2 . (6.33)

The shift D → D + 2 comes from the factor of 1/∆. The effect of this shift is found by
inverting the D → D − 2 shift computed by inserting one factor of ∆.

For the integral LPBWedge(z, s), we have Q1
X(ti) = t4(t3 + t6)t7. For LPBDtri2(z, s)

and FDtri(z, s), we find Q1
X(ti) = [t5(t4 + t6) + t4(t3 + t6)]t7 − [t4(t5 + t6) + t5(t2 + t6)]t8.

Reducing the right-hand side of equations like (6.33) to linear combinations of master
integrals, we obtain the following set of differential equations:

∂

∂z
Wedge(z, s) =

z − 2ε
z(1 − z)

Wedge(z, s) +
(1 − 2ε)(2 − 3ε)(1 − 3ε)

ε2s2 z(1 − z)
Sset(s) , (6.34)

∂

∂z
LBtri(z, s) = −ε 2 − z

z(1 − z)
LBtri(z, s) − 1 − 3ε

s z(1 − z)
Btri(s) , (6.35)

∂

∂z
WedgeF(z, s) = −2(1 − 2ε) − z(2 − 3ε)

2 z(1 − z)
WedgeF(z, s) +

ε s

2(1 − z)
Zig(z, s) +

+
3
2

1 − 2ε
z(1 − z)

LBtri(z, s) +
3
4

(1 − 2ε)(1 − 3ε)
εs z(1 − z)

Btri(s) −

− (1 − 2ε)(1 − 3ε)(2 − 3ε)
2 ε2s2 z(1 − z)

Sset(s) , (6.36)

∂

∂z
Zig(z, s) = −3

2
ε

s (1 − z)
WedgeF(z, s) − 2 + 4ε− z(2 + ε)

2 z(1 − z)
Zig(z, s) −

− 3
2

1 − 2ε
s z(1 − z)

LBtri(z, s) +
3
4

(1 − 2ε)(1 − 3ε)
εs2 z(1 − z)

Btri(s) +

+
3
2

(1 − 2ε)(1 − 3ε)(2 − 3ε)
ε2s3 z(1 − z)

Sset(s) , (6.37)

∂

∂z
Ptri(z, s) =

−1
3 − 2z

[
3 + 6ε− 2z

z
Ptri(z, s) +

8ε(1 − 2ε)
s

Ptri(6)2 (z, s) +

+
2ε
s

Zig(z, s) − 2ε z
s2 (1 − z)

WedgeF(z, s) +

+
2(1 − 2ε) (9 − 7z − 3z2)

s2 z2(1 − z)
LBtri(z, s) +

+
2ε (1 − z)(9 − 4z)

s2 z2
Wedge(z, s) +

2ε (3 − 4z)
s2 z(1 − z)

Fish(s) +
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+
(1 − 2ε)(1 − 3ε) (9 − 16z + 5z2)

ε s3 z2(1 − z)
Btri(s) −

− (1 − 2ε)(1 − 3ε)(2 − 3ε) (9 + 26z)
ε2 s4 z2

Sset(s) − 12 ε
s z

Btie(s)
]
, (6.38)

∂

∂z
Ptri(6)2 (z, s) =

−1
3 − 2z

[
− s

2 (1 − z)
Ptri(z, s) +

+
3(1 − ε) − 2(3 − 2ε)z + 2z2

z(1 − z)
Ptri(6)2 (z, s) −

− 1
4 (1 − z)

Zig(z, s) − 3
4 s (1 − z)

WedgeF(z, s) −

− 11 (1 − 2ε)
4 ε s z(1 − z)

LBtri(z, s) − 1
2 s z

Wedge(z, s) −

− 3
2 s z(1 − z)

Fish(s) − 5 (1 − 2ε)(1 − 3ε)
8 ε2 s2 z(1 − z)

Btri(s) +

+
2 (1 − 3ε)(2 − 3ε) (2 − ε− 2εz)

ε3 s3 z(1 − z)
Sset(s) +

+
3 − 4εz

2 (1 − 2ε) z(1 − z)
Btie(s)

]
, (6.39)

∂

∂z
LPBWedge(z, s) =

z + ε

z(1 − z)
LPBWedge(z, s) − (1 − 3ε)(2 − 3ε)

εs2 z(1 − z)
Sset(s) , (6.40)

∂

∂z
LPBDtri(6)2 (z, s) = − 1 − 2z

z(1 − z)
LPBDtri(6)2 (z, s) −

− 1 − 2ε
(1 − 3ε) s

(
LPBWedge(z, s)

z2
− LPBWedge(1 − z, s)

(1 − z)2

)
+

+
ε

(1 − 3ε)s z(1 − z)

(
Wedge(z, s) − Wedge(1 − z, s)

)
+

+
(1 − 2ε)(2 − 3ε) (1 − 2z)

ε2 s3 z2(1 − z)2
Sset(s) , (6.41)

∂

∂z
FDtri(z, s) = −2

1 − z + ε

z(1 − z)
FDtri(z, s) − 2

ε

s z(1 − z)
Zig(z, s) +

+
6 (1 − 2ε)
s2 z2(1 − z)

[
z LPBWedge(1 − z, s) − LBtri(z, s) −

− 1 − 3ε
2ε s

Btri(s)
]
. (6.42)

In eqs. (6.38), (6.39) and (6.41), we have performed a change of basis: we exchange the (4−
2ε)-dimensional integral Ptri2(z, s) ≡ Ptri2(z, s)|D=4−2ε for its (6−2ε)-dimensional version,
Ptri(6)2 (z, s) ≡ Ptri2(z, s)|D=6−2ε, and similarly for LPBDtri2(z, s). All of the integrals in
this new basis are well-defined using ordinary dimensional regularization, following the
same analysis as in section 3.4. The relations required to change the basis are examples of
the dimension-shifting relations discussed previously,

Ptri(6)2 (z, s) =
3(1 − z) + ε(9 − 8z)

2 (1 − 2ε)(1 + 2ε) z(1 − z)
Btie(s) −
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− (1 − 3ε)(2 − 3ε)
8 ε3(1 + ε)(1 + 2ε)2 s3 z2(1 − z)

[
9 − 47z + 38z2 + ε(72 − 373z + 270z2) +

+ ε2(171 − 964z + 652z2) + 2ε3(63 − 379z + 246z2)
]
Sset(s) −

− 1 − 3ε
16 ε2(1 + ε)(1 + 2ε)2 s2 z2(1 − z)

[
54 − 92z + 34z2 + ε(7 − 8z)(54 − 31z) +

+ ε2(828 − 1459z + 578z2) + 8ε3(72 − 130z + 53z2)
]
Btri(s) −

− 3 − 4z + ε(9 − 10z)
4 (1 − 2ε)(1 + 2ε) s z(1 − z)

Fish(s) +

+
1 − z

4 (1 − 2ε)(1 + ε)(1 + 2ε) s z2

[
9 − 8z + 6ε(9 − 7z) + ε2(63 − 46z)

]
Wedge(z, s) −

− 1
8 ε(1 + ε)(1 + 2ε) s z2(1 − z)

[
2(27 − 37z + 9z2) + 3ε(90 − 125z + 36z2) +

+ ε2(288 − 403z + 126z2)
]
LBtri(z, s) +

+
1

8 (1 − 2ε)(1 + ε)(1 + 2ε) s (1 − z)

[
2z − 3ε(9 − 8z) − ε2(45 − 34z)

]
WedgeF(z, s) −

− 1
8 (1 − 2ε)(1 + ε)(1 + 2ε) z(1 − z)

[
2(9 − 11z + 3z2) + ε(102 − 125z + 36z2) +

+ ε2(120 − 145z + 42z2)
]
Zig(z, s) −

− s (3 − 2z + ε(9 − 8z))
8 ε(1 − 2ε) z(1 − z)

Ptri(z, s) − s2 (1 + ε) (3 − 2z)
8 ε(1 − 2ε)(1 + 2ε) (1 − z)

Ptri2(z, s) , (6.43)

and

LPBDtri(6)2 (z, s) =
(1 − 2ε)(2 − 3ε)

4 ε3(1 + 2ε)2 s3 z2(1 − z)2
×

×
[
5z(1 − z) − 2ε(1 − 12z(1 − z)) − 4ε2(1 − 8z(1 − z))

]
Sset(s) −

− z − 2ε(1 − 2z)
2 (1 + 2ε)(1 − 3ε) s z2

Wedge(z, s) − 1 − z + 2ε(1 − 2z)
2 (1 + 2ε)(1 − 3ε) s (1 − z)2

Wedge(1 − z, s) −

− 1 − 2ε
ε(1 − 3ε) s z

LPBWedge(z, s) − 1 − 2ε
ε(1 − 3ε) s (1 − z)

LPBWedge(1 − z, s) −

− s2

6
1 + ε

(1 − 3ε)(1 + 2ε)(1 + 3ε)
LPBDtri2(z, s) . (6.44)

We solve the differential equations (6.34)–(6.42) as Laurent expansions in ε, beginning
with the simplest cases, such as eq. (6.34), which only depends on Wedge(z, s) and the
previously known integral Sset(s). In a given differential equation (or a coupled pair of
equations, in the case of eqs. (6.38) and (6.39)), we start with the most singular terms in
the Laurent expansions, and proceed until we reach the order required for the expansion of
the splitting amplitudes through O(ε0). This order corresponds to transcendental weight
4, where each ln(x) or π has weight 1, and Lin(x) and ζn (ζn ≡ Lin(1)) have weight n.
We insert into the differential equation an ansatz which is a linear combination of such
functions, where x can be z, 1 − z, or −(1 − z)/z. We adjust the coefficients in the
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linear combination until the differential equation is satisfied. The constants of integration
were determined by different techniques. In some cases the integrals could be performed
analytically, at least for one value of z. It is also possible to evaluate the Schwinger
parameter integrals numerically by Monte Carlo integration. To fix the constant, it is
often sufficient to check that for a certain limiting value of z, z = 0 or z = 1, an integral
remains finite.

We first give the Laurent expansions for the previously known master integrals, which
constitute the inhomogeneous terms for the first set of non-trivial differential equations:

Btie(s) = −
[
(−s)−1−εΓ(1 + ε)Γ2(−ε)

Γ(1 − 2ε)

]2

=
(−s)−2ε

s2

[
− 1
ε4

+
ζ2
ε2

+
14
3
ζ3
ε

+
21
4
ζ4

]
+ O(ε) , (6.45)

Sset(s) = (−s)1−2εΓ(−1 + 2ε)Γ3(1 − ε)
Γ(3 − 3ε)

=
(−s)−2ε s

(1 − 2ε)(1 − 3ε)(2 − 3ε)

[
1
2ε

− ζ2
2
ε− 16

3
ζ3ε

2 − 57
8
ζ4ε

3

]
+ O(ε4) , (6.46)

Btri(s) = −(−s)−2εΓ(ε)Γ(2ε)Γ2(1 − ε)Γ2(1 − 2ε)
Γ(2 − 2ε)Γ(2 − 3ε)

=
(−s)−2ε

(1 − 2ε)(1 − 3ε)

[
− 1

2ε2
− ζ2

2
+

13
3
ζ3ε+

41
8
ζ4ε

2

]
+ O(ε3) . (6.47)

For the remaining integrals we just give the Laurent expansions, omitting an overall factor
of exp(−2γε). The z-independent integral Fish(s) can be performed analytically, and the
result is

Fish(s) = −(−s)−2ε

s

[
ζ2
2 ε2

+
7
2
ζ3
ε

+
55
4
ζ4

]
. (6.48)

The remaining, z-dependent Laurent expansions are

Wedge(z, s) =
(−s)−2ε

s (1 − z)

[
1

2 ε3
− ζ2

2 ε
− 16

3
ζ3

][
ln(z) + 2 ε Li2

(
−1 − z

z

)
+

+ 4 ε2 Li3
(
−1 − z

z

)
+ 8 ε3 Li4

(
−1 − z

z

)]
, (6.49)

LBtri(z, s) =
(−s)−2ε

s (1 − 2ε)

{
1

2ε3
− ln z

2 ε2
+

1
2 ε

[
Li2(1 − z) + ln2 z + ζ2

]
+

+ Li3(z) +
1
2

Li3(1 − z) +

+
1
2

ln2 z ln(1 − z) − 1
3

ln3 z − 3
2
ζ2 ln z − 16

3
ζ3 +

+ ε

[
−Li4(z) − 1

2
Li4(1 − z) − Li4

(
−1 − z

z

)
−

− ζ2
2

(
Li2(z) + ln z ln(1 − z) − 2 ln2 z

)
+

+
1
8

ln4 z − 1
6

ln3 z ln(1 − z) +
16
3
ζ3 ln z − 23

8
ζ4

]}
, (6.50)
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WedgeF(z, s) = −(−s)−2ε

s z

{
1

2 ε2
(
Li2(1 − z) − ζ2

)
+

+
1
ε

[
−3Li3(z) +

1
2

(
Li3(1 − z) − ζ3

)
− 2
(
Li2(1 − z) − ζ2

)
ln z −

− 3
2

ln2 z ln(1 − z)
]
−

− 11Li4(z) − 5
2

Li4(1 − z) − 3Li4
(
−1 − z

z

)
+

+ 4 ln z
(
Li3(1 − z) − ζ3 + 2 Li3(z)

)
+

+ Li2(z)
[
3
2

(
Li2(z) − ζ2

)
− 2 ln2 z + 3 ln z ln(1 − z)

]
−

− 1
8

ln4 z +
1
6

ln3 z ln(1 − z) +
3
2

ln2 z ln2(1 − z) −

− 3
2
ζ2

(
ln2 z + ln z ln(1 − z)

)
− 11

4
ζ4

}
, (6.51)

Zig(z, s) =
(−s)−2ε

s2 z

{
− 1

4 ε4
+

ln z
2 ε3

− 1
2 ε2

(
ln2 z +

7
2
ζ2

)
+

+
1
ε

[
1
3

ln3 z +
7
2
ζ2 ln z − 7

3
ζ3

]
+

+ 6Li4(z) − 6Li4(1 − z) − 6Li4
(
−1 − z

z

)
+ 6Li3(1 − z) ln z +

+ 3Li2(z)
[
1
2

Li2(z) + ln z ln(1 − z) + ζ2

]
− 5

12
ln4 z + ln3 z ln(1 − z) +

+
3
2

ln2 z ln2(1 − z) − ζ2

(13
2

ln2 z − 3 ln z ln(1 − z)
)
−

− 4
3
ζ3 ln z − 487

16
ζ4

}
, (6.52)

Ptri(z, s) = −(−s)−2ε

s3 z

{
1
ε4

− 2
ln z
ε3

+
1
ε2

(
Li2(1 − z) + 2 ln2 z +

3
2
ζ2

)
+

+
1
ε

[
8Li3(z) − 3 ln z Li2(z) −

− 4
3

ln3 z + ln2 z ln(1 − z) − 5ζ2 ln z − 25
6
ζ3

]
−

− 14Li4(z) − 8Li4(1 − z) − 8Li4
(
−1 − z

z

)
− Li3(1 − z) ln z +

+ Li2(z)
[
−5

2
Li2(z) − 5 ln z ln(1 − z) + 3 ln2 z + 6ζ2

]
+

+
1
3

ln4 z +
2
3

ln3 z ln(1 − z) − 5
2

ln2 z ln2(1 − z) +

+ ζ2

(
ln2 z + 6 ln z ln(1 − z)

)
+

28
3
ζ3 ln z +

5
2
ζ4

}
, (6.53)
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Ptri(6)2 (z, s) =
1
s2

{
1
z

[
4Li4(z) − 3Li4(1 − z) − 4Li4

(
−1 − z

z

)
+

+ 4
(
Li3(1 − z) − ζ3

)
ln z + Li2(z)

(
Li2(z) + 2 ln z ln(1 − z)

)
−

− ln2 z
(1

6
ln2 z − 2

3
ln z ln(1 − z) − ln2(1 − z) + 2ζ2

)
− 4ζ4

]
+

+
1

1 − z

[
6Li4(z) − 2 ln z

(
Li3(z) − ζ3

)
+ Li3(1 − z) ln z +

+
1
2

Li2(z)
(
Li2(z) + 2 ln z ln(1 − z) − 2ζ2

)
+

+
1
2

ln2 z ln2(1 − z) − ζ2 ln z ln(1 − z) − 19
4
ζ4

]}
, (6.54)

LPBWedge(z, s) =
(−s)−2ε

2 s (1 − z)(1 − 2ε)

{
1
ε3

− ln(1 − z)
ε2

+
1
ε

(
Li2(z) +

1
2

ln2(1 − z) − ζ2

)
+

+ Li3(z) + Li3(1 − z) +
1
2

ln z ln2(1 − z) − 1
6

ln3(1 − z) − 35
3
ζ3 +

+ ε

[
Li4
(
−1 − z

z

)
− ζ2

(
Li2(z) + ln z ln(1 − z) − 1

2
ln2 z

)
+

+
1
24

(ln z − ln(1 − z))4 +
32
3
ζ3 ln(1 − z) − 25

2
ζ4

]}
, (6.55)

LPBDtri(6)2 (z, s) =
(−s)−2ε

2 s2 z(1 − z)(1 − 3ε)

{
1
ε

[
ln z Li2(z) + ln(1 − z) Li2(1 − z) +

+
1
2

ln z ln(1 − z)
(
ln z + ln(1 − z)

)]
+

+ 3
[
(ln z + ln(1 − z))

(
Li3(z) + Li3(1 − z) − ζ3

)
−

− Li2(z) Li2(1 − z) − 1
2

(
ln2 z Li2(z) + ln2(1 − z) Li2(1 − z)

)
−

− 1
6

ln z ln(1 − z)
(
ln2 z + ln2(1 − z) − 9

2
ln z ln(1 − z) + 12ζ2

)]}
,

(6.56)

FDtri(z, s) =
(−s)−2ε

s3 z2

{
1
ε4

− 2
ln z
ε3

+
1
ε2

(
3Li2(1 − z) + 2 ln2 z − ζ2

2

)
+

+
1
ε

[
3Li3(z) + 6Li3(1 − z) + 3 ln z Li2(z) −

− 4
3

ln3 z +
9
2

ln2 z ln(1 − z) − 5ζ2 ln z − 61
6
ζ3

]
+

+ 6Li4(z) + 3Li4(1 − z) − 9Li4
(
−1 − z

z

)
−

− 3 ln z
(
Li3(z) + Li3(1 − z)

)
+
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+
3
2

Li2(z)
(
Li2(z) − ln2 z + 2 ln z ln(1 − z)

)
+

7
24

ln4 z −

− 2 ln3 z ln(1 − z) +
3
2

ln2 z ln2(1 − z) +
ζ2
2

ln z2 +
34
3
ζ3 ln z − 41

4
ζ4

}
.

(6.57)

The differential equations (6.34)–(6.42) are valid to all orders in ε. Whereas eqs. (6.49)–
(6.57) only give the solutions through transcendental weight 4, we have obtained the so-
lutions through weight 5, up to integration constants. Beyond weight 4, the ordinary
polylogarithms Lin are insufficient to describe the solution space. Instead, one can use the
harmonic polylogarithms (HPLs) [86, 20], denoted by H(�mw; z). For transcendental weight
w the vector �mw is a string of w entries, which (for our application) can only take on the
values 0 or +1. The HPLs obey the differential equations,

d

dz
H(�mw; z) = f(a; z)H(�mw−1; z) , (6.58)

where a = mw is the leftmost component of �mw, �mw−1 is obtained from �mw by omitting
that component, and

f(0; z) =
1
z
, f(+1; z) =

1
1 − z

. (6.59)

These 2w HPLs suffice because the only true singularities in z on the right-hand side of the
differential equations are those given in eq. (6.59). Actually, the differential equations (6.38)
and (6.39) for Ptri(z, s) and Ptri(6)2 (z, s) contain factors of 1/(3 − 2z) on the right-hand
side. However, these factors are artifacts of the change of basis (6.43) from Ptri2(z, s) to
Ptri(6)2 (z, s).

The 32 HPLs at w = 5 can be written in terms of ordinary logarithms and polylog-
arithms, plus three more functions. Although a few of the z-dependent master integrals
(Wedge, LPBWedge, and LPBDtri(6)2 ) do not require the three additional functions at the
w = 5 level of their expansions, the generic master integral requires all of them.

7. Splitting Amplitude Results

With the integrands obtained as described in section 5, and using the integrals obtained in
the previous section, we can express the results for the splitting amplitudes in a variety of
gauge theories. We will present results for QCD as well for N = 4 and N = 1 super-Yang-
Mills theory. For QCD, both the integrands and the combination of master integrals are
too lengthy to present here. We will present only the results expanded in ε through O(ε0).

The corresponding expressions for the N = 4 maximally supersymmetric Yang-Mills
(MSYM) theory are relatively simple, and we shall present them in detail in section 7.1.
We also give the results expanded through O(ε0), which we presented previously [52]. The
MSYM results also serve as useful building blocks for the splitting amplitudes in N = 1
super-Yang-Mills theory. In section 7.2 we give the N = 1 results in terms of master
integrals, and expanded in ε. The N = 1 results in turn form useful building blocks for
representing the QCD results in section 7.3.
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In the numerator algebra for the loop-momentum polynomials, the dimensionality of
the metric ηµν appears,

ηµµ ≡ Ds ≡ 4 − 2εδR. (7.1)

As mentioned in section 2, setting δR = 1 defines the HV scheme, which has 2 physical
states for external gluons, but 2 − 2ε physical states for internal gluons. Setting δR = 0
defines the FDH scheme, which has 2 physical states for both internal and external gluons,
matching the number of fermionic states, and which preserves supersymmetry [8, 69]. We
therefore present the splitting amplitude results for supersymmetric theories in the FDH
scheme.

The QCD results are given in both the HV and FDH schemes. The CDR scheme is
often used in computations of unpolarized cross sections, or amplitude interferences. It has
2−2ε physical states for external as well as internal gluons. The HV-scheme results could be
converted to the CDR scheme by including splitting amplitudes for gluons carrying epsilonic
helicities. In practice, the CDR results for the scattering amplitude interferences required
for unpolarized cross sections agree, through two loops, with the sum over helicities of the
HV results, after the infrared singularities are removed using the Catani formula[15, 33].
The tree and one-loop amplitudes in the Catani formula are different in the two schemes,
but the finite remainders agree. Thus the collinear limits of the finite remainders in the
CDR scheme should be obtainable from the HV-scheme results in section 8.

The results we will present in this section are for bare (‘unrenormalized’) splitting
amplitudes. We will discuss their renormalization in section 8, where we also present a
discussion of the collinear behavior of remainders after subtraction of infrared divergences.

7.1 N = 4 Super-Yang-Mills Theory Results

In super-Yang-Mills theory, scattering amplitudes are heavily constrained by supersymme-
try Ward identities (SWI) [91, 92], and this has implications for the splitting amplitudes.
First of all, amplitudes with only 0 or 1 negative-helicity gluon vanish at any loop order L
in any supersymmetric theory [91],

A(L), SUSY
n (1±, 2+, , . . . , n+) = 0 . (7.2)

Next consider the color-ordered amplitudes with two negative-helicity gluons,

A(L), SUSY
n (1+, 2+, . . . , i−, . . . , j−, . . . , n+) , (7.3)

known as maximally helicity-violating (MHV) amplitudes. In MSYM, the N = 4 SWI
imply that eq. (7.3) is completely independent of the cyclic position of i and j, up to a
trivial overall spinor-product factor of 〈i j〉4 [92]. In N = 1 super-Yang-Mills theory, this
relation holds at tree level, but is violated at one loop.

What are the implications for supersymmetric splitting amplitudes? First consider the
vanishing amplitude with 1− in eq. (7.2). Let two cyclicly-adjacent legs a and b become
collinear, so that the amplitude factorizes on the MHV amplitudes,

L∑
l=0

Split(l), SUSY
+ (z; a+, b+) ×A

(L−l)
n−1 (1−, 2+, . . . , P−, . . . , n+) . (7.4)
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Since the amplitudes A(L−l)
n−1 in are nonvanishing, the helicity-flip splitting amplitudes for

P− → a+b+ must vanish to all orders in a supersymmetric theory. Using parity, we have

Split(L), SUSY
− (z; a−, b−) = 0 , (7.5)

for all L. This result includes the tree-level vanishing (2.4), since tree-level n-gluon ampli-
tudes are effectively (N = 4) supersymmetric.

Due to parity, we need to present results below only for the cases where P has positive
helicity, P+ → aλabλb , which we shall denote by ‘λaλb’. Two of these four cases, −+ and
+−, are related to each other by exchanging legs a and b, which also exchanges z ↔ 1−z. As
just noted, the −− case vanishes in any supersymmetric theory. The two independent non-
vanishing supersymmetric splitting amplitudes are for P+ → a+b+ (++) and P+ → a−b+

(−+). Since these two tree-level splitting amplitudes are nonzero, we define loop ratios
r
(L)
S as in eqs. (2.14) and (2.20), or for L loops,

Split(L)
−λ (aλa , bλb) = r

(L)λa,λb

S (z, sab) × Split(0)−λ(a
λa , bλb) . (7.6)

In N = 4 supersymmetry, the ++ and −+ cases are related to each other by the fact
that the expression (7.3) divided by 〈i j〉4 is independent of i and j. Thus the collinear
limit P− → i−(i+ 1)+ is essentially the same as that of P+ → 1+2+, up to overall spinor-
product factors which are the same as at tree level. In other words, a universal rS function
describes both cases:

r
(L)++,N=4
S (z, s) = r

(L)−+,N=4
S (z, s) ≡ r

(L),N=4
S (z, s) . (7.7)

Using the Bose symmetry relation (2.9) for P+ → a+b+, the universal function r(L),N=4
S (z, s)

must be symmetric,
r
(L),N=4
S (z, s) = r

(L),N=4
S (1 − z, s) . (7.8)

This symmetry is not manifest in the one-loop expression (2.17), but it is easily demon-
strated using polylogarithm identities.

After carrying out the unitarity-based sewing procedure for N = 4 super-Yang-Mills
theory, the integral required for the two-loop g → gg splitting amplitude can be written
as the sum of four terms, corresponding to the L, D, LPB and F integral topologies, plus
the same four terms with z → 1 − z:

r
(2),N=4
S (z, s) = IN=4

A (z) + IN=4
A (1 − z) , (7.9)

where
IN=4
A (z) = IL + ID + ILPB + IF , (7.10)

and

IL = −s
2

8

∫
dDp

πD/2
dDq

πD/2

[
sz + (1 − z)(p2

1 − p2
2) + p2

8 +
p2
2(s(1 − z) + p2

5)
p2
9

] 7∏
i=1

1
p2
i

, (7.11)

ID =
s2

8

∫
dDp

πD/2
dDq

πD/2
sz + p2

5

p2
9

7∏
i=2

1
p2
i

, (7.12)
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ILPB = −s
2

8
z(1 − z)

∫
dDp

πD/2
dDq

πD/2
p2
1

8∏
i=2

1
p2
i

, (7.13)

IF =
s2

8
z

∫
dDp

πD/2
dDq

πD/2
(sz + (1 − z)p2

1)
8∏
i=2

1
p2
i

. (7.14)

The labeling of the propagators p2
i is given in figure 29 and, in the case of the D and F

topologies, figure 30. Note that the z ↔ 1− z symmetry (7.8) is manifest in eq. (7.9). The
result (7.9) is given in the FDH scheme, δR = 0.

We can see explicitly from these expressions how the appearance of the light-cone
propagators is restricted by unitarity. In eq. (7.11), whenever p2

9 appears in the denom-
inator, p2

2 appears in the numerator. The appearance of p2
2 eliminates any two-particle

cut (through lines 1 and 2) or any three-particle cut (through lines 2, 3 and 6) entirely to
the right of propagator 9, in the terms containing that light-cone denominator. Exactly
the same argument (after flipping the L integral over by letting k1 ↔ k2) explains why p2

1

cannot appear in the denominator of the D integrand in eq. (7.12) along with p2
9. Finally,

in eqs. (7.13) and (7.14), p2
1 never appears in the denominator. If it had, there would have

been a two particle cut (through lines 1 and 2) entirely to the right of propagator 8, which
is again forbidden by unitarity.

The result of reducing eq. (7.10) to master integrals is

IN=4
A (z) = − 1

16

{
s

3 − 2z

[
4s z(1 − z)

(
sPtri(z, s) + 2(1 − 2ε) Ptri(6)2 (z, s)

)
−

− 2
3
z(3 − z)

(
sZig(z, s) + 3WedgeF(z, s)

)
−

− 2
1 − 2ε
ε

(7 − z) LBtri(z, s) −
− 4(1 − z)(5 − 3z)Wedge(z, s) − 4z Fish(s) −
− (1 − 2ε)(1 − 3ε)(2 − 3ε)(5 − 14z)

ε3 s2
Sset(s) −

− (1 − 2ε)(1 − 3ε) (16 − 9z)
ε2 s

Btri(s) − 2s(3 − 4z)Btie(s)
]

+

+ 2s
1 − 2ε
ε

[
(1 − z)LPBWedge(z, s) − zLPBWedge(1 − z, s)

]
−

− 4s2z
[
1
3
szFDtri(z, s) + (1 − 3ε)(1 − z)LPBDtri(6)2 (z, s)

]}
. (7.15)

Inserting the Laurent expansions (6.45)–(6.57) into eq. (7.15), and adding the terms
with z → 1 − z, we obtain,

r
(2),N=4
S (z, s)

=
1
4

(
µ2

−s
)2ε
{

1
2 ε4

− 1
ε3

(
ln(z) + ln(1 − z)

)
+

1
ε2

(
ln2(z) + ln2(1 − z) + ζ2

)
+

+
1
ε

[
2
(
Li3(z) + Li3(1 − z)

)
− 2

3

(
ln3(z) + ln3(1 − z)

)
+
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+
(

ln(z) ln(1 − z) − 2 ζ2

)(
ln(z) + ln(1 − z)

)
− 23

6
ζ3

]
−

− 2
(
Li3(z) + Li3(1 − z) − 17

6
ζ3

)(
ln(z) + ln(1 − z)

)
+

+
1
3

(
ln4(z) + ln4(1 − z)

)
−
(

ln(z) ln(1 − z) − 2 ζ2

)(
ln2(z) + ln2(1 − z)

)
−

− 2 ζ2 ln(z) ln(1 − z) +
7
8
ζ4

}
. (7.16)

This result can be cast into the suggestive form [52],

r
(2),N=4
S (ε; z, s) =

1
2

(
r
(1),N=4
S (ε; z, s)

)2
+ f(ε)r(1),N=4

S (2ε; z, s) + O(ε) , (7.17)

where
f(ε) ≡ (ψ(1 − ε) − ψ(1))/ε = −(ζ2 + ζ3ε+ ζ4ε

2 + · · ·) (7.18)

with ψ(x) = (d/dx) ln Γ(x), ψ(1) = −γ. The iterative relation (7.17), along with a similar
type of relation for the two-loop, leading-color, four-gluon amplitude in N = 4 super-Yang-
Mills theory, has led to an ansatz based on collinear limits for the two-loop, leading-color,
n-gluon amplitude in N = 4 super-Yang-Mills theory [52]. At least for the case of maximal
helicity violation, we expect the following relation to hold,

M (2)
n (ε) =

1
2

(
M (1)
n (ε)

)2
+ f(ε)M (1)

n (2ε) − 5
4
ζ4 + O(ε) . (7.19)

where M (L)
n (ε) = A

(L)
n /A

(0)
n .

For n = 4, we found that eq. (7.19) was violated at order ε1 [52]. To be more spe-
cific, [M (1)

4 (ε)]2 contains at O(ε1) only two-types of Li5 polylogarithms, Li5(−s/u) and
Li5(−t/u), whereas M (2)

4 (ε) contains in addition the independent function Li5(−s/t). We
have now examined the z-dependence of the order ε1 terms in r

(2),N=4
S (z, s). Again we

find functions not present in the square of the corresponding one-loop quantity. At order
ε1, [r(1),N=4

S (z, s)]2 contains Li5(−(1 − z)/z), but no other Li5 functions. On the other
hand, r(2),N=4

S (z, s) contains all three Li5(x) functions (x = z, 1 − z, −(1 − z)/z) as well
as all three additional non-Lin functions required (in the basis we used). The violation of
eq. (7.19) at O(ε) is consistent with the intuition that conformal symmetry underlies this
result, and so it should hold only for D → 4.

7.2 N = 1 Super-Yang-Mills Theory Results

For pure N = 1 super-Yang-Mills theory, the ratio r(2) λaλb,N=1
S (z, s) now depends on the

helicity configuration. The two independent nonvanishing cases are P+ → a+b+ (++)
and P+ → a−b+ (−+). The linear combinations of master integrals obtained are again
relatively simple, and may be expressed as,

r
(2)++,N=1
S (z, s) = r

(2),N=4
S (z, s) + I++,N=1

A (z) + I++,N=1
A (1 − z), (7.20)
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where

I++,N=1
A (z) = −3

8
s

[
ε

1 − 2ε
z
(
sZig(z, s) + WedgeF(z, s) − 2Wedge(1 − z, s)

)
+

+ LBtri(z, s)
]
, (7.21)

and

r
(2)−+,N=1
S (z, s) = r

(2) ++,N=1
S (z, s) +

+
3
8
s

{
2 s z ε

(
Ptri(6)2 (z, s) − Ptri(6)2 (1 − z, s)

)
−

− ε

1 − 2ε

[
z2

1 − z

(
sZig(z, s) + WedgeF(z, s)

)
−

− (1 − z)
(
sZig(1 − z, s) + WedgeF(1 − z, s)

)]
−

− z

1 − z
LBtri(z, s) + LBtri(1 − z, s) −

− 1 − 3ε
2 ε2 s2

1 − 2z
1 − z

(
2(2 − 3ε)Sset(s) + s εBtri(s)

)}
. (7.22)

These expressions, like the N = 4 results, are evaluated in the FDH scheme with ηµ
µ =

Ds = 4, or δR = 0.
At one loop, it happens that the splitting amplitude in N = 1 super-Yang-Mills theory

is the same for −+ as for ++,

r
(1)−+,N=1
S (z, s) = r

(1) ++,N=1
S (z, s). (7.23)

This relation is spoiled at two loops, but we expect the difference to be finite as ε→ 0, due
to the one-loop relation. A form of eq. (7.22) which makes this property more manifest
can be obtained by switching basis from Zig(z, s) to

Zig(6)
2 (z, s) ≡ L(1, 1, 1, 0, 1, 2, 1, 0, 0)

∣∣∣
D=6−2ε

, (7.24)

and defining

IN=1
B (z, s) ≡ (1 − 3ε)Zig(6)

2 (z, s) +
ε

1 − 2ε
WedgeF(z, s) + ε sPtri(6)2 (z, s). (7.25)

Then

r
(2)−+,N=1
S (z, s) = r

(2) ++,N=1
S (z, s) +

3
4
s z
(
IN=1
B (z, s) − IN=1

B (1 − z, s)
)
. (7.26)

The function IN=1
B (z, s) is finite as ε→ 0: Ptri(6)2 is finite, so it gives a vanishing contribu-

tion. There are 1/ε poles which cancel between Zig(6)
2 and WedgeF, yielding

IN=1
B (z, s) = − 1

s(1 − z)

[
2
(
Li3(z) − ζ3

)
− ln z

(
Li2(z) − ζ2

)]
+ O(ε). (7.27)
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The result of performing the expansions in ε of eqs. (7.20) and (7.26) is,

r
(2) ++,N=1
S (z, s) = r

(2),N=4
S (z, s) +

+
3
8

(
µ2

−s
)2ε
{
− 1

2 ε3
+

1
ε2

(
ln(z) + ln(1 − z) − 1

)
+

+
1
ε

[
−
(
ln(z) − ln(1 − z)

)2
+ 2
(
ln(z) + ln(1 − z) − 1

)
− ζ2

2

]
−

− 12
(
Li3(z) + Li3(1 − z)

)
+ 2
(
ln(z) Li2(z) + ln(1 − z) Li2(1 − z)

)
+

+
2
3

(
ln2(z) + ln2(1 − z) − 4 ln(z) ln(1 − z) +

3
2
ζ2

)(
ln(z) + ln(1 − z)

)
−

− 2
(
ln(z) − ln(1 − z)

)2
+ 4
(
ln(z) + ln(1 − z) − 1

)
+

67
3
ζ3 − ζ2

}
, (7.28)

r
(2)−+,N=1
S (z, s) = r

(2) ++,N=1
S (z, s) +

+
3
4

{
2
(
Li3(1 − z) − ζ3

)
− ln(1 − z)

(
Li2(1 − z) − ζ2

)
−

− z

1 − z

[
2
(
Li3(z) − ζ3

)
− ln(z)

(
Li2(z) − ζ2

)]}
. (7.29)

7.3 QCD Results

We now present the g → gg splitting amplitudes in QCD, for a general value of the
regularization-scheme parameter δR. First we introduce some auxiliary functions describing
the fermion-loop contributions and residual dependence on δR.

The functions fL describing the leading-color fermion-loop contributions to the QCD
splitting amplitudes are similar to the differences between the N = 1 and N = 4 splitting
amplitudes, so we write them as

f++
L (z, s) = −2

9

[
r
(2)++,N=1
S (z, s) − r

(2),N=4
S (z, s)

]
+

+
1
12

(
µ2

−s
)2ε
{

1
ε2

(
z(1 − z) − 1

6

)
+

+
1
ε

[
−z(1 − z)

(
ln(z) + ln(1 − z) +

2
3

)
+

1
3

(
ln(z) + ln(1 − z)

)
− 17

18

]
+

+ z(1 − z)
[
1
2

(
ln(z) − ln(1 − z)

)2
− 11

3

(
ln(z) + ln(1 − z)

)
− 187

6
+
δR
3

]
−

− 1
3

(
ln(z) − ln(1 − z)

)2
+
(17

9
− z
)

ln(z) +
(8

9
+ z
)

ln(1 − z) −

− ζ2
6

− 151
54

}
, (7.30)

and

f−+
L (z, s) = −2

9

[
r
(2)−+,N=1
S (z, s) − r

(2),N=4
S (z, s)

]
+
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+
1
12

(
µ2

−s
)2ε
{
− 1

6 ε2
+

1
ε

[
1
3

(
ln(z) + ln(1 − z)

)
− 17

18

]
+

+
z(1 + z)
(1 − z)3

[
2
(
Li3(z) − ζ3

)
− ln(z)

(
Li2(z) − ζ2

)]
−

− 2
z

(1 − z)2
(
Li2(1 − z) − 2 ζ2

)
+

ln(z)
1 − z

−

− 1
3

(
ln(z) − ln(1 − z)

)2
+

8
9

(
ln(z) + ln(1 − z)

)
− ζ2

6
− 151

54

}
. (7.31)

The functions fSL describing the subleading-color fermion-loop and f2 describing the
double fermion-loop contributions are very simple:

f++
SL (z, s) =

1
8
z(1 − z) , (7.32)

f−+
SL (z, s) = 0 , (7.33)

f++
2 (z, s) =

1
18
z(1 − z)

(
µ2

−s
)2ε[1

ε
+

16
3

]
, (7.34)

f−+
2 (z, s) = 0 . (7.35)

There are also some functions describing the residual δR dependence of the QCD results:

∆++(z, s) = ∆−+(z, s) +
1
12
z(1 − z)

(
µ2

−s
)2ε[1

ε
− ln(z) − ln(1 − z) +

2
3

]
, (7.36)

∆−+(z, s) =
1
24

(
µ2

−s
)2ε
{
− 1

2 ε2
+

1
ε

(
ln(z) + ln(1 − z) − 4

3

)
−
(
ln(z) − ln(1 − z)

)2
+

+
8
3

(
ln(z) + ln(1 − z)

)
− ζ2

2
− 35

9

}
. (7.37)

Then the unrenormalized two-loop QCD splitting amplitude rS factors are given for both
++ and −+ by

r
(2)α,QCD
S = r

(2)α,N=1
S −

(
1 − Nf

Nc

)
fαL −

(
1 +

Nf
N3
c

)
fαSL −

(
1 − Nf

2

N2
c

)
fα2 + δR∆α,

α = ++ or −+. (7.38)

For the helicity-flip case, P+ → a−b− (−−), we similarly define

f−−
L (z, s) =

1
12

(
µ2

−s
)2ε
{

1
ε2

− 1
ε

(
ln(z) + ln(1 − z) +

2
3

)
+

1
2

(
ln(z) − ln(1 − z)

)2 −

− 11
3

(
ln(z) + ln(1 − z)

)
− 2
( ln(z)

1 − z
+

ln(1 − z)
z

)
− 187

6
+
δR
3

}
,

(7.39)

f−−
SL (z, s) =

1
8
, (7.40)
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f−−
2 (z, s) =

1
18

(
µ2

−s
)2ε[1

ε
+

16
3

]
, (7.41)

∆−−(z, s) =
1
12

(
µ2

−s
)2ε[1

ε
− ln(z) − ln(1 − z) +

2
3

]
. (7.42)

Then the helicity-flip splitting amplitude in QCD is

Split(2),QCD
− (z; a−, b−) =

√
z(1 − z)

〈a b〉
[a b]2

[
−
(
1 − Nf

Nc

)
f−−
L −

(
1 +

Nf
N3
c

)
f−−
SL −

−
(
1 − Nf

2

N2
c

)
f−−
2 + δR∆−−

]
. (7.43)

We remark that the functions fSL and f2 are so simple because no light-cone projectors
on internal propagators are required to compute them. Clearly f2, representing the double
fermion-loop (Nf 2) contribution, has no internal gluon lines, and only the simple master
integral Btie(s) can appear. There is an internal gluon line in the graphs contributing
to the subleading-color single-fermion loop (Nf 1) contribution fSL. However, this gluon
always appears inside the fermion loop. All such graphs contribute with equal weight to
fSL, exactly as if the gluon were a photon. If we think of this gluon as a photon, it becomes
clear that its gauge transformations can be separated from those of the off-shell external
gluon with momentum kP , and indeed, a covariant gauge could have been used for it.
Therefore, in this special case we could have used a covariant propagator for the internal
gluon, instead of a light-cone gauge propagator, which means that only the z-independent
master integrals given in eqs. (6.45)–(6.47) can appear in fSL. We have discussed in detail
in sections 3 and 4 how unitarity can prevent certain light-cone denominators from ever
appearing. The fSL terms are examples of how color can occasionally do the same sort of
thing.

Equations (7.38) and (7.43) give the dependence of the QCD results on Nf and Nc. The
results can also be written in terms of general group Casimir constants (after multiplying
by the extracted factor of N2

c = C2
A), using the substitution rules:

1 → C2
A ,

Nf
Nc

→ 2CATRNf ,

Nf
N3
c

→ 2(CA − 2CF )TRNf ,

Nf
2

N2
c

→ (2CATRNf )2 . (7.44)

To recover pure N = 1 super-Yang-Mills theory, which contains one Majorana fermion in
the adjoint representation, we set CF = CA, TR = CA, and Nf = 1/2. Thus Nf/Nc → 1
and Nf/N3

c → −1, so that for δR = 0 each term in eq. (7.43) vanishes, and all but the first
term in eq. (7.38) vanish, as required.

7.4 Continuation to Space-Like Region

The preceding splitting amplitudes are for time-like kinematics, k2
P = s > 0. In the

remainder of this section we briefly discuss the space-like case, s < 0. In the application
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of splitting amplitudes to NNLO evolution kernels, the time-like region is relevant for the
Q2 evolution of fragmentation functions. The space-like region is relevant for the evolution
of parton distribution functions, which play a key role in the prediction of collider cross
sections. (As mentioned in the introduction, the NNLO kernels for unpolarized space-like
evolution have been computed very recently [48].)

The time-like results can be continued analytically into the space-like region. We take
the space-like splitting process to be

(−k1)−λ1 → (−kP )−λP + kλ2
2 , (7.45)

with k2
P = s < 0. It is obtained from the time-like process by crossing leg 1 into the initial

state, and leg P into the final state. The physical helicities of legs 1 and P flip under this
crossing, but we retain the uncrossed labeling. Relative to (−k1), the vectors (−kP ) and
k2 now carry longitudinal momentum fractions of x and 1−x respectively. Comparing the
ratio (k1 · n)/(kP · n) between the time-like and space-like cases, we identify z = 1/x. In
principle, all we need to do to obtain the space-like splitting amplitude results from the
above time-like formulæ is to let s be negative, and substitute z → 1/x, where 0 < x < 1.
For example, the tree-level splitting amplitude Split(0)− (z; a+, b+) given in eq. (2.5) becomes
the space-like splitting amplitude for (−k1)− → (−kP )− + k+

2 , which we denote by giving
Split(0) the argument x,

Split(0)− (x; a+, b+) =
x√

1 − x 〈a b〉 . (7.46)

(Note that in the construction of the space-like Altarelli-Parisi kernel, after squaring the
x-dependent part of the splitting amplitude there is an additional factor of x; see e.g.
eq. (6.23) of ref. [74].) There are overall phases stemming from the factors

√
1 − z and 〈a b〉,

but they can be associated with the external states, and we neglect them in eq. (7.46).
At the loop-level, the preceding formulæ for r(L)

S (z, s) have been been written so that
the logarithms and polylogarithms are manifestly real for 0 < z < 1. To continue them
to z > 1, one can apply polylogarithm identities so that the only function which is not
manifestly real is ln(1−z) = ln(1−x)−ln x±iπ. For example, consider the one-loop splitting
amplitudes r(1),N=4

S (z, s) in eq. (2.17), which contain Li2m−1( z
z−1). These functions develop

branch cuts for z > 1. In this case, though, we can use the (non-manifest) z ↔ 1 − z

symmetry of r(1),N=4
S (z, s), eq. (7.8), to let z → 1 − z in eq. (2.17) before substituting

z → 1/x. (This amounts to using an infinite sequence of polylogarithm identities.) We
obtain,

r
(1),N=4
S (x, s) = ĉΓ

(
µ2

−s
)ε 1
ε2

[
−[−(1 − x)]−ε

πε

sin(πε)
+

∞∑
m=1

2ε2m−1Li2m−1(1 − x)

]
.

(7.47)

In eq. (7.47), the factor (µ2/(−s))ε no longer contains any iπ terms, as s is now negative.
However, in the expansion of [−(1 − x)]−ε we must set ln[−(1 − x)] = ln(1 − x) ± iπ.
The presence of imaginary parts in the space-like region is a bit surprising, but it can be
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traced back to integrand denominators that vanish in the interior of the integration region
for z > 1 — for example, the denominator of J (b)(1 − z) in eq. (3.19), as discussed in
section 3.3. The appearance of an imaginary part can be verified from the explicit collinear
behavior of one-loop amplitudes. From this verification, one also learns that the sign of
the iπ term is ambiguous; it depends on whether the leg color-adjacent to leg 2 is incoming
or outgoing. Fortunately, this sign is the same for all imaginary terms, and it drops out
of the interferences required for the computation of evolution kernels. The π2 factors from
the product of two iπ terms do survive and are unambiguous. (Note that s(1− x) has the
same negative sign in both space-like and time-like regions, so that the π2 terms from the
first term in eq. (7.47) are the same in both regions.)

At the two-loop level, eq. (7.47) and the squaring relation (7.17) provide a convenient
way to continue r(2),N=4

S (z, s) to z > 1 (through O(ε0)). We refrain from giving the explicit
continuations of the N = 1 and QCD results, though they are straightforward to carry out.

8. Comparison to Catani’s Formula and Finite Remainders

In this section we compare the pole terms in the two-loop splitting amplitudes to the expec-
tation based on Catani’s formula [38] for the two-loop infrared divergences of renormalized
amplitudes, in order to establish their mutual consistency. More importantly, by examining
the order ε0 terms in the splitting amplitudes, we derive relations that the finite remainders
in the Catani formalism must obey in the collinear limit.

8.1 Singular Term Comparison

Catani’s general formula includes color-space operators which have a fairly intricate struc-
ture in the trace-based color decomposition. In this section, to simplify the analysis we
shall restrict attention to the single-trace coefficients A(L)

n in the n-gluon amplitude, given
explicitly in eq. (2.2), and to the terms in Catani’s formula obtained by making the re-
placement,

T i · T j → −Nc

2
1, i, j color-adjacent,

→ 0, otherwise. (8.1)

These terms include all the leading-color terms, as well as certain of the subleading-color
terms (including all of the color dependence in H(2)

i at order 1/ε). We refer to these terms
as color trivial. In appendix A.4 we perform the full color-space analysis.

First we need to remove the ultraviolet divergences from the splitting amplitudes pre-
sented in section 7. The relation between the bare coupling αus (implicitly used above) and
renormalized coupling αs(µ) = g2(µ)/(4π), through two-loop order, may be written as [38]

αus µ
2ε
0 Sε = αs(µ) µ2ε

[
1 − αs(µ)

2π
b0
ε

+
(
αs(µ)
2π

)2(b20
ε2

− b1
2ε

)
+ O(α3

s(µ))

]
, (8.2)

where µ is the renormalization scale, and Sε = exp[ε(ln 4π+ψ(1))]. The first two coefficients
appearing in the beta function for QCD, or more generally SU(Nc) gauge theory with Nf
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flavors of massless fundamental representation quarks, are

b0 =
11CA − 4TRNf

6
, b1 =

17C2
A − (10CA + 6CF )TRNf

6
, (8.3)

where CA = Nc, CF = (N2
c − 1)/(2Nc), and TR = 1/2. In pure N = 1 super-Yang-Mills

theory, the values are

bN=1
0 =

3
2
CA , bN=1

1 =
3
2
C2
A . (8.4)

In N = 4 super-Yang-Mills theory, a conformal theory, the values are of course

bN=4
0 = bN=4

1 = 0 . (8.5)

One can define a ‘perturbative expansion’ of the g → gg splitting amplitude as

SplitR(αs(µ)) = g(µ)
[
Split(0) +

αs(µ)
2π

Split(1)R +
(
αs(µ)
2π

)2

Split(2)R +O(α3
s(µ))

]
, (8.6)

where Split(L)
R is the Lth loop contribution. Equation (8.2) is equivalent to the following

MS renormalization prescriptions at one and two loops,

Split(1)R = S−1
ε Split(1) − 1

2ε
b0
Nc

Split(0), (8.7)

Split(2)R = S−2
ε Split(2) − 3

2ε
b0
Nc

S−1
ε Split(1) +

(
3

8ε2
b20
N2
c

− 1
4ε

b1
N2
c

)
Split(0) . (8.8)

Here Split(L) governs the collinear limits of unrenormalized amplitudes, while Split(L)
R con-

trols the limits of renormalized amplitudes. All quantities appearing in the remainder of
this section are renormalized. In particular, A(L)

n refers to renormalized L-loop amplitudes,
in contrast to the unrenormalized ones used implicitly in previous sections. The renormal-
ization of the splitting ratios r(L)

S follows simply from eqs. (8.7) and (8.8). We will denote
the renormalized splitting ratios by r(L)

S

The full color-space forms of Catani’s formula at one and two loops are given in
eqs. (A.15) and (A.38). The color-trivial terms, defined by the replacements (8.1), are
obtained by letting the operator I

(L)
n → NL

c Î
(L)
n 1, in its action on the single-trace term

A
(L)
n (1, 2, . . . , n) in the amplitude. The factor of NL

c is extracted from I
(L)
n for consistency

with the normalization of A(L)
n ; we want both A

(L)
n and Î

(L)
n to be independent of Nc as

Nc → ∞ in the pure-glue case. At one loop, we have

Î(1)
n (ε) = −1

2
e−εψ(1)

Γ(1 − ε)

n∑
i=1

[
1
ε2

+
γg
Nc

1
ε

](
µ2

−si,i+1

)ε
, (8.9)

where γg is given in eq. (A.17).
Similarly, Î(2)

n is given by

Î(2)
n (ε) = −1

2
Î(1)
n (ε)

(
Î(1)
n (ε) +

2
ε

b0
Nc

)
+
e+εψ(1)Γ(1 − 2ε)

Γ(1 − ε)
1
Nc

(
b0
ε

+KR.S.

)
I(1)
n (2ε) +

+
e−εψ(1)

4εΓ(1 − ε)
H

(2)
g

N2
c

n∑
i=1

(
µ2

−si,i+1

)2ε

, (8.10)
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where KR.S. is given in eq. (A.28) and H(2)
g is given in eq. (A.33).

The singularities of the single-trace coefficients are,

A(1)
n = Î(1)

n A(0)
n +A(1)fin

n , (8.11)

A(2)
n = Î(1)

n A(1)
n + Î(2)

n A(0)
n +A(2)fin

n . (8.12)

Things become a bit simpler if we write the finite remainders in Catani’s formula as mul-
tiples of the corresponding tree amplitudes:

A(L)fin
n (1, 2, . . . , n) = F (L)

n (sij) ×A(0)
n (1, 2, . . . , n) . (8.13)

Equations (8.11) and (8.12) become

A(1)
n = (Î(1)

n + F (1)
n )A(0)

n , (8.14)

A(2)
n =

[
Î(2)
n + Î(1)

n (Î(1)
n + F (1)

n ) + F (2)
n

]
A(0)
n , (8.15)

If the tree amplitude vanishes, we cannot perform this step. However, in this case the
entire analysis is much simpler, essentially equivalent to the one-loop analysis.

Now consider the collinear limits. We will provide two independent forms for the pole
terms in ε of r(2)S . The first form is similar to Catani’s formula (8.10) for Î(2)

n . The second
form retains finite terms, so it can be used to predict the collinear behavior of the Catani
finite remainders.

In the first derivation, we note that the Î(2)
n term by itself does not have particularly

enlightening collinear limits, because of contributions coming from O(ε) parts of Î(1)
n . How-

ever, this obscure behavior is balanced by similar behavior in the Î(1)
n A

(1)
n term in eq. (8.15),

suggesting that it is best to combine the first two terms in this equation:

A(2)
n =

[
1
2

(
Î(1)
n (ε)

)2
+ Î(1)

n (ε)F (1)
n − 1

ε

b0
Nc
Î(1)
n (ε) +

+
e+εψ(1)Γ(1 − 2ε)

Γ(1 − ε)
1
Nc

(
b0
ε

+KR.S.

)
Î(1)
n (2ε) +

+
e−εψ(1)

4εΓ(1 − ε)

n∑
i=1

H
(2)
i

N2
c

(
µ2

−si,i+1

)2ε]
A(0)
n + O(ε0)

=
[
1
2

(
Î(1)
n (ε) + F (1)

n

)2 − 1
ε

b0
Nc

(
Î(1)
n (ε) + F (1)

n

)
+

+
e+εψ(1)Γ(1 − 2ε)

Γ(1 − ε)
1
Nc

(
b0
ε

+KR.S.

)(
Î(1)
n (2ε) + F (1)

n

)
+

+
n

4ε
H

(2)
g

N2
c

]
A(0)
n + O(ε0) . (8.16)

In the last step we added finite pieces, in particular ones proportional to [F (1)
n ]2 and

KR.S. F
(1)
n . Two singular terms proportional to (1/ε) × b0 F

(1)
n cancel against each other.

Now the combination Î(1)
n (ε)+F (1)

n is just A(1)
n (ε)/A(0)

n , so it has simple collinear limits.
Indeed, inserting eq. (2.14) into eq. (2.10), we find that

Î(1)
n (ε) + F (1)

n
a‖b−→ Î

(1)
n−1(ε) + F

(1)
n−1 + r

(1)
S (ε) . (8.17)
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We use the behavior (8.17) to take the collinear limit of eq. (8.16), and compare the
result with eq. (2.19). The terms quadratic and linear in Î(1)

n−1(ε) + F
(1)
n−1 belong to A(2)

n ×
Split(0) and A

(1)
n × Split(1)R . Most of the remaining terms belong to A

(0)
n × Split(2)R =

A
(0)
n × Split(0) ×r(2)S (ε). Collecting them, we see that the divergent parts of the two-loop

splitting amplitude should be given by

r
(2)
S (ε) =

1
2
(r(1)S (ε))2 − 1

ε

b0
Nc
r
(1)
S (ε) +

e+εψ(1)Γ(1 − 2ε)
Γ(1 − ε)

1
Nc

(
b0
ε

+KR.S.

)
r
(1)
S (2ε) +

+
1
4ε
H

(2)
g

N2
c

+ O(ε0) . (8.18)

In the second derivation of the pole terms in r
(2)
S (ε), we shall retain the finite terms.

Consider first the one-loop case. Equation (8.17) can be rewritten as

r
(1)
S =

[
Î(1)
n + F (1)

n

]∣∣∣
a‖b

− Î
(1)
n−1 − F

(1)
n−1 , (8.19)

which allows one to predict the singular terms in r(1)S in terms of the collinear behavior of
Î

(1)
n :

r
(1)
S

∣∣∣
ε pole

= Î(1)
n

∣∣∣
a‖b

− Î
(1)
n−1 . (8.20)

But we can also solve eq. (8.19) for the collinear behavior F (1)
n |a‖b, using also eq. (8.20).

For definiteness, we will assume that a = 1 and b = 2. We have then

F (1)
n

∣∣∣
1||2

= F
(1)
n−1 + ξ(1)(z, snP , sP3, s), (8.21)

where
ξ(1)(z, snP , sP3, s) ≡ r

(1)
S − r

(1)
S

∣∣∣
ε pole

. (8.22)

Note that the Mandelstam invariants involving the gluons which are color-adjacent to a = 1
and b = 2 appear, namely gluons n and 3. In evaluating eq. (8.22), r(1)S |ε pole is given by
eq. (8.20), including all terms at order ε0.

At two loops, the collinear limit as a ‖ b of eq. (8.15) is, using eq. (2.19),

A(2)
n |a‖b =

[
Î(2)
n + Î(1)

n (Î(1)
n + F (1)

n ) + F (2)
n

]∣∣∣
a‖b

× Split(0) ×A(0)
n−1

=
[
Î

(2)
n−1 + Î

(1)
n−1(Î

(1)
n−1 + F

(1)
n−1) + F

(2)
n−1 +

+ r
(1)
S (Î(1)

n−1 + F
(1)
n−1) +

+ r
(2)
S

]
× Split(0) ×A(0)

n−1 . (8.23)

Solving eq. (8.23) for r(2)S , we find

r
(2)
S =

[
Î(2)
n + Î(1)

n (Î(1)
n + F (1)

n ) + F (2)
n

]∣∣∣
a‖b

−

− Î
(2)
n−1 − Î

(1)
n−1(Î

(1)
n−1 + F

(1)
n−1) − F

(2)
n−1 − r

(1)
S (Î(1)

n−1 + F
(1)
n−1) . (8.24)
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Equation (8.24) contains the one-loop finite remainder F (1)
n multiplied by a singular factor

Î
(1)
n . However, the pole terms in r

(2)
S should not depend on any one-loop finite parts.

Therefore we use eq. (8.19) to eliminate the Î(1)
n F

(1)
n term. After a little algebra, we obtain

r
(2)
S =

[
Î(2)
n + (r(1)S + Î

(1)
n−1)Î

(1)
n + F (2)

n − F
(1)
n−1F

(1)
n

]∣∣∣
a‖b

−

− Î
(2)
n−1 − (r(1)S + Î

(1)
n−1)Î

(1)
n−1 − F

(2)
n−1 + (F (1)

n−1)
2. (8.25)

Now it is clear that the ε pole terms in r(2)S have a universal form,

r
(2)
S

∣∣∣
ε pole

=
[
Î(2)
n + (r(1)S + Î

(1)
n−1)Î

(1)
n

]∣∣∣
a‖b

− Î
(2)
n−1 − (r(1)S + Î

(1)
n−1)Î

(1)
n−1 . (8.26)

We have checked that the pole terms in this expression are equivalent to those in eq. (8.18)
for N = 4 and N = 1 super-Yang-Mills theory, and for QCD. We have also verified that they
agree with the singular parts of the g → gg splitting amplitudes from our explicit results,
eqs. (7.16), (7.28), (7.29), (7.38) and (7.43). Along with the full color-space discussion
in appendix A.4, this shows that Catani’s formula for the singular behavior of two-loop
amplitudes is completely consistent with the collinear limits.

8.2 Finite Remainders

The next step is to use the finite parts of the two-loop splitting amplitudes to deduce the
collinear limits of the finite remainders F (2)

n in the color-trivial parts of Catani’s formula.
Again letting a = 1 and b = 2, we rearrange eq. (8.24), with the help of eq. (8.26), to get

F (2)
n

∣∣∣
1||2

= F
(2)
n−1 +

(
F (1)
n

∣∣∣
1||2

− F
(1)
n−1

)
F

(1)
n−1 +

(
r
(2)
S − r

(2)
S

∣∣∣
ε pole

)
(8.27)

= F
(2)
n−1 +

(
r
(1)
S − r

(1)
S

∣∣∣
ε pole

)
F

(1)
n−1 +

(
r
(2)
S − r

(2)
S

∣∣∣
ε pole

)
, (8.28)

or
F (2)
n

∣∣∣
1||2

= F
(2)
n−1 + ξ(1)(z, snP , sP3, s)F

(1)
n−1 + ξ(2)(z, snP , sP3, s), (8.29)

where
ξ(2)(z, snP , sP3, s) ≡ r

(2)
S − r

(2)
S

∣∣∣
ε pole

. (8.30)

Here r
(2)
S |ε pole is given by eq. (8.26), including all terms at order ε0. Equation (8.29)

provides a useful check on finite remainders of two-loop scattering amplitudes, as any two
external gluons become collinear.

Now we present the values of ξ(1) and ξ(2) for the various theories we have been
considering. The values of ξ(1) are:

ξ(1),N=4 =
1
2

(
ln(1 − z) ln

(−sP3

−s
)

+ ln(z) ln
(−snP

−s
)

+ ln(z) ln(1 − z) − ζ2

)
, (8.31)

ξ(1)++,N=1 = ξ(1)−+,N=1 = ξ(1),N=4 − bN=1
0

2Nc
(ln(z) + ln(1 − z) + ln(−s)), (8.32)

ξ(1) ++,QCD = ξ(1)−+,QCD +
1
6

(
1 − Nf

Nc

)
z(1 − z), (8.33)

ξ(1)−+,QCD = ξ(1),N=4 − b0
2Nc

(ln(z) + ln(1 − z) + ln(−s)). (8.34)
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To get the proper analytic behavior of such expressions, one should apply the prescrip-
tion (2.13) for logarithms of time-like invariants, after expanding the logarithmic ratios,
ln((−s1)/(−s2)) = ln(−s1) − ln(−s2).

Next we the quote the values of ξ(2). For N = 4 super-Yang-Mills theory, ξ(2) obeys
an iterative equation in terms of ξ(1), as a consequence of eq. (7.17),

ξ(2),N=4 =
1
2

[
ξ(1),N=4

]2
− ζ2 ξ

(1),N=4 − 11
32
ζ4 . (8.35)

For N = 1 super-Yang-Mills theory, we first define the auxiliary function

η(z, snP , sP3, s) = −2(Li3(z) + Li3(1 − z)) +
1
2

(
ln z Li2(z) + ln(1 − z) Li2(1 − z)

)
−

− 1
2

(
ln z ln(1 − z) − 3

2
ζ2

)
(ln z + ln(1 − z) + ln(−s)) +

85
24
ζ3 −

− 1
4

[
ln z ln

(−snP
−s

)(
ln(−snP ) + 2 ln(−s)

)
+

+ ln(1 − z) ln
(−sP3

−s
)(

ln(−sP3) + 2 ln(−s)
)

+

+ ln z ln(1 − z)
(
ln(−snP ) + ln(−sP3) − ln(−s)

)
+

+ 2
(

ln2 z ln
(−snP

−s
)

+ ln2(1 − z) ln
(−sP3

−s
))]

. (8.36)

Then the two functions required in eq. (8.29) are given by

ξ(2) ++,N=1 = ξ(2),N=4 +
bN=1
0

Nc
η +

1
8

{
42 ξ(1),N=4 +

+ 3
(bN=1

0

Nc

)2[
(ln z + ln(1 − z) + ln(−s))2 − 8

3
ln z ln(1 − z)

]
+

+
75
4
ζ2 − 6 (ln z + ln(1 − z) + ln(−s)) − 40

3

}
, (8.37)

ξ(2)−+,N=1 = ξ(2) ++,N=1 +
3
4

{
2
(
Li3(1 − z) − ζ3

)
− ln(1 − z)

(
Li2(1 − z) − ζ2

)
−

− z

1 − z

[
2
(
Li3(z) − ζ3

)
− ln(z)

(
Li2(z) − ζ2

)]}
. (8.38)

Equation (8.38) follows directly from eq. (7.29), because eq. (8.26) for the subtraction term
r
(2)
S |ε pole is the same for ++ and −+.

For QCD, we define one more auxiliary function,

γQCD = ξ(2),N=4 +
b0
Nc

η +
1
8

{
2
(83

3
+

2
3
δR − 64

9
Nf
Nc

+
4
9
Nf

2

N2
c

)
ξ(1),N=4 +

+ 3
( b0
Nc

)2[
(ln z + ln(1 − z) + ln(−s))2 − 8

3
ln z ln(1 − z)

]
+

+
(925

36
+

5
12
δR − 15

2
Nf
Nc

+
5
9
Nf

2

N2
c

)
ζ2 −
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−
(34

3
− 13

3
Nf
Nc

+
Nf
N3
c

)
(ln z + ln(1 − z) + ln(−s)) −

− 1169
81

+
1
3
δR +

(89
81

− 8
27
δR

)Nf
Nc

}
. (8.39)

In terms of this function, we have

ξ(2) ++,QCD = γQCD + z(1 − z)
{

1
6

(
1 − Nf

Nc

)(
ξ(1),N=4 −

− b0
2Nc

(ln z + ln(1 − z) + 3 ln(−s)) +
445
36

+
δR
6

)
−

− 1
8

[
1 +

Nf
N3
c

+
20
27

(
1 − Nf

2

N2
c

)]}
+

+
1
12

(
1 − Nf

Nc

)(
z ln z + (1 − z) ln(1 − z)

)
, (8.40)

ξ(2)−+,QCD = γQCD − z

12

[(
1 − Nf

Nc

)12 − 21z + 11z2

(1 − z)3
+

9
1 − z

Nf
Nc

]
×

×
[
2
(
Li3(z) − ζ3

)
− ln z

(
Li2(z) − ζ2

)]
+

+
b0

2Nc

[
2
(
Li3(1 − z) − ζ3

)
− ln(1 − z)

(
Li2(1 − z) − ζ2

)]
+

+
1
6

(
1 − Nf

Nc

)[ z

(1 − z)2
(
Li2(1 − z) − 2ζ2

)
− 1

2

(z ln z
1 − z

− ln(1 − z)
)]
. (8.41)

We can check some limiting properties of these results as z → 0 and z → 1, using simple
facts about soft limits of amplitudes. For example, in the limit z → 0, leg 1 becomes soft.
The helicity of the hard leg should be conserved in the soft limit, and the limit should
be independent of the helicity of the soft leg. Thus the cases P+ → 1+2+ (++) and
P+ → 1−2+ (−+) should behave identically as z → 0. The tree splitting amplitudes (2.5)
and (2.7) are the same in this limit (up to an external phase associated with the soft external
state). Hence the rS factors, and also the Catani-subtracted ξ functions, for ++ and −+
should behave identically as z → 0. This property is obvious for N = 4 super-Yang-Mills
theory; the two rS factors are identical for all z due to the N = 4 supersymmetry Ward
identity. For pure N = 1 super-Yang-Mills theory, one can inspect eq. (7.29) or eq. (8.38),
recalling that Lin(1) = ζn, to see that the quantity in braces indeed vanishes as z → 0.
For QCD, the r(2)S factors in section 7.3 are not written in a particularly convenient way
for checking the limit. However, one can easily compare ξ(2)++,QCD in eq. (8.40) with
ξ(2)−+,QCD in eq. (8.41). They do approach the same limit as z → 0, namely the limiting
behavior of γQCD.

For the ++ case, the limit z → 1 is the same as the limit z → 0. For the −+ case, in
the limit z → 1 the helicity of the hard leg, now leg 1, flips from + to −; hence this splitting
amplitude should be suppressed. Equation (2.7) shows that it is suppressed by two powers
of 1−z at tree-level. In the N = 4 and N = 1 supersymmetric cases, there is no additional
1/(1 − z) singularity in the rS or ξ factors. (There is an apparent 1/(1 − z) singularity
in the quantity in braces in eqs. (7.29) and (8.38), but again recalling that Lin(1) = ζn,
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one sees that it cancels.) So, up to logs, the soft behavior is the same at the loop-level as
at tree-level. In the case of QCD, the limiting behavior of ξ(2)−+,QCD in eq. (8.41) looks
quite singular as z → 1, since powers of 1/(1 − z)3 and 1/(1 − z)2 appear. However, these
cancel, and the actual behavior is

ξ(2)−+,QCD → − 1
12

(
1 − Nf

Nc

)
1

1 − z
+ · · · . (8.42)

Taking into account the (1 − z)2 behavior of the tree-level splitting amplitude, the one
power of 1/(1 − z) in eq. (8.42) still means that the soft limit z → 1 for −+ is suppressed
by a power of 1 − z, relative to that of ++, as expected from the helicity flip on the hard
line.

For the term corresponding to the helicity-flip splitting amplitude, P+ → 1−2−, we
should not remove the tree-amplitude factors. Instead we write

A(2)fin
n

∣∣∣
1||2

= Split(1)R,−(z; 1−, 2−)A(1)fin
n−1 +

√
z(1 − z)

〈1 2〉
[1 2]2

ξ(2)−−,QCDA
(0)
n−1 , (8.43)

where

ξ(2)−−,QCD =
1
6

(
1 − Nf

Nc

)[
ξ(1),N=4 +

ln z
1 − z

+
ln(1 − z)

z
−

− b0
2Nc

(ln z + ln(1 − z) + 3 ln(−s)) +
199
18

+
δR
6

− 5
9
Nf
Nc

]
−

− 1
8
N2
c + 1
N3
c

Nf . (8.44)

For this helicity configuration, the tree-level splitting amplitude vanishes, so the one-loop
renormalization is trivial: Split(1)−R(z; 1−, 2−) = Split(1)− (z; 1−, 2−). The expectation as
z → 0 (or equivalently, z → 1) is that ξ(2)−−,QCD should have no power-law 1/z singularity,
since its prefactor

√
z(1 − z) in eq. (8.43) has only one power of z suppression relative to

the ++ case. Indeed, in eq. (8.44) ln(1 − z)/z is finite as z → 0.
Equations (8.21) and (8.29) govern the collinear behavior of finite remainders F (L)

n for
the case where only one intermediate helicity λ can contribute. If both helicities contribute,
one needs to sum over the two, according to eqs. (2.10) and (2.19). Before doing this, it is
best to multiply back by the tree amplitudes A(0)

n−1(λ), because they are different for the
two terms.

9. Dressing with Color

In this section we present the full color structure in the collinear limits. We will do this
in the context of the trace-based color decomposition discussed in section 2 (and reviewed
in refs. [66, 13]). An alternative, color-space language has been used by Catani to pre-
dict [38] and describe the infrared structure of two-loop amplitudes. In appendix A we
re-express the collinear behavior in the color-space language, in order to demonstrate that
the divergent parts of our splitting amplitudes are fully compatible with the structure of
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infrared singularities predicted by Catani [38]. The color dressing here applies equally well
to renormalized and unrenormalized amplitudes, but in the discussion in appendix A, all
quantities are understood to be renormalized.

At tree level the trace-based color decomposition for an n-gluon amplitude is

A(0) a1a2...an
n =

∑
σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))A(0)
n (σ(1), . . . , σ(n)) , (9.1)

where the A(0)
n are tree-level color-ordered partial amplitudes and the notation is defined

below eq. (2.2). On the left-hand side we have suppressed the dependence on helicities and
momenta but have left the color dependence explicit, since that is what we focus on in this
section.

The fully color-dressed tree amplitude has the following factorization property as the
momenta of legs 1 and 2 become collinear,

A(0) a1a2...an
n

1‖2−→ i f̃a1a2aP Split(0)−λ(z; 1
λ1 , 2λ2)A(0) aP a3...an

n−1 , (9.2)

where Split(0)−λ is the tree-level splitting amplitude (2.3) defined for the color-ordered am-
plitude, and there is an implicit sum over the helicity λ of the intermediate state. Here
f̃a1a2aP is the SU(Nc) structure constant corresponding to our normalization of the gener-
ators, Tr(T aT b) = δab:

f̃a1a2aP = −i
(
Tr(T a1T a2T aP ) − Tr(T a2T a1T aP )

)
, (9.3)

so that f̃abc =
√

2fabc, where fabc is the structure constant with conventional T a normal-
izations.

By inserting eq. (9.1) into both sides of eq. (9.2), and using SU(Nc) Fierz identities on
the right-hand side, we can see that this equation is equivalent to the collinear behavior
of color-ordered amplitudes given in eq. (2.3). A given term in the amplitude (9.1) will
contribute to the collinear limit only when the collinear legs 1 and 2 are cyclicly adjacent
in the associated color trace. Alternatively, we can derive the color structure of eq. (9.2)
directly from the fact that the only diagrams contributing to the collinear limit are of the
type shown in figure 1, where a = 1 and b = 2. The factor of f̃a1a2aP is precisely the color
factor of the vertex joining legs 1, 2 and P .

At one loop the full color decomposition of an n-gluon amplitude is,

A(1) a1a2...an
n =


n/2�+1∑
c=1

∑
σ∈Sn/Sn;c

Grn;c(σ(1), σ(2), . . . , σ(n))An;c(σ(1), σ(2), . . . , σ(n)) , (9.4)

where �x� is the largest integer less than or equal to x. The leading-color structure factor

Grn;1(1, 2, . . . , n) = Nc Tr(T a1 . . . T an) , (9.5)

is just Nc times the tree color factor, and the subleading-color structures are given by

Grn;j(1, 2, . . . , n) = Tr(T a1 . . . T aj−1) Tr(T aj . . . T an) , j > 1 . (9.6)
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Again Sn is the set of all permutations of n objects, and Sn;c is the subset leaving
Grn;c invariant. In the trace-based color decomposition, fundamental-representation quark
loops will contribute only to An;1, with a relative factor of Nf/Nc compared to adjoint-
representation gluon loops.

At one loop, the subleading-color amplitudes An;c are completely determined in terms
of the leading-color ones An;1 (see eq. (7.2) of ref. [10]). The collinear behavior of the
leading-color amplitudes was given in eq. (2.10), where the notation ‘An’ was used instead
of ‘An;1’. The collinear behavior of the subleading-color amplitudes can be determined from
the previously-mentioned relation, or from the observation that the two-particle collinear
limit cannot reduce a pair of traces to a single trace. Therefore the tree-level (n − 1)-
point amplitude A(0)

n−1 cannot enter into the limit. This implies that the one-loop splitting
amplitude cannot appear either, and so the limit is (for c > 1),

A(1)
n;c(. . . , a

λa , bλb , . . .)
a‖b−→

∑
λ=±

Split(0)−λ(z; a
λa , bλb)A(1)

n−1;c−1(. . . , P
λ, . . .) , a, b < c ,

A(1)
n;c(. . . , a

λa , bλb , . . .)
a‖b−→

∑
λ=±

Split(0)−λ(z; a
λa , bλb)A(1)

n−1;c(. . . , P
λ, . . .) , a, b ≥ c . (9.7)

Legs a and b must be cyclicly adjacent within the same color trace, otherwise the collinear
limit is finite. In particular, the collinear limit is finite if the two legs lie in different traces.

We can reassemble these properties of A(1)
n;c into a description of the collinear behavior

of the full color-dressed amplitude,

A(1) a1a2a3...an
n

1‖2−→ if̃a1a2aP

[
Split(0)−λ(z; 1

λ1 , 2λ2)A(1) aP a3...an

n−1 +

+Nc Split(1)−λ(z; 1
λ1 , 2λ2)A(0) aP a3...an

n−1

]
, (9.8)

where Split(1)−λ(z; 1
λ1 , 2λ2) are precisely the color-stripped splitting amplitudes (2.15)–(2.17).

Note that the c > 1 contributions in eq. (9.7) all go into assembling A(1)
n−1 in the first term

in brackets. We can also derive eq. (9.8) directly from argumentation using the unitarity
sewing rules (or by using light-cone gauge, ignoring prescription issues). The diagrams
in figure 2 correspond to a factorization of the process including color indices. The first
term in the brackets corresponds to the left diagram, and the second term to the right
diagram. The color factor in the first term is precisely the tree-level one. The color factor
in the second term is that of a one-loop vertex, Nc f̃

a1a2aP in the pure-glue case. (From
the diagrammatic point of view, there are three types of color contributions obtained from
color dressing the diagrams in figure 4. However, all these color factors are proportional to
Nc f̃

a1a2aP . Including fermions in the loop gives the Nf/Nc terms in eq. (2.15).)
If we examine the cuts of a color-stripped 1 → 2 splitting amplitude, each contribution

has the product of a (j + 2)-point scattering amplitude on the left and a 1 → j lower-loop
splitting amplitude on the right, where j is the number of particles crossing the cut. (See,
for example, figure 27.) We can exchange the two final-state particles by reflecting through
the horizontal axis. This produces a factor of (−1)j+2 on the left and (−1)j+1 on the right
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because of the properties of the amplitudes under reflection [66, 5]. If the two final-state
particles are gluons we get the same number of Fermi minus signs on the left and right
from interchanging cut internal fermions, if there are any. Overall we always get a factor
of −1; that is, the color-stripped splitting amplitude is anti-symmetric when we exchange
the two arguments, including their helicities and z ↔ (1− z). Bose symmetry then implies
that the color factor must also be antisymmetric. The color-dressed splitting amplitude
must be proportional to fa1a2aP , because there is no other antisymmetric invariant tensor.
This argument holds to all loop orders.

Note from eqs. (2.11), (2.15) and (2.16) that there are no subleading-color corrections
to the pure-glue (Nf = 0) contributions to the one-loop splitting amplitude Split(1), which
appears in the full-color collinear limit (9.8). To understand this fact, and the factor of Nc

in front of the splitting amplitude, consider the color factors in a diagrammatic calculation.
One can use the Jacobi identity to show that the result of the color algebra in any diagram
is a linear combination of the results for its various possible parent diagrams. It is therefore
sufficient to consider the parent diagrams. At one loop, for pure-glue contributions, there
is only one kind of parent diagram, the triangle diagram show in figure 4(a). Now, as far as
the color algebra is concerned, any triangle subdiagram can replaced by a factor of −1

2CA
times a three-point color vertex. Similarly, any bubble subdiagram can be replaced by a
factor of −CA. Thus at one loop we just obtain an overall coefficient of CA = Nc, up to
Nc-independent factors.

Now we turn to the two-loop case. The color decomposition generalizes in an obvious
way,

A(2) a1a2...an
n =

�n/3�+1∑
c1=1

�(n+c1+1)/2�∑
c2≥2c1−1

∑
σ∈Sn/Sn;c1,c2

Grn;c1;c2(σ(1), σ(2), . . . , σ(n)) ×

×An;c1;c2(σ(1), σ(2), . . . , σ(n)) , (9.9)

where

Grn;c1;c2(1, 2, . . . , n) = Tr(T a1 . . . T ac1−1) Tr(T ac1 . . . T ac2−1) Tr(T ac2 . . . T an) , (9.10)

and σ runs over the set of permutations Sn, modulo those in Sn;c1;c2 which leave Grn;c1;c2

invariant. We identify Tr(1) = Nc so, for example,

Grn;1;1(1, 2, . . . , n) = N2
c Tr(T a1 . . . T an) , (9.11)

Grn;1;j(1, 2, . . . , n) = Nc Tr(T a1 . . . T aj−1)Tr(T aj . . . T an) , j > 1. (9.12)

The color-ordered amplitudes contain terms which depend on the number of quark fla-
vors, for example, with factors Nf/Nc and (Nf/Nc)2. In addition, at two loops An;1;1 also
contains terms of order 1/N2

c arising from both planar and non-planar diagrams. In con-
trast, while the two-loop gluon splitting amplitude does contain contributions of O(Nf/Nc),
O(Nf 2/N2

c ), and O(Nf/N3
c ), as we shall see below, it contains no contributions of O(1/N2

c ).
The collinear behavior of the leading-color amplitudes An;1;1 was given in eq. (2.19),

where the notation ‘An’ was used instead of ‘An;1;1’. At two loops the subleading-color
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amplitudes cannot be determined solely from the leading-color ones. However, just as at
one loop, consideration of the trace structure leads to the following collinear limits for the
subleading-color amplitudes. The double-trace partial amplitudes behave as,

A
(2)
n;1;c(. . . , a

λa , bλb , . . .)
a‖b−→

∑
λ=±

(
Split(0)−λ(z; a

λa , bλb)A(2)
n−1;1;c−1(. . . , P

λ, . . .) +

+ Split(1)−λ(z; a
λa , bλb)A(1)

n−1;c−1(. . . , P
λ, . . .)

)
, a, b < c,

A
(2)
n;1;c(. . . , a

λa , bλb , . . .)
a‖b−→

∑
λ=±

(
Split(0)−λ(z; a

λa , bλb)A(2)
n−1;1;c(. . . , P

λ, . . .) +

+ Split(1)−λ(z; a
λa , bλb)A(1)

n−1;c(. . . , P
λ, . . .)

)
, a, b ≥ c.

(9.13)

while the triple-trace partial amplitudes behave as,

A(2)
n;c1;c2(. . . , a

λa , bλb , . . .)
a‖b−→∑

λ=±
Split(0)−λ(z; a

λa , bλb)A(2)
n−1;c1−1;c2−1(. . . , P

λ, . . .) , a, b < c1 ,

A(2)
n;c1;c2(. . . , a

λa , bλb , . . .)
a‖b−→∑

λ=±
Split(0)−λ(z; a

λa , bλb)A(2)
n−1;c1;c2−1(. . . , P

λ, . . .) , c1 ≤ a, b < c2 ,

A(2)
n;c1;c2(. . . , a

λa , bλb , . . .)
a‖b−→∑

λ=±
Split(0)−λ(z; a

λa , bλb)A(2)
n−1;c1;c2

(. . . , P λ, . . .) , a, b ≥ c2 . (9.14)

As at one loop, legs a and b must be cyclicly adjacent within the same color trace, otherwise
the collinear limit is finite.

At two loops, the generalization of the splitting amplitude from the leading-color struc-
ture to the fully color-dressed version would seem to be more complicated, because of the
appearance of non-planar contributions, such as the ones depicted in figure 28. However,
as already mentioned in section 5, all such non-planar contributions vanish for the g → gg

case. The fully color-dressed splitting behavior is given simply in terms of the color-stripped
splitting amplitudes of section 7 as,

A(2) a1a2a3...an
n

1‖2−→ if̃a1a2aP

[ 2∑
l=0

N l
c Split(l)−λ(z; 1

λ1 , 2λ2)A(2−l) aP a3...an

n−1

]
. (9.15)

The proportionality of the color dressing to f̃a1a2aP follows from the diagrammatic
argument given after eq. (9.8), generalized to two loops. To see why the pure-glue contri-
butions to the splitting amplitude just have an overall factor of N2

c in front (as evidenced
by eqs. (7.38) and (7.43)), consider again the parent diagrams. We have already seen in
section 5 that the non-planar diagrams do not contribute at two loops to the splitting
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Figure 32: A diagram contributing to the three-loop g → gg splitting amplitude which has
subleading-color, 1/N2

c suppressed terms in its color factor.

amplitude to gluons, so we focus on the planar diagrams. At two loops there are four
kinds of planar parent diagrams. Each of these has either a bubble or triangle subdiagram
(the two parents with triangle subdiagrams are shown in figure 29). Upon replacing the
subdiagram factor of −CA or −1

2CA times a vertex, respectively, we are left with a triangle
diagram, which generates a second factor of CA, as at one loop. All pure-glue contribu-
tions are therefore homogeneous in Nc of degree two. This latter argument does not extend
to higher loops. Beginning at three loops there are pure-glue diagrams, both planar and
non-planar, which have no surviving triangle or bubble subdiagrams at some stage of this
reduction. The simplest example is depicted in figure 32. Such diagrams generally give
rise to 1/N2

c suppressed terms. They correspond to the existence of other SU(Nc) group
invariants, such as (dabc)2, where dabc is the fully symmetrized trace of three generator ma-
trices, which are not homogeneous in Nc. Of course, the fermion-loop terms in the g → gg

splitting amplitudes have 1/N2
c suppressed contributions already at two loops, due to the

existence of both CA and CF Casimir invariants.

10. Conclusions and Outlook

In this paper, we computed the behavior of a general two-loop amplitude in massless
gauge theory as the momenta of two external gluons become collinear. (The behavior
involving collinear fermions will be presented elsewhere [58].) This behavior is universal,
and accordingly governed by a set of 1 → 2 splitting amplitudes. For the g → gg splitting
there are three independent helicity configurations (the remainder are related by symmetry
or parity). One of these configurations vanishes at tree level. In an N = 4 supersymmetric
theory, the ratio of a non-vanishing two-loop splitting amplitude to the corresponding tree-
level amplitude is helicity-independent, and given by eq. (7.16). In pure N = 1 super-Yang-
Mills theory, the helicity configuration that vanishes at tree level also vanishes to all orders
in perturbation theory. The ratios for the other two cases are given by eqs. (7.28) and (7.29).
In QCD, all three helicity amplitudes are non-vanishing; the ratios to the tree for two of
them are given by eq. (7.38), and the splitting amplitude for the remaining configuration
by eq. (7.43). The finite remainders of amplitudes, after subtraction of poles predicted
by Catani’s formula, also have simple behavior in collinear limits in the ‘color-trivial’
case. These limits are given at one and two loops by eqs. (8.21) and (8.29), respectively.
The functions entering these limits are given by eqs. (8.31)–(8.34), (8.35), (8.37), (8.38),
and (8.40)–(8.44).
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These splitting amplitudes can be used as a check on calculations of higher-point two-
loop QCD amplitudes; the collinear limits of these amplitudes must satisfy eqs. (7.38)
and (7.43). One can also apply the checks to the finite terms after subtraction of the poles
predicted by Catani’s formula, using eq. (8.29). As mentioned previously, the compatibility
of the divergent parts of our splitting amplitudes with Catani’s formula provides a inductive
proof of the latter, modulo some assumptions about the analytic behavior of the ε-singular
terms in amplitudes.

The two-loop splitting amplitudes are also one of the ingredients required for computing
the NNLO corrections to the Altarelli–Parisi kernel in an infrared approach. At NLO, one
would add two terms [43]: the one-loop 1 → 2 splitting amplitude interfered with its tree
counterpart; and the tree-level 1 → 3 splitting amplitude squared, integrated over the phase
space of the unobserved partons. At NNLO, there are three ingredients: (a) the 1 → 2
splitting amplitude computed here, interfered with its tree counterpart; (b) the interference
of the one-loop [64] and tree-level [40, 41] 1 → 3 splitting amplitudes, integrated over the
unobserved phase space; and (c) the 1 → 4 splitting amplitude squared [63], integrated
over the four-particle unobserved phase space.

In N = 4 supersymmetric gauge theories, the splitting amplitude has a remarkable
property: it can be written as a polynomial in the one-loop and tree-level splitting ampli-
tudes. This led to the conjecture that a similar property holds for two-loop amplitudes [52].
Explicit calculations showed that this conjecture is true for the four-point amplitude. This
simplicity suggests that substantial parts of the theory may be solvable.

We performed this computation using the unitarity-based sewing method. The method
has demonstrated many advantages over conventional diagrammatic techniques over the
years. It has made possible, for example, the computation of series of amplitudes for arbi-
trarily many partons [10, 11]. The present computation demonstrates another advantage:
it offers a pathway featuring the physical-projection advantages of light-cone gauge, while
avoiding the need for cumbersome prescriptions for dealing with the ill-defined integrals of
the latter. Because it effectively combines many diagrams at an early stage of the calcula-
tion, it also simplifies integrands considerably, and so minimizes the complexity of reducing
loop integrals to master integrals.
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A. Color-Space Collinear Limit of Catani’s Formula

In section 8 we demonstrated the consistency of the divergent part of the splitting ampli-
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tudes with the Catani formula at leading order in Nc, or more generally, for the color-trivial
single-trace terms in the formula. In this appendix we demonstrate that the consistency
also holds for the terms containing non-trivial color correlations. Because of these correla-
tions, the collinear limits of the full Catani formula are a bit intricate. In this appendix,
all quantities are understood to be renormalized.

A.1 Color-Space Notation

In the color-space language of refs. [38, 93] an amplitude is expressed in terms of an abstract
vector in color space, |A(L)

n 〉. To convert to the more standard color notation one may use
an orthogonal basis of unit vectors |a1, a2, . . . , an〉 with the property that

A(L) a1a2...an
n (k1, λ1; k2, λ2; . . . ; kn, λn) ≡ 〈a1, a2, . . . , an|A(L)

n 〉 . (A.1)

Color interactions are represented by associating a color charge T i with the emission of
a gluon from each parton i. The color charge T i = {T aRi} is a vector with respect to the
generator label a, and an SU(Nc) color matrix in the representation R of the outgoing
parton i. For external gluons, R is the adjoint representation A, and T aAcb = if cab. (Note
that the normalization of fundamental representation charge matrices is different in ref. [38]
from that used elsewhere in the paper. In this appendix we normalize the T i according to
ref. [38].)

In this notation each vector |An〉 is a color singlet, so color conservation is simply
n∑
i=1

T i|An〉 = 0 , (A.2)

independent of the color representation of each leg. This identity incorporates the Jacobi
identity and its generalizations very simply. Typical operators encountered in the discussion
involve the combination

(T i)a(T j)a ≡ T i · T j . (A.3)

For i = j, eq. (A.3) reduces to a Casimir operator, T 2
i = Ci = CA = Nc if leg i is a gluon,

and T 2
i = Ci = CF = (N2

c − 1)/(2Nc) if leg i is a quark or anti-quark (with TR = 1/2). A
useful property is

T i · T j = T j · T i , (A.4)

which holds because charge matrices act on different index spaces.
In the collinear limit where k1 → zkP , k2 → (1 − z)kP , a tree-level color-space ampli-

tude satisfies
|A(0)

n 〉 →
∑
λ=±

Split(0)
−λ |A(0)

n−1(λ)〉 , (A.5)

where λ denotes the helicity of P and the splitting functions Split(0)
−λ are now operators

acting on the color space. The operator Split(0)
−λ links the color space with n − 1 legs to

that of n legs. That is, we define

〈a1, a2, a3, . . . , an|Split(0)
−λ |A(1)

n−1(λ)〉
= if̃a1a2aP Split(0)−λA(0) aP a3...an

n−1 (kP , λ; k3, λ3; . . . ; kn, λn), (A.6)
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Figure 33: The action of fP on the color index of leg P of an amplitude. The vertex represents
a factor of if̃a1a2aP .

where Split(0)−λ is the color-ordered splitting function defined in eq. (2.3). We define an
operator

Split(0)
−λ = fP Split(0)−λ , (A.7)

where for the pure-glue case we have

〈a1, a2, a3, . . . , an|fP |aP , a3, . . . , an〉 = if̃a1a2aP . (A.8)

The operator fP is distinct from the operator TP because it links color spaces of different
dimensions. The action of the operator fP on an amplitude is illustrated in figure 33.

Color conservation on the three-vertex implies that

fPTP = (T 1 + T 2)fP , (A.9)

which is a special case of eq. (A.2) (up to a sign due to a swap of incoming and outgoing
indices). This equation is equivalent to the Jacobi identity.

From eq. (9.8), it is apparent that the behavior of the one-loop amplitude in color
space in the collinear limit is very similar to that of the tree amplitude,

|A(1)
n 〉 →

∑
λ=±

Split(0)
−λ |A(1)

n−1(λ)〉 +
∑
λ=±

Split(1)
−λ |A(0)

n−1(λ)〉 , (A.10)

where
Split(1)

−λ(1
λ1 , 2λ2) = Nc Split(1)−λ(1

λ1 , 2λ2)fP , (A.11)

with Split(1)−λ the color-stripped splitting amplitude. For helicity contributions where the
tree splitting amplitude does not vanish, it is convenient to re-express this as

Split(1)
−λ(1

λ1 , 2λ2) = Nc r
(1), λ1λ2

S (z, s) Split(0)
−λ(1

λ1 , 2λ2) , (A.12)

where r(1)S is given as r(1)S in eqs. (2.15)–(2.17), and is renormalized according to eq. (8.7).
The L-loop generalization is the obvious one,

|A(L)
n 〉 →

L∑
l=0

∑
λ=±

Split(l)
−λ |A(L−l)

n−1 (λ)〉 , (A.13)

where
Split(L)

−λ = NL
c Split(L)

−λ fP . (A.14)

In the two-loop case, Split(2)−λ is the color-trivial splitting amplitude defined in eq. (2.19).
Next we shall demonstrate that the full color-space dependence of Catani’s formula

for the divergences of one- and two-loop amplitudes is completely compatible with the
divergent parts of our color-dressed splitting amplitudes.
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A.2 One-Loop Warm Up

At one loop, the infrared divergences of renormalized n-point amplitudes can be written
compactly in color-space notation as [38],

|A(1)
n 〉R.S. = I(1)

n (ε) |A(0)
n 〉R.S. + |A(1)fin

n 〉R.S. . (A.15)

The color operator I
(1)
n is

I(1)
n (ε) =

1
2
e−εψ(1)

Γ(1 − ε)

n∑
i=1

n∑
j =i

T i · T j

[
1
ε2

+
γi

T 2
i

1
ε

](
µ2

−sij

)ε
. (A.16)

The sum runs over pairs of external legs. For external gluons i, we set γi equal to

γg =
11CA − 4TRNf

6
. (A.17)

(For external fermions, the ratio γq/T 2
i = 3/2 is independent of the representation.) The

subscript R.S. indicates that a quantity depends on the regularization and renormalization
scheme.

Now consider the limit of the I
(1)
n operator as the momenta of legs 1 and 2 become

collinear. Inserting the decomposition of the amplitude into divergent and finite parts,
eq. (A.15), into both sides of eq. (A.10) and taking the collinear limit, we find that the
divergent parts must satisfy

I(1)
n (ε)Split(0)

−λ |A(0)
n−1(λ)〉R.S. = Split(1)

−λ |A(0)
n−1(λ)〉R.S. +

+ Split(0)
−λ I

(1)
n−1(ε)|A(0)

n−1(λ)〉R.S. + finite, (A.18)

where collinear kinematics are implicit. On the left-hand side of the equation I
(1)
n (ε) acts

on an n-dimensional color space, while on the right-hand side I
(1)
n−1(ε) acts on an (n − 1)-

dimensional color space. A compact way to write the same equation is

Split(1)
−λ = I(1)

n (ε)Split(0)
−λ−Split(0)

−λ I
(1)
n−1(ε) + finite. (A.19)

To make this more explicit, consider an n-gluon amplitude, for simplicity. Inserting the
explicit forms of the operators, we have that the infrared-divergent parts of the renormalized
one-loop splitting amplitude must be

Split(1)
−λ =

e−εψ(1)

Γ(1 − ε)

[
1
ε2

+
γg
CA

1
ε

]
×

×
{[

n∑
j=3

T 1 · T j

(
µ2

−zsPj

)ε
+

n∑
j=3

T 2 · T j

(
µ2

−(1 − z)sPj

)ε
+

+ T 1 · T 2

(
µ2

−s12

)ε
+

1
2

n∑
i=j=3

T i · T j

(
µ2

−sij

)ε]
Split(0)

−λ−

− Split(0)
−λ

[
n∑
j=3

T P · T j

(
µ2

−sPj

)ε
+

1
2

n∑
i=j=3

T i · T j

(
µ2

−sij

)ε]}
+

+ finite, (A.20)
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where we have separated the terms into those involving the collinear legs and those not
involving them. The terms that do not involve the collinear legs simply cancel, since
Split(0)

−λ commutes with any T j where j > 3. After separating terms that involve sPj from
those that do not (allowing for shifts in the finite terms), we find,

Split(1)
−λ =

e−εψ(1)

Γ(1 − ε)

[
1
ε2

+
γg
CA

1
ε

]{[
−ε
(

ln z
n∑
j=3

T 1 · T j + ln(1 − z)
n∑
j=3

T 2 · T j

)
+

+ T 1 · T 2

(
µ2

−s12

)ε]
Split(0)

−λ +

+
n∑
j=3

(
(T 1 + T 2) · T j Split(0)

−λ−Split(0)
−λ T P · T j

)(
µ2

−sPj

)ε}

+ finite . (A.21)

In the above, we have been careful in the placement of Split(0)
−λ since it links (n− 1)-point

color space to n-point color space. To simplify eq. (A.21) we use eq. (A.9). Furthermore,
using color conservation, eq. (A.2), we have

n∑
j=3

T 1 · T j Split(0)
−λ = −T 1 · (T 1 + T 2)Split(0)

−λ

= −1
2

(
(T 1 + T 2)2 + T 2

1 − T 2
2

)
Split(0)

−λ

= −1
2
CA Split(0)

−λ , (A.22)

with a similar equation with leg 1 replaced by 2. Also, T 1 ·T 2 → 1
2((T 1+T 2)2−T 2

1−T 2
2) →

−1
2CA. Inserting these relations into the divergent parts of the renormalized splitting

amplitude gives us

Split(1)
−λ = −CA

{
1
2
e−εψ(1)

Γ(1 − ε)

[
1
ε2

+
γg
CA

1
ε

](
µ2

−z(1 − z)s12

)ε}
Split(0)

−λ+

+ finite . (A.23)

This result is in complete agreement with the divergent parts of the one-loop color-space
splitting amplitude, as given in eqs. (2.14) and (A.12), after renormalization according to
eq. (8.7). (Renormalization produces the term proportional to γg = b0 in eq. (A.23).) A
similar analysis using mixed quark-gluon amplitudes yields the same result for the g → gg

splitting amplitudes. This demonstrates that the expression (A.15) for the divergences of
one-loop amplitudes is fully compatible with the splitting amplitudes.

A.3 Review of Catani’s Two-Loop Divergence Formula

In a beautiful yet mysterious paper, Catani expressed the infrared-divergent parts of two-
loop amplitudes as [38]

|A(2)
n 〉R.S. = I

(2)
n,R.S.(ε) |A(0)

n 〉R.S. + I(1)
n (ε) |A(1)

n 〉R.S. + |A(2)fin
n 〉R.S. , (A.24)
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where |A(2)fin
n 〉R.S. is the finite remainder and the operator I

(2)
n,R.S.(ε) is

I
(2)
n,R.S.(ε) = −1

2
I(1)
n (ε)

(
I(1)
n (ε) +

2b0
ε

)
+

+
e+εψ(1)Γ(1 − 2ε)

Γ(1 − ε)

(
b0
ε

+KR.S.

)
I(1)
n (2ε, µ; {p}) + H

(2)
n,R.S.(ε) . (A.25)

An argument for this general structure has been given in ref. [61]. The quantity KR.S.

depends on the variant of dimensional regularization through the parameter δR [15]. It is
given by [38, 15]

KN=4
FDH = −ζ2CA , (A.26)

KN=1
FDH =

[
3 − ζ2 − 4

9
ε

]
CA , (A.27)

KQCD
R.S. =

[
67
18

− ζ2 −
(

1
6

+
4
9
ε

)
(1 − δR)

]
CA − 10

9
TRNf . (A.28)

Note that in passing to the N = 4 case we have switched away from the conventions of
ref. [15], with regard to assigning ε-dependent terms to KFDH. (We did not want to destroy
the uniform transcendental weight which all functions have in the N = 4 case.)

The function H
(2)
n,R.S. contains only single poles. It splits into two types of terms,

H
(2)
n,R.S.(ε) =

e−εψ(1)

4εΓ(1 − ε)

{
−

n∑
i=1

n∑
j =i

T i · T j
H

(2)
i

T 2
i

( µ2

−sij
)2ε

+ Ĥ
(2)
n

}
, (A.29)

where H(2)
i is either H(2)

g or H(2)
q , depending on whether particle i is a gluon or a quark.

The constants H(2)
g and H(2)

q are given by [26, 27, 28, 15, 33]

H(2)
q =

(
13
2
ζ3 − 23

8
ζ2 +

245
216

)
CACF +

(
−6ζ3 + 3ζ2 − 3

8

)
C2
F +

(
ζ2
2

− 25
54

)
CFTRNf +

+
(
−4

3
CACF +

1
2
C2
F +

1
6
CFTRNf

)
(1 − δR) , (A.30)

and (including also the supersymmetric cases here [15, 33]),

H(2),N=4
g =

ζ3
2
C2
A , (A.31)

H(2),N=1
g =

(
ζ3
2

+
3
8
ζ2 − 2

9

)
C2
A , (A.32)

H(2),QCD
g =

(
ζ3
2

+
11
24
ζ2 +

5
12

)
C2
A −

(
ζ2
6

+
58
27

)
CATRNf + CFTRNf +

20
27
T 2
RN

2
f +

+
(
−11

36
C2
A +

1
9
CATRNf

)
(1 − δR). (A.33)

There is no real proof that eq. (A.29) is the precise form of the n-point divergences, but
previous calculations strongly indicate that it is right. There are several conventions in
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the literature for ‘dressing’ the terms proportional to H(2)
i with factors of (µ2/(−sij))ε to

make them dimensionally consistent. Different conventions agree at O(1/ε), but generate
different finite remainders, which would have different collinear behavior, affecting the
results of section 8. Here we adopt a convention motivated by Catani’s treatment [38] of
the 1/ε poles proportional to γi at one loop in eq. (A.16). Note that the 1/ε pole part of
the terms containing H(2)

i in eq. (A.29) is actually proportional to the color identity matrix
1, since −∑j =i T i · T j = T 2

i , due to eq. (A.2).

Less is known about the function Ĥ
(2)
n (ε), which contains genuinely non-trivial color

structure at O(1/ε). For the four-point amplitudes it is given by [15, 33]

Ĥ
(2)
4 (ε) = −4 ln

(−s12
−s23

)
ln
(−s23
−s13

)
ln
(−s13
−s12

)
×
[
T 1 · T 2 ,T 2 · T 3

]
, (A.34)

with ln((−s12)/(−s23)) → ln s12 − ln(−s23) − iπ in the s-channel, etc. A simple ansatz,
generalizing eq. (A.34) to arbitrary n-parton amplitudes, is

Ĥ
(2)
n (ε) = i

∑
(i1,i2,i3)

fa1a2a3T a1i1 T
a2
i2
T a3i3 ln

(−si1i2
−si2i3

)
ln
(−si2i3
−si1i3

)
ln
(−si1i3
−si1i2

)
, (A.35)

where the sum is over distinct triplets of external legs, with i1 �= i2 �= i3. For n = 4, there
are four such triplets (omit any one of the four partons). Using [T ai , T

b
i ] = ifabcT ci , color

conservation (A.2), and antisymmetry of fabc, it is easy to see that each triplet gives an
equal contribution, and eq. (A.34) is recovered.

A.4 Collinear Compatibility with Catani’s Two-loop Divergence Formula

Next let us verify that the ε poles in the collinear splitting amplitudes match those predicted
by Catani for the full color-space two-loop amplitude. In order to analyze these divergent
terms, it is convenient to define the one-loop amplitude as being a color operator acting
on the tree amplitude (assume it does not vanish),

|A(1)
n 〉R.S. ≡ M (1)

n (ε) |A(0)
n 〉R.S.

= (I(1)
n (ε) + M (1)fin

n (ε)) |A(0)
n 〉R.S. , (A.36)

since we want to combine divergent and finite parts into a single entity. We do not actually
need the explicit form of the M

(1)fin
n operator, although it is straightforward to construct

this operator in one’s favorite color basis.
The full color-space two-loop amplitude is

|A(2)
n 〉R.S. = I(1)

n (ε) |A(1)
n 〉R.S. + I

(2)
n,R.S.(ε) |A(0)

n 〉R.S. + |A(2)fin
n 〉R.S.

= I(1)
n (ε)

(
I(1)
n (ε) + M (1)fin

n (ε)
)
|A(0)

n 〉R.S. +

+

[
−1

2
I(1)
n (ε)

(
I(1)
n (ε) +

2b0
ε

)
+
e+εψ(1)Γ(1 − 2ε)

Γ(1 − ε)

(
b0
ε

+KR.S.

)
I(1)
n (2ε) +

+ H
(2)
n,R.S.(ε)

]
|A(0)

n 〉R.S. + finite . (A.37)
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After adding and subtracting finite terms to combine the (I(1)
n )2 term with finite pieces, in

much the same way as was done for the color-trivial parts in eq. (8.16), we obtain,

|A(2)
n 〉R.S. =

1
2

(
M (1)

n (ε)
)2|A(0)

n 〉R.S. +

+
[
1
2

[
I(1)
n (ε),M (1)

n (ε)
]

+
1
4ε

Ĥ
(2)
n (ε)

]
|A(0)

n 〉R.S. +

+
[
−b0
ε

I(1)
n (ε) +

e+εψ(1)Γ(1 − 2ε)
Γ(1 − ε)

(
b0
ε

+KR.S.

)
I(1)
n (2ε)

]
|A(0)

n 〉R.S. −

− e−εψ(1)

4εΓ(1 − ε)

n∑
i=1

n∑
j =i

T i · T j
H

(2)
i

T 2
i

( µ2

−sij
)2ε|A(0)

n 〉R.S. + finite . (A.38)

First consider the terms on the penultimate line in eq. (A.38) containing the operator
I

(1)
n . Since the same operator appears as in the one-loop case, the collinear limit of these

terms may be determined in the same way as the one-loop case, using eqs. (A.19) and (A.12)
in particular. Equation (A.19) says nothing about the O(ε0) terms in I

(1)
n . Fortunately

these terms are identical for I
(1)
n (ε) and I

(1)
n (2ε); hence their contribution to the singular

terms in eq. (A.38), when they are multiplied by b0/ε, cancels. Following the one-loop
discussion, we obtain contributions to the two-loop splitting amplitude of the form

Nc

(
−b0
ε
r
(1)
S (ε) +

e+εψ(1)Γ(1 − 2ε)
Γ(1 − ε)

(
b0
ε

+KR.S.

)
r
(1)
S (2ε)

)
Split(0)

−λ + finite . (A.39)

(Recall that r(L)
S , introduced in section 8, denotes the renormalized splitting ratio.)

Now consider the terms containing H(2)
i on the last line of eq. (A.38). These terms are

written in the same form as I
(1)
n , but with one less power of 1/ε, so their collinear behavior

again follows from the one-loop discussion. Their contribution to the two-loop splitting
amplitude is just

H
(2)
g

4ε
Split(0)

−λ + finite , (A.40)

where H(2)
g is given in eq. (A.33).

Next consider the (M (1)
n (ε))2 term in eq. (A.38). In the collinear limits for this term

we have,

1
2

(
M (1)

n (ε)
)2

Split(0)
−λ |A(0)

n−1〉 . (A.41)

In order to evaluate this we use the collinear relation,

M (1)
n Split(0)

−λ → Split(0)
−λM

(1)
n−1 + Split(1)

−λ , (A.42)

which is a rewriting of eq. (A.10) after acting on |A(0)
n−1〉 and using eq. (A.36). Using

eq. (A.42), we find that in the collinear limit,

1
2

(
M (1)

n

)2
Split(0)

−λ → 1
2
M (1)

n

(
Split(0)

−λM
(1)
n−1 + Split(1)

−λ
)
. (A.43)
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To simplify the Split(1)
−λ term we may multiply eq. (A.42) by Nc r

(1)
S (ε) to obtain

M (1)
n Split(1)

−λ → Split(1)
−λ M

(1)
n−1 + Split(1)

−λ Nc r
(1)
S (ε) , (A.44)

where we used eq. (A.12). Then applying eqs. (A.42) and (A.44) to eq. (A.43) yields

1
2

(
M (1)

n

)2
Split(0)

−λ → 1
2

(
Split(0)

−λM
(1)
n−1M

(1)
n−1 + 2Split(1)

−λM
(1)
n−1 + Split(1)

−λ Nc r
(1)
S (ε)

)
= Split(0)

−λ
1
2

M
(1)
n−1M

(1)
n−1 + Split(1)

−λ M
(1)
n−1 +

1
2
(Ncr

(1)
S (ε))2 Split(0)

−λ .

(A.45)

The first term on the last line may be identified as a contribution to Split(0)
−λ |A(2)

n−1〉, the

second as a contribution to Split(1)
−λ |A(1)

n−1〉, while the third is the contribution we include

in Split(2)
−λ |A(0)

n−1〉.
Finally we examine the second line of eq. (A.38), containing the commutator term and

Ĥ
(2)
n . After some manipulations involving eqs. (A.42) and (A.44) we may write the part

of the commutator term that does not contribute to Split(0)
−λ |A(2)

n−1〉 as

−1
2
M (1)

n

(
I(1)
n Split(0)

−λ−Split(0)
−λ I

(1)
n−1 − Split(1)

−λ
)

+

+
1
2

(
I(1)
n Split(0)

−λ−Split(0)
−λ I

(1)
n−1 − Split(1)

−λ
)
(M (1)

n−1 +Ncr
(1)
S ) , (A.46)

where the finite combination appearing is,

I(1)
n Split(0)

−λ−Split(0)
−λ I

(1)
n−1 − Split(1)

−λ

=
[
ln z T 1 + ln(1 − z) T 2

]
·
n∑
j=3

T j ln(−sPj)Split(0)
−λ + O(ε) . (A.47)

Only the universal 1/ε terms in M
(1)
n contribute in eq. (A.46) to the order we need, and

we may obtain these terms from I
(1)
n . Inserting these terms, and moving them to the right

with the help of color commutators, the total contribution to Split(2)
−λ |A(0)

n−1〉 from the
commutator term is

i

2ε

[
− ln

( z

1 − z

) n∑
i=3

fabcT a1 T
b
2T

c
i ln(−sPi)

(
ln(−sPi) + ln z + ln(1 − z) − ln(−s12)

)
+

+
n∑
i=3

n∑
j=3,j =i

fabc
(
ln z T a1 + ln(1 − z) T a2

)
T bi T

c
j ln(−sPi) ln(−sij)

]
Split(0)

−λ .(A.48)

This result turns out to be precisely the negative of the corresponding contribution from
the Ĥ

(2)
n term. Thus the second line of eq. (A.38) only contributes to the tree-level splitting

amplitude term, Split(0)
−λ |A(2)

n−1(λ)〉, in eq. (A.13).

Combining the contributions to Split(2)
−λ in eqs. (A.39) and (A.40) and (A.45), we

obtain,

Split(2)
−λ(1

λ1 , 2λ2) = N2
c Split(2)−λ(1

λ1 , 2λ2)fP
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= N2
c

[
1
2
(r(1)S (ε))2 −

− b0
Nc ε

r
(1)
S (ε) +

e+εψ(1)Γ(1 − 2ε)
Nc Γ(1 − ε)

(
b0
ε

+KR.S.

)
r
(1)
S (2ε) +

+
1
4ε
H

(2)
g

N2
c

+ finite
]

Split(0)−λ(1
λ1 , 2λ2)fP

= N2
c r

(2)
S (ε) Split(0)−λ(1

λ1 , 2λ2)fP + finite , (A.49)

where r(2)S (ε) is given in eq. (8.18). This in turn agrees with the divergent parts of the
splitting amplitudes for N = 4 and N = 1 supersymmetric theories, and for QCD, as given
in section 7, after they are renormalized according to eq. (8.8). Thus our splitting ampli-
tudes are fully compatible with Catani’s color-space formula for the infrared divergences
of scattering amplitudes.

As noted already, this agreement may be turned around to prove the validity of Catani’s
formula inductively, up to reasonable assumptions about the analytic structure of the ε-
singular parts, i.e. such that they do not have vanishing collinear limits in all channels.

B. Relabeling Algorithm

For completeness, in this appendix we review a simple procedure for mechanically per-
forming relabelings. For the splitting amplitude problem discussed in this paper, it is not
difficult to identify the diagrammatic structure of a given term and map the momentum
labels used in the cuts to those used in the integration. However, for more general problems
it may be useful to perform these steps algorithmically. To do so, first one chooses a set
of parent diagrams and momentum labels used in the integration. To sort the terms into
diagrams it is useful to collect the terms on each propagator or light-cone denominator
type. The propagators and light-cone denominators encode the diagram type, but with
labels not matching the ones used in integration. Assuming the external legs are ordered
the same way in the cut and integration labels (if not, one should permute the external
legs), the problem amounts to finding a mapping between a given term in the cuts and the
diagram to which it belongs. For an n-point L loop diagram there are L independent loop
momenta and n− 1 independent external momenta, under momentum conservation. If the
loop propagators carry momenta pi in one set of labelings and qi in another labeling, then
a change of variables should exist relating the two of the form,

qi =
L∑
j=1

aijpj +
n−1∑
j=1

bijkj , (B.1)

where the aij and bij are in the set {−1, 0, 1}. This form assumes that for both the original
and final momentum labels the momentum of each internal leg is a sum or difference of the
independent momenta, as naturally arises either in cut or Feynman diagram momentum
routings. One sweeps over all changes of variables in eq. (B.1) until a match is found. If
no change of variables matches then the subsequent diagrams should be checked until a
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match is found. An efficient way to rule out putative changes of variables is to first set
all external momenta to zero, then re-introduce them one by one, eliminating candidate
diagrams and solving for the bij.

As a simple example, consider the double triangle diagram with a light-cone denomina-
tor occurring in our calculation of the two-loop splitting amplitude. From its origin in the
three-particle cuts shown in figure 26(b), where the cut momenta are {q1,−q1 − q2 − k1 −
k2, q2}, this diagram is described by the set of propagators and light-cone denominators

{q21, q22 , (q2 + k2)2, (q2 + k1 + k2)2, (q2 + q1 + k1 + k2)2, (q1 + k1 + k2)2, q1 · n} . (B.2)

The denominator variables used in the integration routines, shown in figure 29(a), are

{p2
1, (p1 + k1 + k2)2, p2

2, (p2 − k1 − k2)2, (p2 − k1)2, (p1 + p2)2, p1 · n} (B.3)

where p2 is labeled as p3 in the figure. After sweeping through the change of variables in
eq. (B.1) one finds that the two sets of momenta of momenta are related by

q1 = p1 , q2 = p2 − k1 − k2 . (B.4)

With this change of variable the two sets of propagators and denominators in eqs. (B.2)
and (B.3) are identical, except for the order in which they appear.
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