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Abstract

Beam-beam effects limit the luminosity of circular colliders. Once the bunch population

exceeds a threshold, the luminosity increases at a slower rate. This phenomenon is

called the beam-beam limit. Onset of the beam-beam limit has been analyzed with

various simulation methods based on the weak-strong and strong-strong models. We

have observed that an incoherent phenomenon is mainly concerned in the beam-beam

limit. The simulation have shown that equilibrium distributions of the two colliding

beams are distorted from Gaussians when the luminosity is limited. The beam-beam

limit is estimated to be ξ ∼ 0.1 for a B factory with damping time of several thousand

turns.
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Beam-beam effects limit the luminosity of circular colliders. Once the bunch population exceeds
a threshold, the luminosity increases at a slower rate. This phenomenon is called the beam-beam
limit. Onset of the beam-beam limit has been analyzed with various simulation methods based on the
weak-strong and strong-strong models. We have observed that an incoherent phenomenon is mainly
concerned in the beam-beam limit. The simulation have shown that equilibrium distributions of the
two colliding beams are distorted from Gaussians when the luminosity is limited. The beam-beam
limit is estimated to be ξ ∼ 0.1 for a B factory with damping time of several thousand turns.

PACS numbers:

High luminosity B factories, PEP-II and KEKB, have
been operated successfully at SLAC and KEK, respec-
tively. There are plans to reach a higher luminosity of
1035 to 1036 cm−2s−1 for these B factories. We have stud-
ied how the high luminosity can be achieved. The work is
directly related to understanding the beam-beam limit.
The beam-beam limit is characterized by the beam-beam
parameter (ξ)

ξ±,x(y) =
N∓re

2πγ±

βx(y),±
σx(y),∓(σx,∓ + σy,∓)

, (1)

where γ±, N±, σx(y),± and βx(y),± are the relativistic fac-
tor, bunch populations, the horizontal (vertical) size and
beta function of positron/electron beam, respectively.
The beam-beam parameter is regarded as the incoher-
ent tune shift of the beam, which interacts with the other
beam. The beam-beam parameters, which consist of four
values: i.e., vertical/horizontal and positron/electron
beams, correspond to the shift of betatron tune (the
phase advance in a revolution) in each direction and in
each beam. In the formulae, particles in the beam are
assumed to have a Gaussian distribution.

The beam-beam limit is understood empirically to oc-
cur when the beam-beam parameter or tune shift is
saturated at a certain value as the bunch population
increases[1]. It is explained physically with the enlarge-
ment of beam due to increasing the beam-beam param-
eter.

The beam-beam limit can be caused by various factors.
The lattice map affects the beam-beam performance. Its
linear part consists of Twiss parameters and dispersion
functions at the interaction point (IP). If the dispersion
and/or x − y coupling at the IP are nonzero, the nor-
mal coordinate of the lattice map does not match that
of the beam-beam force, with the result that the lumi-
nosity is degraded. The crossing angle is equivalent to a
kind of dispersion function at the IP. A nonlinear map,
chromaticity, amplitude dependent tune shift and reso-
nance structure of the lattice also affect the beam-beam
limit [2–4]. In this paper we focus on the essentials of
the beam-beam interaction itself, neglecting the lattice

effects. The physics system of the two colliding beams
is described by a smaller number of parameters: tune,
damping and diffusion rate due to the synchrotron ra-
diation, the nominal beam-beam parameters, and addi-
tionally σz/βy, if we consider the bunch length.

The radiation damping time is about several thousand
turns in B factories, while it is several ten or hundred
thousand turns in τ -charm and φ factories, and is even
longer in proton machines. In higher energy (E � 10
GeV) colliders such as LEP, it is several hundred turns or
less. Colliders with faster damping time tend to achieve
higher beam-beam parameters. In this paper, we focus
on the beam-beam limit for B factories with damping
time of several thousand turns.

The beam-beam limit has been studied with a two-
dimensional strong-strong simulation in Ref. [5]. The
beam-beam interaction of two bunches without consider-
ing their length was treated in the simulation. A coherent
π mode instability was induced for ξ > 0.05, with the re-
sult that beam size enlargement and a luminosity limit
were seen.

We studied the beam-beam limit with three-
dimensional strong-strong simulations using a code
named BBSS. The behavior of the beam-beam limit is
somewhat different from that in the two dimensional sim-
ulation. The coherent π mode disappears and an inco-
herent effect dominates for the beam-beam limit: i.e.,
the beam-beam limit is determined by the equilibrium
distribution of the two beams. The incoherent beam-
beam limit is examined with parameters of super KEKB
as is shown in Table 1.

The algorithm for the simulation is presented in Ref.
[5, 6]. The solver is based on the particle-in-cell (PIC)
method in two-dimensional grid space as is adopted in
some beam-beam simulation codes [7–9]. This simula-
tion code can also evaluate the beam-beam interaction
with an analytical formula assuming a Gaussian beam
distribution. The extension to three-dimensional space
is basically done by slicing a bunch along the z direc-
tion. Interactions between pairs of slices are done in
two-dimensional space. Particles in a bunch move across
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TABLE I: The design parameters of super KEKB (tentative)

HER LER
Circumference C 3,016 m
Energy E 8.0 GeV 3.5 GeV
Bunch population Ne 5.5×1010 1.26×1011

Beta function at IP β∗
x/β∗

y 0.30/0.003 m
Emittance εx/εy 24/0.18 nm
Bunch length σz 3 mm
Synchrotron tune νs 0.02
Betatron tune νx/νy 0.508/0.55
Radiation damping time τxy/T0 4,000 6,000

the longitudinal slices due to the synchrotron oscillation.
When the vertical beta function is comparable with the
bunch length, the transverse kick of particles experiences
a discontinuity at the crossing between two slices, with
the result that strong numerical noise occurs. To reduce
the longitudinal discontinuity, an interpolation of the po-
tential [6, 10] was done.

In the simulation, particles were initialized as a Gaus-
sian distribution derived from the design emittance and
beta functions. The radiation damping and excitation
are applied along the normal mode. A bunch is repre-
sented by 100,000 macro-particles per bunch and is di-
vided into 5 longitudinal slices. The transverse plane is
divided into 128 × 256 grids with unit size of 20µm ×
0.2µm. The simulation gives an equilibrium distribution
of the two beams, ρ+(x, y, z; s) and ρ−(x, y, z′; s), at the
interaction point s = 0 after tracking the macro-particles
during several damping times. The luminosity is esti-
mated by the equilibrium beam distribution as follows,

L = frep

∫
ρ+(x, y, z; s)ρ−(x, y, z′;−s)dxdydzdz′ (2)

where frep is the repetition frequency and the integration
is performed keeping s = (z − z′)/2.

Figure 1 shows evolutions of the luminosity, vertical
rms beam sizes and kurtosis (〈y4〉/3〈y2〉). The luminos-
ity decreases to about a half of the geometrical value
2×1032 cm−2s−1. Simultaneously, the vertical rms beam
sizes are enlarged three to four times. The size enlarge-
ment does not reflect the luminosity drop, because the
tail part of the distribution grows. The vertical kurtosis
in picture (c), which characterizes the shape of the distri-
bution, is obtained to be 3 ∼ 5. The horizontal beam size
is shrunken by the dynamical beta and emittance effects
as expected. The horizontal kurtosis had a similar value,
3 ∼ 5. Luminosity evolutions for various nominal beam-
beam parameters are also shown in Picture (a). Sudden
dips were seen in high beam-beam parameters ξ = 0.12
and 0.16. Such dips are sometimes seen for different nu-
merical conditions: i.e., grid size, initial particle distribu-
tion, the slice number and macro-particle number. The
dips occurred irregularly but the luminosity and beam
size finally settled on unique values. They were not seen
in the Gaussian approximation.

Figure 2 shows the beam-beam parameter and the
beam sizes for various currents (nominal beam-beam
parameter). The luminosities were obtained by inte-
grating the beam distributions up to 30,000 revolutions
(≈ 5 × τ/T0). Since the particle distribution is distorted
from a Gaussian, the calculated r.m.s size is not reflected
in the luminosity; therefore the beam-beam parameter is
estimated from the luminosity as follows,

ξy =
2reβy,±

N±γ±frep
L. (3)

where the horizontal size is kept constant, and σx � σy

is assumed. ξ calculated by Eq.(3) and ξ calculated by
Eq.(1) using the design beam sizes are called the beam-
beam parameter and the nominal beam-beam parameter,
respectively in this paper.

The results given by the Gaussian approximation and
by the PIC method are very different. Remarkable en-
largement was not seen in the horizontal beam size, but
was seen in the vertical beam size. The enlargement given
by the PIC method was stronger than that by the Gaus-
sian approximation. The Gaussian approximation gave a
high beam-beam parameter of more than 0.2, while the
PIC method gave saturation of the beam-beam param-
eter around 0.1. No significant coherent motions were
seen in the first and second moments: 〈xi〉 and 〈xixj〉 in
both methods. The weak-strong simulation with a Gaus-
sian fixed beam [11] gave similar results as the Gaussian
strong-strong simulation.

These different features between the PIC simulation
and the Gaussian approximation, where the sudden dips
are seen, give us a hint of what might be the origin of
the beam-beam limit. Figure 3 shows the variation of
the particle distribution during the sudden change of the
luminosity. Both electron and positron distributions are
depicted in the figure. Both distributions are enlarged
and distorted from a Gaussian simultaneously while over-
lapping with each other. The final distributions after
35,000 turns are seen in Figure 3(b). The distribution of
positrons is slightly broader than that of electrons, due to
the difference in the radiation damping times. Both dis-
tributions, which are distorted from a Gaussian mainly
in the tail part, are considered as an equilibrium distri-
bution of the two colliding beams.

We now think that the beam-beam limit is determined
by the equilibrium distribution of the two beams, but is
not caused by coherent motion. To confirm this idea, we
carried out a weak-strong simulation using the particle
distribution obtained by the strong-strong simulation. If
the beam size enlargement is due to an incoherent phe-
nomenon, the same results of luminosity and size should
be obtained in the final stage. The strong beam, which is
the electron beam in the figure, is given by the final dis-
tribution of the strong-strong simulation using the PIC
code, while the weak positron beam is initialized with the
designed Gaussian distribution. In this approach, any
coherent motion, even a small breathing, is suppressed.
Figure 4 shows the evolution of luminosity and beam size



3

10

8

6

4

2

0
L

 (
10

31
cm

2  s-1
)

30x10320100
turn

ξ (nominal)=0.2

0.16

0.12

0.08
0.04

(a)
5

4

3

2

1

0

σ y 
(µ

m
)

30x10320100
turn

(b)

e-

e+
12

10

8

6

4

2

0

ku
rt

os
is

30x10320100

turn

e+

e-

FIG. 1: Evolution of luminosity, vertical rms beam size and kurtosis (〈y4〉/3〈y2〉) obtained by the strong-strong simulation.
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FIG. 2: Beam sizes and the beam-beam parameter function of the nominal beam-beam parameter obtained by the strong-strong
simulations with the particle-in-cell method and Gaussian approximation. Horizontal and vertical beam sizes are depicted in
(a) and (b). Effective beam-beam parameters are depicted in (c).
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FIG. 3: Evolution of the vertical distribution of electron and
positron beams. The distributions during the sudden change
and after 35,000 turns are depicted in picture (a) and (b),
respectively.

given by the weak-strong simulation. The luminosity is
at a similar level after 40,000 turns as that of the strong-
strong simulation as is shown in Figure 4(a). The evo-
lution of the beam sizes for the weak-strong simulation
in Figure 4(b) is compared with Figure 1 (b). The size
of the positron beam in the two simulations grows to the
closed value. The two luminosities do not coincide per-
fectly, but have a difference of 15%. Figure 4 (c) shows
the evolution of the size of the positron beam that in-
teracts with a fixed Gaussian electron beam. The beam
size is much less than that for the distorted beam. This
means that the distortions are destructive to each other:
if one beam is distorted from a Gaussian, the other beam
is forcefully distorted as well.

The beam-beam limit due to coherent motion was seen
in the two-dimensional simulation [5]. In the three di-
mensional simulation, the coherent motion was not seen
for our parameters, but was seen in the case of short

bunch length, σz < βy/2. The coherent motion disap-
peared σz = 1.5 mm, where the results were verified for
the number of slices 5 and 10 [12]. Perhaps the coherent
motion is smeared due to tune spread along z in a bunch;
therefore the incoherent beam-beam limit dominates.

We consider how the equilibrium distribution is
formed. The beam-beam interaction is a multi-
dimensional and a nonlinear dynamical system, which
has the characteristic of diffusion [13]. These character-
istics are different from that of a potential well distortion,
which is determined by Haissinski [14, 15] or Vlasov equa-
tions. In a solvable model, the equilibrium distribution
is determined by the ratio of the damping and diffusion
rate due to the synchrotron radiation, namely emittance.
In the beam-beam system that may be an unsolvable sys-
tem. The diffusion due to nonlinearity plays an impor-
tant role in determining the beam distribution. This dis-
cussion has been applied to a halo formation due to the
beam-beam interaction with a weak-strong model [16].
Here we emphasize the diffusion for the two interacting
beams to explain the beam-beam limit.

We emphasized an incoherent beam-beam limit in this
paper. The behavior may depend on tune. In our expe-
rience, this tune operating area is the best in the tune
space. Therefore it is important to understand the origin
of the beam-beam limit at this tune operating point.

Horizontal and vertical tunes were surveyed in the area
of 0.5 < νx,y < 0.7. A horizontal coherent instability
dominated at the region νx > 0.55, with the result that
the beam-beam parameter went down to ∼ 0.01 at the
beam current. Vertical coherent instability was not seen
in this area. The horizontal kurtosis increased > 6 when
leaving the half integer line (νx ∼ 0.52-0.53), while the
vertical kurtosis decreased to be < 2. Higher vertical
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FIG. 4: Evolution of the beam-beam parameter and vertical size of electron and positron beams. Evolutions of ξ for the
weak-strong and strong-strong simulation is depicted in (a), where the final distribution of the strong-strong simulation is used
as a fixed distribution in the weak-strong simulation. Evolution of the beam size for the weak-strong simulation is depicted in
(b). Evolution of the size of positron beam that interacts with fixed Gaussian electron beam is depicted in (c).

tune (νy ∼ 0.58) showed a better beam-beam parameter
ξy > 0.12. It was sensitive to the damping time of the two
rings. Fourier analysis showed horizontal π mode spectra
when leaving the half integer line, and broad spectra at
the bare tunes in vertical.

We studied the beam-beam limit with various simu-
lation methods: weak-strong and strong-strong models
with the Gaussian approximation and the particle-in-cell
method. The beam-beam limit, ξ ∼ 0.1, was obtained
by the particle-in-cell method for B factories. The beam-
beam limit is determined by an equilibrium distribution
of the two colliding beams, which is distorted from a
Gaussian distribution. The weak-strong simulation with
the distorted distribution also gave a similar beam-beam
limit.

The weak-strong and strong-strong simulations with
Gaussian approximation gave a higher beam-beam limit
> 0.2. The Gaussian approximation is not appropriate,
if we consider the mechanism of the beam-beam limit
discussed above. It should be emphasized that the result
of weak-strong simulation with the Gaussian approxima-
tion is quite correct: that is, if one beam is kept Gaussian
with a technique, for example using beam-beam com-
pensation, the beam-beam limit may be boosted up to
ξ > 0.2.

We had a 15% discrepancy in the strong-strong and
weak-strong simulations with the distorted distribution.
The discrepancy may be due to correlations of motions
of the two beams, namely, coherent motion like small
breathing or others. This remains as an open question.

We only need the equilibrium distribution of the two
colliding beams to understand this type of beam-beam
limit. A more concise method can be applied for this pur-
pose; for example a quasi-strong-strong simulation with
the PIC method may make it easier to obtain a solution
with a longer damping time[17].

The beam-beam halo, which affects the beam life time,
has been estimated by weak-strong simulations with a
Gaussian strong beam. We discussed the fact that the
beam-beam limit of luminosity was caused by distortions
of the beam distributions. The halo should also be esti-
mated with the distorted distribution.
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