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Abstract

The axial symmetry in the real devices of image electron optics is always disturbed by small
defects in manufacturing and assembly. We present a complete method for the numerical simula-
tion of problems with such defects, which includes the algorithms for singularity extraction in a
numerical solution of the boundary problem described by the Helmholtz equation. The effective
recurrent formulas for evaluation of the kernels of integral representations and their derivatives
are constructed. New modification of the well-known Bruns-Bertein [1, 2] method is given, and
correlation of this method with an integral equation in variations is investigated. The algorithms
are implemented in the codes POISSON-2 [3]-[5] and OPTICS-2 [6]. The results of the numerical
simulation for various test problems with different kinds of boundary deformation are given.

PACS: 41.20.Cv; 02.70.Pt; 42.30.Va
Keywords: Electromagnetism; Boundary element method; Electron optics

1 Introduction

Any real device is a three-dimensional one, but most publications on numerical simulation are
devoted to two-dimensional problems. It means that a 2D model approximates the real device
with adequate accuracy for practice. Nevertheless there are problems where 2D approximations are
not sufficient because of high precision requirements. One example of the problems is the design
of image-optics devices, which require simulations with so called “optical precision”. One of the
authors (V. Ivanov [3]) made a special investigation of such requirements, via simulation of varying
random error of numerical calculations. He showed that “optical precision” means relative error
about 1077 for potential and less accuracy for spatial derivatives of first order (107¢) — fourth order
(10-3), for the elements of Gauss optics — 107°, for aberration coefficients of third order — 0.01,
which gives 0.05 — 0.1 accuracy in spatial and temporal resolution. It is absolutely clear that there
are no computer codes to simulate those problems in 3D approximation with the same accuracy.
Therefore such problems can be simulated as a set of perturbations of a 2D problem. Thus the
defects of manufacturing and assembling of an axisymmetric device can be considered as small
perturbations of a 2D model.

There are a lot of publications focus on the study of parasitic aberrations (for example, see
[27], [31], [30]), but they did not study how to reach “optical precision” in the field evaluation.
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Publication [29] concerns the axial perturbation deflecting field functions, but there the field excited
with coils. That case there are no field sources in the vicinity of axis, and the beam propagates
far from the sources. Another paper [28] focuses on the field disturbances for very specific sector
analyzers. Authors of both papers does not provide general algorithm for the evaluation of field
disturbances, and did not discuss the accuracy of their numerical calculations. They use simplest
shapes of deflectors and sector analyzers when all integrals can be evaluated analytically. In this
paper we will pay attention to the most complex case of emission devices of arbitrary shape. This
case we should provide high accuracy computations right up to the boundary of domain.

There is an opinion that tolerance problem has more academic value than applied interest , and
in electron devices, the assembly tolerances are as good as can be realized. That is not right in
principle. We know examples when the yield of good devices in repetition work was about 0.05%.
In order to increase this yield you should make your tolerance requirements more strong. But first
you should know the most critical requirements for the particular parameters, because you are not
able to provide more strong requirements to all parameters of your device.

A stationary electric field with source density p is described by the Poisson equation A¢ = p for
the potential ¢, which can be represented by the expansion

o(r,z,0) = ®(z) + Z Dm (7, z) cos[m(0 + 0],

where ¢, is m-th Fourier harmonic of azimuth expansion for 3D potential in cylindrical coordinates
(r,z,0). There are many publications [8]-[15], where the authors use an integral representation
mainly for the harmonics of potential. The most detailed algorithms were described in the books
[12] and [13]. Some numerical results were presented in the books [13]-[15]. But all of these
publications are incomplete and unsatisfactory in the following missing points:

e no detailed algorithms to evaluate the axial asymptotics for harmonics and their derivatives;
e 1o algorithms to evaluate the harmonics and their derivatives near the boundary;
e no algorithms to evaluate the edge asymptotics of the boundary contour;

e no algorithms to evaluate the field perturbations in the vicinity of thin two-sided conducting
surfaces (fine-structure grid, iris);

e no systematic tests with comparison of analytical and numerical results;

e no results of simulations for practical complex devices with comparisons of numerical and
experimental data.

Thus our analysis does not allow us to conclude that the authors of those publications can sim-
ulate real devices with appropriate accuracy. Our goal is to present such algorithms and numerical
results to complete this picture. Our algorithms can:

1. solve the boundary problems for the potential fields of the following structure

o(r,z,0) = Z Gm(r, 2) cos[m (0 + 0,)];

2. evaluate the perturbed potential due to deformations of the boundary shape;
3. evaluate the charged-particle trajectories with these perturbations of the potential;

4. solve the inverse problem of electron optics: to find the tolerance for geometry variations of
the boundary in a priori defined requirements for image quality parameters.



2 Boundary problems
The potential of the stationary field ¢ is governed by the Poisson equation in a cylindrical coordinate

system
0 ¢ 1 (92(/5 _
r8r< 8r>+8z +7’2802_p’ (1)

and different boundary conditions on the boundary surface S = S; + S9. We will show later that
Dirichlet

¢|51 = U(’l”, 2, 9)7 (2)
and Neumann
g: - En (lra Z, 0)7 (3)

boundary conditions with known functions U and E,, produce the boundary integral equations (BIE)
of different structures. All other types of boundary conditions produce BIE of similar structures,
and we will therefore consider only those conditions on piece-wise smooth parts 'y and T’y of a
boundary satisfying the Helder condition.

Expanding the potential and source in the Fourier series on the azimuthal coordinate

o(r,z,0) = Zqﬁmrz cos[m(6 + 6p,)].

we obtain the set of the Helmholtz equations for the harmonics
Fpu | P | 106
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where m is the number of the harmonic, and 6, is their initial angle.

We assume that the Fourier expansion has fast convergence rate versus m. This is typically true
for the following cases:

__¢m: ms m:01172a"'1

a) azimuthal dependence of the field is a small perturbation of the axially-symmetric problem;

b) the geometry has planes of symmetry or anti-symmetry (multipole):

2k
o(r,2,0) = :I:(]ﬁ(rze—i-—W) m>1, k=1,...,m;

c¢) the geometry shape is axially-symmetric, but the boundary conditions have azimuthal depen-
dence, which is proportional to cos[m(0 + 6,,)].

The integral representation of a scalar stationary field with such sources as surface charges
o (corresponding to a single-layer potential), dipoles v (double-layer potential) on the boundary
surface S and volume charge density p (volume potential) in V' is described by the formula:

#P) = [#(Q)Ga(P.Q)dSg + / J(P.Q)dSq + (@
S
[ p(@G,(P.Q) Ve,
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where P = (r,z,0) - is an observation point, @ = (', 2’,8') - is a source point, and kernels as Green
functions G,(P,Q), G, (P,Q) = 0G,/0iig and G, = G,. Here fig - is a unit normal vector at the
point ) of the boundary surface S;Sg, Vo means integration over the coordinates of the source
point (). The kernels and their partial derivatives for the axial symmetry case are [3]

_ reK() . _ ,VTPTQ
G, (P, Q) = 200 , t=2 5 , (5)
GV(P, Q) _ G'r COS(nQ,e'r) +(5Gz COS(nQ,ez)’
TEQ
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o= r = K t ]_ . . _ E t ’
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0 = \Jrp+70)?+ (2p — 29)?,  Rpq=1/(rp —1Q)? + (2p — 7).

Here K (t) and E(t) are complete elliptic integrals of the first and second kind, €., €, are unit vectors
of the coordinate system, g = 8.86 - 10 12F/m is the permeability of free space.
The Dirichlet condition (2) produces an integral equation for unknown surface charge density

[ #(Q)Ga(P.Q) dSq =UP) — [ (@) G,(P.@) Vo, P € 5. (7
1%

S

The Neumann condition (3) usually arises on the open parts (holes) of the boundary surface .
This condition produces an integral equation

o~ [ (@) Gul(P.Q) dSq = Bu(P) = [ p(Q) Gu(P.Q) dVe. P € 52, (®

260
S 1%

where G, (P, Q) = 0G,(P,Q)/dnp.

Taking the Fourier expansion of the boundary condition f = U or f = E, and for the source o,
FP) = Y fme™, 0(Q) =) ome™, (9)
m m
we can obtain the generalized integral equation

fn(P) = /am(Q) Gom(P, Q)AL o +Aom(P), dSo = ddT o, (10)

where )\ is a constant, I' is the boundary contour, and the 2D-kernel is now
2 cos(md) do
0 2+ ()2 =2rr'cosf + (z — 2')?

Here we use coordinates 7,z and 7/, 2’ lying on the two-dimensional boundary contour T'. A
similar formula can be written for the double-layer potential

fn(P) = [rml@) Gron(P, Q)T + Aam(P). (12)

Gom(r, 2 ) =1

(11)

where the kernel is

0Gsm ,/277 [(z—2")sinf — (' —r cos ) cos 5] cos(mb) df
=r
0

Gum(r,z;r' 2') = 32 ,
[r2 4 (r')2 = 2rr' cos 0 + (2 — 2')?]

o (13)

where 3 is the angle between the inner normal vector 7ig on the boundary and the axis z.
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3 Kernel evaluation algorithm

Using analytical integration, the explicit formulas for a few harmonics can be obtained

GU,O = %TIK(t)a (14)
49!

GU,I = E[(Q - tz)K(t) - 2E(t)]a

Goo = 34524 [(3t* — 16t + 16) K (t) — (8% — 16) E(t)]. (15)

As Gy m =0 in r — 0, we introduce a normalized kernel

,rl

m
Gom = <—> Goml(r,z;r',2") (16)

r

instead G, to exclude the degeneracy of the integral equation near the axis. Later symbol ‘“*" will
relate to the normalized (non singular) functions. Then high-order harmonics can be evaluated
using the recurrent formula

I\ m+1 - _ 42
<r_> <1 2m . m(2—1?) .,

r 14+2m o™= 17 (14 2m)e2 o™

ol = ),le,aﬁtﬁl. (17)
Parameter « is a constant, which characterizes the bound near-axis domain. Similar formulas
have been obtained in publications [15, 18, 21, 22], but without analysis of the field behavior near
the axis and the boundary.
Near the axis (0 < ¢ < «) in the limit » — 0 we obtain the simpler expressions

. 2m! & on _ [@2n—1)M? (n!)?
I\ 2m oo ! ! /
Ghm = 2% (%) Z [(271 + 1)% (% sin f — %cos 5) — 1n.COS ,6] Enmt 2™ (19)

The parameter « is determined in order to get good agreement between both methods of kernel
evaluation (17) and (18). The relative difference is less then 10~ for a = 0.2. Hawkes and Kasper
[12] analyze near-axis asymptotics. They claim their algorithms have been well tested, but there
were no numerical results presented for their tests and for practical problems. Some results for test
problems have been provided in [13], but these authors did not make a normalization procedure,
and did not take into account near-axis asymptotics for o,,. As the result they lose accuracy of
calculations for m > 1.

4 Numerical algorithm for integral equations

The boundary collocation method consists of the following steps. The boundary contour includes a

set of m smooth lines described by parametric equations with parameter s
r=ri(s), z=2z(s), ; <s<f, i=1,...,m. (20)

Each interval [oy;, ;] is divided into n; subintervals with points r;;, z;;, 7 = 1,...,n;. Number of
contour points N is the dimension of the global matrix.



Then we use a cubic spline approximation for a regular part 6 of the BIE solution o

(s)
— 21
A Py DTV R T 1)
. (s; —8)° (s —sj-1)* (. hi\ sj—s
- M;_ M =M
5(3) 7716, I 6n,  \T TG ) Ty
. Wi\ s—sj1 . _ . .
UJ—MJF T, OJEO'(SJ), hJ:S]_SJ—lajzl,,N (22)
J

Here u and v are the order of singularity at the contour edge points. The coefficients M; of
the spline function can be evaluated from the continuity condition for the second derivative of the
solution & at the internal points of approximation on the boundary curves [23]. Then we substitute
this spline representation into the the integral equations (7,8), and satisfy the boundary conditions
at the set of collocation points on the boundary contour. In our case the sets of the approximation
and the collocation points s; are identical. As the result of this procedure we obtain a global matrix
G of dimension N x N of the linear system

—

G =F, (23)

where F is a vector of the boundary values and & is a solution vector.

We use the Gauss quadrature formulas for evaluation of the integrals over the boundary, modified
Gaussian elimination procedure to solve the linear system, and a polynomial approximation for the
elliptical integrals [20]

K(t) = amn' —bn'Inn, E(t) =c¢n' —din'Inn, n=1—1¢ (24)

with coefficients a;, b;, ¢;, d;.

5 Partial derivatives of the kernels

In solving electron-optical problems using a trajectory model, we need to evaluate first-order partial
derivatives E, = —0¢/0r, E, = —0¢/0z. In using the aberration theory, following O. Scherzer, we
can represent the axial potential with the expansion

_d'®

7‘2 .
P(r,z) = B(z) — —B"(2) + ""(2) — ..., B(z) = ¢(r,0), D (2) = o

4

(25)

Thus we should evaluate up to fourth-order derivatives of the potential for the third-order
aberration model. In any case, we have to evaluate some partial derivatives of the potential. The
first derivative of the kernel for m-th harmonics can be written in the form

0Gom 45! Kl (AmE(t) + BmK(t)> (26)
od  (2m—1)"od st2m ’
where A,,, B, are polynomials of ¢, and d is the variable r or z.
By introducing definitions
dA dB
Un(t) = S22 V(1) = S, Dy = Cul)(1 = 1) = Boa(t), (27)



we can write the final formula for this derivative

G m 4r 1 ot Dnn
ad — (@m—1)lsem {?% [E(t) (Am(l = 2m) + tUn + O+ 1 t2> -
K(t) (A + (14 2m) By — V)] = [AuB(0) + B K (1) %%} , (28)

and propose the following recurrent formulas for evaluation of the coefficients

Uni1 = —(2m — 1244, 1 + tUy 1) +4m[(2 — £2)U,, — 2t A, (29)
Vine1 = —(2m — 1?3 (4B, 1 + tViy 1) + 4m[(2 — £*)V;, — 2t By,
Cns1 = —(2m—1)%#Ch 1 +4m(2 —t*)Cp + (2m — 1)2(1 + t*) D, 1 + 4mD,,,
Dpy1 = 4mD,, — (2m —1)’D,,
with
Uy=U=Vy=Cy=0,0,=Dy=D; =1, V; = —2t. (30)

Thus, we can write derivatives for the first harmonics, for example

oGy 4’ E(t) 62 —2r(r+1')
or 3832 {1 — 12 2r * (31
362 —2r(r + 1) N 0%(4—1?)
E(t) o + K(t) |2(r+7") — o | (>

6 Improvement of the approach by Bruns-Bertein

Production of any real device is inevitably accompanied by some deviations from its ideal model.
Small perturbations of the geometry result in perturbations of the electric or magnetic field, which,
in turn, result in deviation of electron-optic parameters. Omne of the earliest approaches to the
problem of perturbation theory has been proposed by H. Bruns. In correspondence with his lemma
[1],the perturbation of the potential d¢ due to the boundary perturbation 7 satisfies by the relation
9=~ 55| (o) (33)

where normal derivative is evaluated on the undisturbed boundary contour I'.

Bruns applied this correlation to the problems of geophysics with volume sources. Later F. Bertein
[2] generalized this lemma to electromagnetism with surface sources - single-layer potential. In us-
ing BIE, the solution procedure consists of two steps. First, the undisturbed boundary problem is
solved, then the perturbation of the potential is evaluated, using the Bruns lemma as the boundary
values on the disturbed part of the boundary. There are some problems in using that lemma when
the boundary contour has edges or includes thin, two-sided surfaces with different values for the
normal derivative of the potential on both sides.

One of the first practical realizations of that approach has been presented by L. Romaniv [14]. A
new approach based on the varying of BIE have been proposed in the book [13], where the authors
claim that they overcome the mentioned problems, because their BIE has integrable singularities



in principle. However, they did not discuss the details of such numerical algorithms for specific
variation types.

Bruns examined the volume potential with kernel G, (P, Q), which is continuous in the volume.
In that case there is no question about the side of the normal derivative. Single-layer potential gives
two different values for that derivative satisfied by the relation

op| _ 9¢

8ﬁ Ty 8n

where I' | and I'_ are different sides of the boundary contour.

Bertein used a formal mathematical technique without taking into account this specifics. He
assumed that the normal derivative is evaluated from the side of the surface where one would know
the potential perturbation. That approach is not correct in presence of a thin, two-sided surface.
We propose a modification of the Bruns-Bertein approach, which is free from those problems, and
can produce the algorithms which are appropriate for evaluation of the tolerance for electron optic
parameters of practical devices.

It is evident that the total difference of the potentials from both sides of the disturbed surface

= 4dro, (34)
T

is
Jd¢
P

Ap=0d¢, —d¢p_ = < ) or = —4moér. (35)
Gn

A new feature of our approach is that the double—layer potential with dipole density éyu = —odr

can produce this discontinuity of the potential. That way, the total perturbation of the potential

d¢p, in normal variation of the boundary contour is given by the formulas

ShalP) = [ rQéy(Q)%{;Q)dI’Q, (36)
ra(P) = dra(P) [ o2 arg, @7
36alP) = 0un(P)+ b0a(P), G = T, (39)

The next important point is that the original Bruns-Bertein approach examined only normal
variations 07, of the boundary contour, but in the electron optic applications it is also important
to involve the tangential variations dr,, described in a similar way

,P) = [ 1@ Q@ Yarg, (39)
s (P) = or(P) [ o(@2%0 P arg, (o)
39:(P) = 860, (P) + 800 (P), ()

where 7 is a tangential vector on the boundary contour.

The third point is that the Bruns-Bertein method did not consider the boundary variations 4.5,
which changes the area (stretching-compressing). Taking these variations into account, we obtain
the perturbation of the potential d¢; as

30.(P) = [ o(@IS@QG(P.Q)ro, (42)

or Irq ddrg 8zQ 0dzg

3s 95 T os i (43)
(%) +(52)"

8

05(Q) =




where r = r(s), z = z(s) are the parametric equations of the boundary, and the total perturbation
of the potential is

0¢(P) = 0¢n(P) + 6¢7(P) + 065 (P). (44)

This perturbation should be used as the known function in the BIE in variations
/ 50(Q)G(P,Q)dl g = 5U(P) + 64(P). (45)
r

The difference between our approach and the “BIE in variations” from the book [13] is similar
to the difference between the Euler and Lagrange approaches in the continuum mechanics.

7 Integral representations for the field perturbations

Now we would examine the basic set of typical types of the boundary variations. Each separate
perturbation can be described by a small parameter &;, and the total perturbation can be represented
by the expansion

k k
d(r,2,0) = ¢(r,2) + iz:lézigbgl)(r, z,0) + % Z o?idjgbg) (ryz,0) +.... (46)

ij=1

Here ¢(r, z) is an undisturbed potential, ¢(!) and ¢ are the first- and second-order perturbations.
Later we will examine the linear perturbations only, so the upper index will be dropped.
General expansion on r for disturbed potential can be written in the form

2 2
o(r,2,0) = CI)(Z)—%@"(z)+7£—6¢)""(z)+...

+
(o}

-
Il
—

i [‘I)z',o(z) - ZQZVO(z) +...

+
[of

-
Il
—_

2
ircos @ l(bi’l(Z) - %@;’1(2) +...

[of

-
Il
—

2
r
+ ir2 cos 20 |fI>@2(Z) — E(I);I:Q(Z) B T I S

where ®; are the zero-order harmonics due to the variations conserving axial symmetry; ®;
are the first-order harmonics due to the shift in the r-axis direction or tilt of the axis of some
part of the boundary contour; ®;9 are the second-order harmonics due to the elliptical deforma-
tion of some part of the boundary contour. It is easy to show that the perturbation functions
0buns 0Py rs 0boms 0¢gr,0Ps n and d¢s » can be expanded to similar expansions.
We should require the existence of the normal derivative of the perturbed potential on the axis,
i.e. 6¢, < oc. This requirement puts some conditions on the form of the boundary variations. We
can show that those constraints can be written in the form for double-layer potential
\m
(@) = S, (18)

Spmpun(P) = er'™ cos(mb)gy,(r, 2), (49)



% — 1 * *

#n2) = g [ ohP.QWE(P.Q)g. (50)
T(PQ) = (@5 61)
Wi = (%) %ZQ) (52)

where € is a small parameter of the boundary perturbation, a(r, z) is some non-singular function not
equal to zero on the boundary, og is a solution of the undisturbed boundary problem, and o}, W
are the normalized source density and the kernel for m-th harmonics.

For tangential deformation of the boundary contour we have the normalized BIE for the single-
layer potential

[ o @W o (P.Q)Tg = 2 (53)
with the non singular kernel
. _ (T"\" 0Gom (P, Q)
Wm,a,n(P7 Q) =T <?> 67'P (54)

inr — 0,7 —=0.
Appropriate double-layer BIE for tangential deformations has the normalized kernel

"\ 9GL(P,Q)
* P — / T_) m 7
Wm,ll,'r( ’ Q) r < r aTQ I (55)
and tangential deformations should satisfy the conditions
™+ cos(m)
Fmr(P) = e————=T(P
(5'rm,7'( ) € b(r, Z) T( )7 (56)
s (r"Ym+1 cos(mb) _,
5'rm,T(Q) =€ b('rl, Z,) T(Q)’ (57)

where b(r, z) is some non-singular function on the boundary.
The perturbed potential due to the tangential variation of the boundary can be written in the
form 6¢y, 5 r = er™ cos(mb);, (r, z), where

or(ry2) = b(rl, p /FO-O(Q)T%-P;@dFQ- (58)

Thus, the BIE in variations

/F 00m(Q)Gom(P,Q)dTq = er™ g, (P) (59)

for the unknown perturbation source do,, has the same kernel as the original BIE for undisturbed
source g,,. It differs from the original equations only with the right-hand part, so after discretization
we solve the set of the linear systems with the same matrix and with different right-hand vectors.
In the presence of the edges of the boundary contour the source distribution has the polynomial
singularities [3]
Tm(8) =T

om(s) = Gos)f " T (60)



where v is the internal angle in the corner point s = sq. The same asymptotics has the source
perturbation do;,. This asymptotics is included in the kernel W;“l(P, @), which is integrable.

We should note that publication [13], as well as all other mentioned publications, did not present
numerical results for problems with non smooth boundaries. Despite that, the authors of [13]
criticize the Bruns-Bertein approach for its inability to be applied to the boundaries with edges.
They did not discuss that problem when stating their version of the BIE in variations.

8 Near-axis asymptotics of harmonics

The analysis we presented before shows that ¢, (r,z) ~ ™ in r — 0, so the derivatives on z have
an asymptotics 0'¢y, /02" = r"™C(z). Differentiating the normalized kernel

i (2m — ! (r'>2m+1
= ot T T (T 1
Ginfri2) = 2m i (5 (61)
on z, we can obtain the corresponding kernels for evaluation of 8¢y, /02 for i =1 — 4
oG} 2m+ 12— 2
m — _ * 2
2*Gr, L 2m+1 z—2\?
2Gr, . 2m+1)(2m + 3) z—2 z—2"\"
O, z 3( _ ) — (2m +5) ( _ ) , (64)
G ., 2m+1)(2m + 3) z—2"\?
824m = Gy, 5 3—6(2m+5) < 5 ) +
z—2\*
+(2m + 5)(2m +7) < . ) . (65)

Numerical experiments show these formulas provide high accuracy for the harmonics and their
derivatives for m up to at least 15 when using double precision float point operations.
The kernel derivative on r can be written in the form

oG g - (4rhyitt
a?”m = 5 Z mfier 62i+1 . (66)

This derivative is identically equal to zero for m = 0, but for m > 1 it is enough to use only the
main term for i = m. Here &, m = (2m — 1)!1/(m!2%™). The high-order derivatives are given by the

formula
*G: 4™
6rkm = §m(m —1...(m—k+ 1)§m,m52mi+17‘ k. (67)

It is evident that 0¥,/ 87"“‘ 0= 0 for £ < m. To obtain an explicit asymptotics, we should
T—

normalize the solution of the BIE by introducing ¢,(Q) = 0,,(Q)/(r")™. In that case we have the
normalized kernel st/];) = 0kG,,/ork (r")™/r™k  which is a regular function that is not equal to

zero in 7 — 0. Then radial derivatives of the potential can be written in the normalized form

ak m (P m— *
S [ on@w i (r.Q) dro. (68)

2,,,,/) 2m-+1 k—1

W = e (7 T (m — ). (69)
=0
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Let us compare our kernels for m = 1,2

(" e 23 (Y
Wl =T g s WQ = 57(' g (70)
with the corresponding kernels from the book [13] p.103

6G1 ’I“I 82G2 3 (7‘/)3
o T oz 2" e (71)

The attempt to evaluate the derivatives of the potential using the last formulas results in the
formally divergent integrals. The reason for this divergence is that the asymptotic features of the
BIE solution are not taking into account.

We emphasize that our formulas for the axial derivatives 0*G,,/0r* include as regular terms
~ (2 — 2')/0, as non regular ones ~ 1/§, so the question of their correctness in near-boundary
calculations 6 — 0 can arise. That problem is investigated in the next section.

9 Near-boundary asymptotics of harmonics

The most difficult problem is the evaluation of the potential and its derivatives close to the boundary
surface. In practical devices some of these surfaces cross the axis, namely the cathode, fine-structure
grid and screen. Following the work [16] the boundary contour I' can be represented by the sum of
the “near” axis zones I'; and the “far” axis zone I'g. As integrals over the “far” zone are regular
ones, we will focuse on the “near” zone only. Let us define the “near” zone to be a circular arc of
radius R with center on the axis, and the variable of integration is the angle 3, which changes from
zero on the axis to some value §y. Then the singular part of the harmonics of the potential over
the “near” zome is given by the formulas

I\ 2m+1 Bo % R(si 2m+1 g
B,.(2) :“/F o (Q) <%> dFQ:a/U o (B) (s;loﬁ) ﬁ’ (72)

i

where

= — 1) I = = -
2r(2m — DN/ 2m)!l, Ry = 1+2Rcosﬁ+ <R> ] .

We can expand the source density in the vicinity of the axis

om(B) = s, (73)

i

where s; are the coefficients of this expansion, and represent the singular integral in the form

ﬁo * _ 2m+1 g Bo 2m+1 g
i —aR/ S0)sinf)™df R/ %0 Sm@ P = an 1, (74)
Ry 0
Here the first integral is a regular one, as (07, — o) ~ 32, but the second integral can be evaluated
analytically. For m = 0 we obtain
h 2r2 z
Pl = —— _ h=aFsy, F=—9 22+F<1——>,rstin. 75
O 12 + (2) 0 1+ cosf V= R) b (75)
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For the limit case of a straight line, where R — oo we obtain

B2 — —210r0(0) <|z| _ 2y r%) , (76)

which corresponds to a thin charged disk.
The formula for the first derivative of the potential can be obtained by differentiation on z

0§ _hsign( z) + W = z—F/2R (77)
0z (el +)* v
The discontinuity of this derivative in strict correspondence with the theory is
0¢ sign(+0) — sign(—0)
7 =_ =—4 .
[ an} = = 70(0) (78)
The higher derivative can be obtained by similar way
9? D _ T L on sign(z) + 9’ (79)
022 (2l + )’ |2l +9)°
POy W s £ 0 [sien(e) + o] 50
0z (el + ) || + ) (2] +¢)*
A I R O R U
ozt (el + )2 |2+ ¢)° (IZI +9)°
2 :
(2] +¢) (2] +¢)
where
2 _(z— F/2R)?
Q/)II — 'l/) ( z/)3 / ) , (82)
z—F/2R [ [z — F/2R\?
o= 3 ( ) _1, 83
3 (z — F/2R)? (z — F/2R)*
" = 5 + 18 e —15 o (84)
It is easy to show, that the discontinuity of the second derivative
0? P4 c0(0)
l 622‘)] = 8r——0 (85)
Z2=Z0

vanishes in the limit R — 0.
By introducing a new variable y?(3) = A+ Bcos 8, A = 1+ (2/R)?, B = 2(z/R), we can rewrite
the formula for arbitrary harmonics

//30 (sin B)?m+1ap a/ A ?
=asgR = —
(A+ Bcosp)mtl/2 B

where y1 = |1+ 2z/R|,y2 = y(bo).

m
dy
y2m ?

(86)
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The explicit formulas for the first two harmonics are

2(180R 1 4 2 2 2 }y2
Py = — —6A B—-A
i Vik {y[y 6Ay” + 3( ) " (87)
2asg 60A 5
Py = —3y® + 20AY? — 15(34? — B}y + —(B? — A? —BQ—AQ}.
S = i {0+ 204V~ 15642 = By + S - A + (- L (6
The formula for an arbitrary m in R — oo is
\/z2+1"2 2 _ 2\m
Dl (2) = aso/ ’ (CCQ#’ (=r24 22 (89)
|2

In limit R — oo we have

222 + r%

DY (2) = asg (\/TW — 2|z|> ,  D5(z) = asg

We used only the first term in the expansion (73) before. As o7,(s) is an even function of s, the

(90)

82" +122%rf +3rg §| |
3(r2 + 22)3/2 37l

next-order approximation gives
Bo * _ _ 2V (a3 2m+1d
Bo(2) = aR { /0 (73(8) — 50 ;ﬁo )(sin B)*"*1dpB

/50 gin2m+1 ,Bdﬁ /ﬁo 62 gipZm+1 ,Bdﬁ
S0 ——— + 52 -5 (>
0 Ry 0 Ry

(91)

where [07,(2)]" = 2s5.

As before, the first integral can be evaluated numerically, and the second one has been examined
already, but third integral can not be integrated in elementary functions. This integral can be
evaluated analytically using the expansion o, on the powers cos 3 as

ok (cos B) = 59+ 59cos B+ 54cos? B+ .... (92)

We can find the coefficients s; of this expansion comparing it with the (73). Finally we obtain
S9 = —289,89 = Sg + 2s9. Then we can rewrite the third integral in the form

2 m
- 4ase R [Y2 y?— A y? — A
Pl = — 1— S ——dy. 93
m B v < B By2m y ( )
In particular for m = 0 and m = 1 we obtain
- 4aso R Y2
a _  _ 3 _
Py = VP [ Ay} o’ (94)
_ 4asyR 54% — AB?]Y
¢ = 02N N5 548 4 (1542 - By 4+ 2 27 ) (95)
5B4 Yy
Y1
In the limit R — oo we have for m = 0, for example, the formula
= 4
Di(2) = — 3082 [\/22 +r3(rd — 22%) + 2222 | . (96)
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We can show, that the quadratic term in (73) gives a correct value for the discontinuity of third
derivative on the boundary in z = 0

[8%3] _ 1, Po0d) @7)
r

3 T 2 :
0z op 50
The high-order derivatives 0'®,, /02!, 9'®,,/dz' are evaluated by differentiation of the formulas
(91),(93). The function &, = o, — s9 — s23% has the following properties

06, &%,

Tmlg—o =0, 6 |5 =0, R T 0. (98)

B=0

This means that the derivatives of the first integral in (91) have the regular kernels for i = 1,2,
and we should use the next term s4 in the expansion (73) to increase the accuracy of calculation
for the high-order derivatives (i = 3,4).

10 The results of numerical modeling

10.1 Benchmark results

Some approaches to solving the problems of harmonic analysis can be found in the publications of
numerous authors [§—15], [18 —22] and in our publications [3—7],[16—17]. Here we will demonstrate
some numerical results for the test problems and compare them with analytical solutions. We
examine how the different factors affect the accuracy of the numerical solution:

1) smoothness of the boundary contour;

2) proximity of the observation point to the boundary;
3) presence of thin two-side surfaces;

4) number m of the Fourier-harmonics;

5) order i of the spatial derivative of the potential.

Test problem 1. Let consider a sphere of a unit radius. The potential distribution is given by
the formula

_ Ur™ cos(mb), R<1
$(r,2,0) = { Ur™cos(m@)/R*™*!, R > 1; (99)
where R? = r2 4+ 22, U is a maximum of a given potential on the sphere. This problem has a
solution with a single-layer potential

2m +1
A7

Ur™ cosmé. (100)

O'm('ra 2 0) =

Because ®(z) = 0 at the axis, we use a normalized potential

G (1 2)

— ¢m(r1219) _ 1, R <1
~ rmeosmf | RPN, R> 1. (101)
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All derivatives 9'®,,/02z" = 0 inside the sphere, and their axial values outside the sphere are

given by the formulas

2,
2,
@l
o

2m +1
o 2mA2

(2m +1)(2m + 2)

22m+3

bl

(2m +1)(2m + 2)(2m + 3)

Z2m+4

3

(2m +1)(2m + 2)(2m + 3)(2m + 4)‘

22m+5

(102)

(103)

For our calculations we divided the circle of the boundary contour on 10 intervals and we used 6-
point Gauss quadratures for evaluation the integrals. All calculations were done with using floating
point arithmetic with a 41-bit mantissa. The numerical results are given in the Table 1. Here the
first row for each z is the analytical solution, and the second row is the numerical one.

Table 1: Potential distribution and derivatives onto the sphere

[m[=] @ [ @ [ o [ o [ o ]
0.8 | 1.000000000 0.0 0.0 0.0 0.0
0 1.000000000 | 2.6-107% | 3.1-10"% | —5.0-1077 | 4.2-1076
1.2 | 0.833333333 | 0.6944444 | 1.1574074 | -2.893518 | 9.645062

0.833333333 | 0.6944444 | 1.1574074 | -2.893521 | 9.645107

0.8 | 1.000000000 0.0 0.0 0.0 0.0

1 1.000000046 | 6.3-107° | —6.6-10"8 | 74-10% | 8.0-107°
1.2 | 0.578703704 | -1.4467593 | 4.8225309 | -20.09388 | 100.4694
0.578703731 | -1.4467593 | 4.8225297 | -20.09376 | 100.4680

0.8 | 1.000000000 0.0 0.0 0.0 0.0
2 0.000000114 | 86-10"7 | —=3.0-107%| 1.1-10® | 3.6-10~*
1.2 | 0.401877572 | -1.6744899 | 8.3724494 | -48.83929 | 352.5952
0.401877717 | -1.6744908 | 8.3724601 | -48.83971 | 352.5871

0.8 | 1.000000000 0.0 0.0 0.0 0.0

3 0.999999950 | —2.9-10°% | —=1.9-10° | —6.1-10"* | 3.8-10°3
1.2 | 0.279081647 | -1.6279763 | 10.853175 | -80.13988 | 678.3234
0.279081602 | -1.6279751 | 10.853156 | -80.13950 | 678.3071

0.8 | 1.000000000 0.0 0.0 0.0 0.0
4 0.999989295 | —6.1-10"% | —1.7-1073 | 4.2-1072 | 8.7-1072
1.2 | 0.193806699 | -1.4535502 | 12.112919 | -111.0351 | 1110.351
0.193787015 | -1.4533172 | 12.110282 | -111.0093 | 1110.926

0.8 | 1.000000000 0.0 0.0 0.0 0.0

5 0.995737579 | —3.6-1072 | —1.4-10"! 2.1 6.3
1.2 | 0.134587986 | -1.2337232 | 12.337232 | -133.6533 | 1559.289
0.133843579 | -1.2232319 | 12.193889 | -131.8781 | 1507.492

It is not easy to compare our results with [13] p.161, because those authors presented analytical
data with big errors ~ 1073, and they give the results for the interval z € [0,0.5]. So it is not easy
to make a conclusion about the accuracy near the boundary, i.e. when z — 1. Moreover they only
present the results for m < 3.
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Test problem 2. The solution of above mentioned problem can be obtained with the double-
layer potential. The strict solution for the source density is

2m +1
T™m

v(r,z,0) = Ur™ cos(mb). (104)

The normal derivative of this solution is a continuous function on the sphere. The numerical results
of our simulations for the potential distribution and its derivatives were identical to the results
presented in the Table 1.

Test 3. Let us consider the thin disk of radius r¢ with a potential distribution ¢(r, z,0) =
U cos(m@), where U is a given constant. It is convenient to write the potential in the space in
elliptical coordinates (7,,0) as

$(2,€,0) = U P () Quum (4€) cos(md), j = V-1, (105)

where P,m and @, m are the Legendre functions of first and second order. Their values for n = m
are given by formulas

cosh(mz)dz

o
P = (1= 5%)™2 Q= / - 2 (106)
0 [€ + coshzy/€2 + 1™
The axi-symmetrical solution of this problem is
9 1 [ B2 — 2 R2 —2\2
d(r,z) = UL1— ;arctan % 2 g +\] ( 2 Ty + 1322 ; (107)
2 U 2 2 .2
Do(z) = U(l——arctan|z ||, o9 = , R®=1r"+4 27, (108)
m 72\ /r2 — 12
and the first harmonics is described by the formulas
_ 2U ¢ _
d1(v,€,0) = - (1—y2)(1—§2){§—arctan§ %@}cos&
2 2 ~ 2U 0
D(2)=U (1 — —arctan | z | —%) ,o1(r,0) = LUTesT (109)
7r (1 + 22) 72y /r2 — 12
The solution for the second harmonics is given with the formulas
o 2U ) 3 2¢
¢2(V1659) = T (1_7/ ) é {——arctanf— 1+§_-2 _3(1+§_2)2 ) (110)
é = _2 + + ’I"OZ 3
o
2
v = % - B + \J < 2 + 7"(%22 ;
and the solution of the integral equation (7) for m = 1,2 is given by formulas
7 — 2U 7 cos20 ~ 8U 12 cos 20 (111)

o1(r,0) = — ——=, 02(1,0) = -5 —F——=
T r%—r2 32 /TO_TQ
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At the axis we have the potential distribution of normalized potential with U = 1,79 =1 as

2 E2 2| 2|
Di(2) = 1—;{arctan| z | 112 (1—1—22)2}' (112)
For numerical simulation we divided the radius of disk onto 10 intervals. The first row in the
Table 2 corresponds to the analytical solution, and the second row to the numerical one.

Table 2: Axial potential and its derivatives for the 2nd harmonics on the disk
H 2 ‘ P ‘ P’ ‘ " ‘ " ‘ oM H
0.0 | 1.000000 | -1.697653 | 0.000000 | 1.01859 | 0.000000
1.000000 | -1.697653 | 0.000000 | 1.01859 | 0.000000
0.2 | 0.673428 | -1.509207 | 1.741393 | 6.02790 | -35.0339
0.673427 | -1.509215 | 1.741468 | 6.02790 | -35.0037
0.4 | 0.412075 | -1.087614 | 2.250236 | -0.58196 | -25.1513
0.412073 | -1.087614 | 2.250259 | -0.58204 | -25.1514
1.0 | 0.075587 | -0.212207 | 0.636620 | -1.90986 | 5.09296
0.075586 | -0.212205 | 0.636616 | -1.90986 | 5.09301

Test problem 4. The next examples show the relation between the boundary deformation and
the perturbation of the potential. The first example examines the shift of a thin disk for a small
value & = ¢z along the axis z. This shift produces a perturbation of the potential d¢(r, z), which
corresponds to the formation of a dipole-layer of density dv = —&o. The value of the perturbation
is evaluated by integration over the surface of disk with the kernel Gy ,, where the number of
harmonics m =0

59(P) = [ 61(@Go. (P QS0 (113

The axial distribution of the perturbed field is given by the formulas

4]z

_ 2sign(z)
B m(1+ 22)?

w1422’

0P (2) 5P (2) = —

(114)
The numerical results are presented in the Table 3, where upper row corresponds to the analytical
solution, and lower row to the numerical solution with the disk partitioned into 10 intervals along
the radius.
Test 5. The next type of variation is a tilt of the axis of the disk by a small angle 86. First, we
write the potential of the non-perturbed field in spherical coordinates

2
¢(R,0,4) =U(1 - %arctané)a &= i J <R2 ] 7“3> + (Rrocos0)?| . (115)

T2 2 2
Then we expand this expression with a small parameter & = 66, and we obtain the first harmonics

of the perturbed potential

dp1(r, 2,0) = &o@i (r, z)r cos O, 6P1(z) = W(Sllg+(;))2 (116)
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Table 3: Perturbed potential for the shift a disk alon,

g the 2z axis

H 2 ‘ @ ‘ @I ‘ @II ‘ @III (‘DIIII H
0.0 | -0.636620 | 0.000000 | 1.273240 | 0.000000 | -15.2789
-0.636627 | 1.1-10710 | 1.273236 | 3.6-107° | -15.27930
0.2 | -0.612134 | 0.235436 | 0.996077 | -2.507606 | -7.63534
-0.612137 | 0.235443 | 0.996018 | -2.506040 | -7.67365
0.4 | -0.548810 | 0.378490 | 0.424170 | -2.835298 | 3.43355
-0.548812 | 0.378495 | 0.424167 | -2.835330 | 3.43338
0.6 | -0.468103 | 0.413032 | -0.040493 | -1.715011 | 6.41027
-0.468104 | 0.413036 | -0.040501 | -1.715019 | 6.41043
0.8 | -0.388183 | 0.378715 | -0.265562 | -0.608287 | 4.31694
-0.388183 | 0.378717 | -0.265569 | -0.608277 | 4.31698
1.0 | -0.318310 | 0.318310 | -0.318310 | 0.000000 | 1.90986
-0.318310 | 0.318311 | -0.318314 | 1.1-107° | 1.90985

Table 4: Perturbation of the potential due to tilt of the disk’s axis

H 2 ‘ ) ‘ P’ ‘ P ‘ P ‘ oM H
0.0 | -0.318310 | 0.000000 | 1.273239 | 0.000000 | -22.9183
-0.318317 | 8.2-1077 | 1.273244 | 4.5-107° | -22.9183
0.2 | -0.294295 | 0.226381 | 0.870696 | -3.516274 | -8.30768
-0.294297 | 0.226385 | 0.870693 | -3.515823 | -8.32825
0.4 | -0.236556 | 0.326284 | 0.140640 | -3.200767 | 8.85479
-0.236556 | 0.326288 | 0.140633 | -3.200818 | 8.85526
0.6 | -0.172097 | 0.303700 | -0.297745 | -1.182223 | 9.15643
-0.172096 | 0.303702 | -0.297754 | -1.182209 | 9.15658
0.8 | -0.118348 | 0.230924 | -0.387220 | 0.103030 | 3.74739
-0.118348 | 0.230924 | -0.387224 | 0.103051 | 3.74735
1.0 | -0.079577 | 0.159155 | -0.318310 | 0.477465 | 0.47746
-0.079577 | 0.159155 | -0.318311 | 0.477467 | 0.47742

The comparison of the results is presented in the Table 4.

Test 6. Small shift & = dx of the disk’s axis in zy-plane along the coordinate x produces the

first harmonics of the perturbed potential

do(r,z,0) = @dd(r,z)r cos 6, §@1(z) =

2|z

(14 22)2

The analytical and numerical results for 10 intervals of discretization are presented in the Table
5.

Test problem 7. Analogous to the previous test we consider a variation of the disk’s radius
by a small value & = dr, and we obtain the expression for the perturbed potential as

2a | z |

(S(I)(](Z) = m

(118)
We obtained the same accuracy from the results of numerical simulations as in the above tests.
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Table 5: Perturbation of the potential for a transverse shift of the disk’s axis

H 2 ‘ @ (‘PI @II (‘PIII (‘PIIII
0.0 | 0.000000 | 0.636620 | 0.000000 | -7.639437 | 0.000000
5.7-10712 | 0.636625 | —6.9-107? | -7.639442 | 2.8 - 10~
0.2 | 0.117718 | 0.498038 | -1.253803 | -3.817669 | 31.4533
0.117723 | 0.498016 | -1.253058 | -3.837026 | 31.5915
0.4 | 0.189245 | 0.212085 | -1.417649 | 1.716775 | 18.5223
0.189249 | 0.212083 | -1.417693 | 1.716830 | 18.5268
0.6 | 0.206516 |-0.020247 | -0.857506 | 3.205137 | -1.52993
0.206516 | -0.020254 | -0.857513 | 3.205137 | -1.53067
0.8 | 0.189357 |-0.132781 | -0.304143 | 2.158471 | -6.82006
0.189359 | -0.132788 | -0.304133 | 2.158504 | -6.82049
1.0 | 0.159155 |-0.159155 | 0.000000 | 0.954930 | -4.77465
0.159156 | -0.159159 | 1.1-10°6 | 0.954915 | -4.77474

Test problem 8. Our next example is a model of a spherical capacitor. It includes two spheres:
external with radius R and zero potential, and internal with radius R, and potential U. This lens
based on the spherical capacitor has the best focusing property. Ignatev [24] has obtained an explicit
expression for the perturbed field due to shift of the internal sphere from the common centre

- arR.R;U cos 8 <Rc> 3
0) = 1-(—= . 119
Elliptical deformation of the external sphere creates the second harmonics
- ar? cos(20)R.R2U R.\°®
0) = SR 11— (= 120
02,0 =9 (r2) + (g e 1= (). (120)

where @& is a small parameter of deformation, R? = r? 4+ (Rj — z)? and ;5 is the non-perturbed
potential

- R R.U (1 1
=—[=——. 121
Thus we have the normalized perturbed potentials
R:\? R.R U
ox =A|1- = A = 122
R\’ R.R U
st (r ) = A |1 — _c) Ay = ¢ 123
%) 2[ (5 ] *= (R~ RO(R] -~ ) 12
and the axial field distributions
3 5
51 (2) = Ay 1-( Fe )  6®5(2) = A 1-( Fe ) . (124)
z = Rk z — Rk

For the numerical calculations we have used a set of parameters U = 1, R, = 1, R = 3, and each
sphere was divided onto 10 intervals in the meridian cross-section. Our results are presented in the
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Table 6: Perturbation of the potential due to shift the axis of the sphere

‘ ‘ z ‘ @ @I (DII @III (‘DIIII H
3.0 | 0.000000 0.000000 0.000000 0.000000 0.000000
—-25-107% | 5.5-107% | —6.5-10710 | 2.3.10712 | —3.6-108
3.8 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
—48-10719 | 95.1078 2.0-107¢ | —1.8.-107° | —2.7-107*
4.6 | 0.04360727 | 0.02640944 | -0.0660236 | 0.2063238 | -0.7737141
0.04360727 | 0.02640944 | -0.0660236 | 0.2063238 | -0.7737142
5.4 | 0.05351896 | 0.00521668 | -0.0086945 | 0.0181135 | -0.0452837
0.05351896 | 0.00521668 | -0.0086945 | 0.0181135 | -0.0452837
6.0 | 0.05555556 | 0.00213675 | -0.0028490 | 0.0047483 | -0.0094967
0.05555556 | 0.00213681 | -0.0028507 | 0.0049564 | -0.0095430
6.6 | 0.00000000 | 0.00000000 | 0.0000000 | 0.0000000 | 0.0000000
—-38-100% | 1.3-10°6 3.4-107° 3.4-107% | =1.7-1073

Table 7: Perturbation of the potential due to elliptical deformation of the sphere

H 2 ‘ ) ‘ (I)' ‘ (I)” ‘ (I)/// ‘ (I)”” H
3.0 | 0.000000 0.000000 0.000000 0.000000 0.000000
-1.8-107% | =9.5-107% | =3.0-1078 | 1.3-10'2 | —=3.0-107°7
3.8 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
—6.4-1072 | 1.2-107° 7.1-1076 6.4-107° 3.3-10°4
4.6 | 0.01112211 | 0.03113720 | -0.1556860 | 0.0909194 | -6.0544575
0.01112211 | 0.03113720 | -0.1556864 | 0.0909195 | -6.0549373
5.4 | 0.01836151 | 0.00048652 | -0.0012163 | 0.0035475 | -0.0118251
0.01836151 | 0.00048655 | -0.0012163 | 0.0035109 | -0.0137600
6.0 | 0.01851852 | 0.00012754 | -0.0002551 | 0.0005952 | -0.0015871
0.01851864 | 0.00012344 | -0.0002133 | 0.0006244 | -0.0027830
6.6 | 0.00000000 | 0.00000000 | 0.0000000 | 0.0000000 | 0.0000000
-50-10%| —6.8-10°7 | 1.0-10° | 1.1-107* | 1.0-10°3

Table 6. The comparative results for elliptical deformation of the external sphere of the spherical

capacitor are presented in the Table 7.

Test problem 9. We suggest a general solution for a perturbed potential for an arbitrary m

in the spherical capacitor

$(r,2,0) = ¢ (r,2) +ar™ cos(mb) 6¢r,(r,2),
. B (R N\ R.R"U
5¢m(7',2) - A [1 <R—Rk> ] ’A_ (Rk_RC)(RIQCm-I-l_ Zm-i—l)'

Perturbation of the potential for this variation is given by the formula

R,

5By (2) = A [1 _ (z & Rk)m“] . (127)

The Table 8 contains the analytical and numerical results for harmonics with m = 3 — 5.
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Table 8: Potential distribution and derivatives in the spherical capacitor
[ml=] @ [ & [ & [ o [ & ]
4.2 1 0.004452149 | 0.01005383 | -0.0670255 | 0.5026917 | -4.189097
0.004452143 | 0.01005389 | -0.0670237 | 0.5024259 | -4.172442
3 | 4.6 | 0.005945602 | 0.00100652 | -0.0050326 | 0.0283083 | -0.176927
0.005945601 | 0.00100652 | -0.0050326 | 0.0283084 | -0.176933
5.0 | 0.006127416 | 0.00016887 | -0.0006755 | 0.0030396 | -0.015198
0.006127415 | 0.00016887 | -0.0006758 | 0.0030392 | -0.015203
5.4 | 0.006162198 | 0.00003927 | -0.0001309 | 0.0004909 | -0.002045
0.006162212 | 0.00003927 | -0.0001929 | 0.0004289 | -0.005363
4.2 1 0.001658918 | 0.00299100 | -0.0249250 | 0.2284789 | -2.284789
0.001658915 | 0.00299105 | -0.0249269 | 0.2285137 | -2.281889
4 1 4.6 | 0.002027774 | 0.00016843 | -0.0010527 | 0.0072374 | -0.054280
0.002027774 | 0.00016843 | -0.0010527 | 0.0072374 | -0.054281
5.0 | 0.002053699 | 0.00001808 | -0.0000904 | 0.0004973 | -0.002984
0.002053698 | 0.00001808 | -0.0000904 | 0.0004973 | -0.002985
5.4 | 0.002056939 | 0.00000292 | -0.0000122 | 0.0000558 | -0.000279
0.002056935 | 0.00000297 | -0.0000473 | 0.0001152 | -0.000027
4.2 1 0.000593564 | 0.00084618 | -0.0084618 | 0.0916695 | -1.069477
0.000593562 | 0.00084621 | -0.0084625 | 0.0917084 | -1.071033
5 | 4.6 | 0.000681976 | 0.00002680 | -0.0002010 | 0.0016334 | -0.014292
0.000681976 | 0.00002680 | -0.0002010 | 0.0016334 | -0.014292
5.0 | 0.000685540 | 0.00000184 | -0.0000110 | 0.0000718 | -0.000503
0.000685540 | 0.00000184 | -0.0000110 | 0.0000718 | -0.000501
5.4 | 0.000605830 | 0.00000021 | -0.0000010 | 0.0000056 | -0.000033
0.000605830 | 0.00000016 | -0.0000021 | 0.0000028 | -0.000637

The analysis of the results for all test problems allow us to make general conclusions. Our
algorithms show a high accuracy of computation. This precision is better than 10~°% for a potential,
and it decreases by 1.5 times in increasing order of the derivative k£ for an arbitrary number of
harmonics m. The dependence of the precision on the number M is: it does not change for m = 0—2,
but it decreases by 1.5 times for each m > 3.

10.2 Practical problems
10.2.1 Electron-optical converter

An electron optical converter with quasi-spherical field described in [24] has rather small aberrations,
because its features are close to the ideal model of spherical capacitor. The scheme of this practical
device is shown in Fig. 1, and comparative numerical and experimental data are presented in
Table 9. All dimensions are normalized by the cathode radius R., and potentials are normalized
by the accelerating potential U,. This electron-optical converter of infra-red range consists of the
photo-cathode (with radius R, potential ¢. = 0), focusing electrode with potential ¢ = 0.166 and
anode assembly with potential U, = 1. This anode assembly consists of the fine-structure spherical
grid (shown as a dashed line) and spherical screen positioned at the best focusing area.

The idea of this lens arise in early 70-th. In order to use it as very fast electron shutter authors
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Table 9: Numerical and experimental results for quasi-spherical lens

Parameter Ideal Quasi-spherical lens
capacitor | Simulation Experiment | Error,% |
Zeo 0.666 0.648 0.65 0.3
M -1.0 -0.878 -0.87 0.9
Zc 1.0 0.950 0.952 0.2
2g 2.0 1.78 1.8 1.0
E 0.0 -0.06 0.00 12
D, -0.5 -1.1 -0.9 20

introduce a diaphragm with aperture hole of 0.05 mm diameter and deflection electrodes. They spent
2.5 years trying to find appropriate parameters experimentally. That device started work properly
after our numerical design only. It was found that the tolerance for the diaphragm position is 0.4%.
It is impossible in practice to change this critical position on 0.4% and froze all other parameters
after pumping and sealing of real device. But it is much easy and less expensive to do it in numerical
design. Thus our numerical models has not only pure academic value.

For this particular device the relative errors for the magnification factor M, Gauss plane z,, cross-
over z., distortion E and curvature D;. aberration coefficients are induced by defects of assembly.
The measured distance cathode-grid z., for the experimental prototype was 0.65 instead 0.648 which
was used in numerical modeling. This big difference (20% for the curvature coefficient, and 12% for
the distortion coefficient) demonstrates precision requirements to the dimension’s tolerance.

10.2.2 Tolerance calculations

Our next example examines the dimension’s tolerance for the small defects of cathode lens presented
in Fig. 2. Non-perturbed axial field distribution and derivatives are shown in Fig. 3, but Figs. 4-7
show perturbed fields for the variation of cathode radius (Oth-order harmonics), tilt of the axis for
the cathode surface (1st-order), their elliptic deformation (2nd-order). Non perturbed distribution
of the potential and Oth to 3th-order harmonics presented in Fig.7.

As an example of application of our method we considered the prototype of this lens as described
in [25]. We have used the MTF-functions for the screen and input fiber-optics from that publication
to evaluate spatial resolution of this device. The following defects were taken into account:

e a; = AD./2 — change of the cathode diameter;

e ay = AR, — change of the curvature radius of the cathode;
e a3 = Ary — change of the radius of the anode hole;

e a4 = Argo — change of the outer radius of the anode cone;
e a5 = AL, — change of the cathode-anode distance;

e ag = AL, — change of the cathode-screen distance.

The method of calculations for the defects influence was described in details in [26]. According
to the work [17] we can investigate the correlation between small defects of the device a; and image
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defocusing Az = zg — zs, where zq is axial coordinate of the screen surface, and z; is axial coordinate
of the optimal focusing surface. The defocusing parameter is given by the formula

DAz

fzfs‘i‘m,

(128)
where &5 is the parameter corresponding to an optimal focusing, ey is the most probable initial
energy of the photo-electron, M is the electron optic magnification, and U, is the accelerating
potential.

For small defects the image defocusing can be represented with a sum

- 0Az;
Az = Zkiai, ki = ) %Z . (129)
i=1 Qi la;=0

Numbers k; can be obtained, for example, by numerical differentiation of the functions Az;(a;)
evaluated in computer modeling.

We just considered so called “direct problem” of electron optics which investigates the influence
of small defects on electron optical parameters of devices, but the inverse problem has a more
important practical interest: to find the appropriate values for defects a; in the pre-defined value
for deviation & — &;. We will examine two cases:

1. If all defects give the same contribution to the image defocusing, then

M2(§ —&s)VeoUs
n(IJf]ki '

la;| < (130)

2. If the values a; are distributed with a normal distribution law, and their contribution to the
standard deviation o(£ — &) are equivalent, then

MQU(g - fs) vVeoU,
Vnk;

o(a;) < , (131)

where n is a spatial modulation frequency for a sinusoidal test pattern.

The tolerance for a; are tighter for the first case, but that case about 16% of lenses had over the
acceptable limit in manufacturing. Table 10 shows the result of numerical simulation of acceptable
defects of electron optic lenses with diameter of cathode Dy = 18,25,40 and 80mm for different
acceptable values of spatial resolution Ng: 70, 60 and 50 pair lines per millimeter. The other
parameters were: ¢y = 0.25 eV, M = 1,U, = 12 KV, liminal contrast is 0.03.
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Fig.2. Boundary variations a; for the electron optic device.

27



Fig.7. Non-perturbed field V and harmonics V,;,, for m =0 — 3.
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