SLAC-PUB-10390

New Formulation of the Synthesis Problem in
Electron Optics

V. Ivanov
Stanford Linear Accelerator Center

V. Brezhnev
Eon-Bo Ltd., Novosibirsk, Russia

Submitted to Nuclear Instrumentation and Methods (NIM) A

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported by Department of Energy contract DE-AC03-76SF00515.



New formulation of the synthesis problem in electron optics

V. Ivanov*
Stanford Linear Accelerator Center, USA
V. Brezhnev
Eon-Bo Ltd., Novosibirsk, Russia

May 30, 2003

Abstract

We describe a new approach to solving the problem of harmonic field synthesis for electron-
optical systems. Numerical solutions obtained in practice with the classical approach often lead
to operational difficulties, such as numerical instability and vacuum breakdown. Our approach
differs from the classical one in that it considers a mixed formulation where one part of the
information is responsible for representing objective functionals - Cauchy data, while the other
part of the information represents the boundary conditions defined on boundaries of specified
geometry. This approach takes into account the a priori structural constraints of the synthesis
problem, analytically extending the solution to the subdomain of synthesis as well as finding the
tolerances for small perturbations of the objective functional. Numerical algorithms proposed
in this work are based on the integral representation of a field by a potential of a single and
double layer as well as by a volume potential for charged particle beams. A classification of the
basic types of electronic lenses with minimal abberations is given. Numerical examples of test
and practical problems are presented. This approach is implemented in the code “Synthesis-2”
of Computer Aided Design system “TOPAZ”.

PACS: 41.20.Cv; 02.70.Pt; 42.30.Va
Keywords: Electromagnetism; Boundary element method; Electron optics

1 Introduction

We will consider the synthesis of electromagnetic fields with prescribed properties. It is common to
split the process of this design for various kind of devices into the problems of analysis, optimiza-
tion and synthesis. A simple example of electron-optical system (EOS) design is the analysis of an
electro-magnetic field distribution and the trajectories of charged particles for given geometry, fixed
potentials of the electrodes, excitation currents of magnetic lenses and parameters of dielectric and
magnetic materials. It seems to be a more complex problem to optimize the EOS parameters when
there is a need to provide optimal quality-criteria for an optical system by varying the geometry
parameters, electrode potentials and excitation currents. But in this case the device’s structure
has already been defined, and fundamentally new solutions are not expected. Besides, when com-
mon assumptions are made concerning the problem’s functionals there are other questions to be
answered: choosing an initial approximation which insures existence and uniqueness of the solution;
this approximation discovers a successful solution in the case of non-linear objective functionals and
technical limitations of the problem.
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The most complete answer to the problems of device design requires solving a synthesis problem
in which the structure of the optical system is not yet defined, but is determined by functionals
which characterize the device’s optical parameters. We would point out that prior to the computer
era and the introduction of sophisticated numerical methods, design of an EOS was usually defined
in terms of a synthesis problem. The major achievements in this direction were obtained by J.
Pierce [1], B. Meltzer [2], P. Lomax [3], P. Kirshtein [4, 5], K. Harker [6], W. Tretner [7], M. Szilagyi
[8], V. Ovcharov [9]-[14], V. Danilov [15]-[17], V. Syrovoy [18]-[20], Shanturin [21] etc. The generally
accepted formulation of an EOS synthesis problem consists of an internal and external problems. In
the first of them there is a need to determine the characteristics of the motion of a charged particle
beam with specified phase volume, as well as space current distribution. The external problem
should determine a field distribution outside the beam to determine the configuration of electrodes,
magnetic circuits and solenoids, which ultimately forms a beam with the given parameters. When
solving the internal problem an engineer defines a set of functionals F;,7 = 0, ..., m, which depends
on distribution of electric and magnetic fields in the region through which the beam passes. One of
these functionals Fj is the objective functional, and the others correspond to technical constraints.
Examples of these functionals are the beam envelope, the energy characteristics of a beam and
criteria of the image quality: magnification, cross-over and Gauss’ plane positions, the values of
aberrations, spatial and temporal resolutions of a device. The goal of this internal synthesis problem
is to determine the configuration of the fields along the axis or along the beam’s boundary which
corresponds to the given values of functionals F;. In numerical solution we define a set of N points
along some line Sy and a complete system of functions ¢;,7 = 1,..., N, which extends the finite-
dimension field representation 1(s) = 3=; a;1;(7). Here 7 is a parametric coordinate for this line,
which can be a portion of the axis or of the beam boundary. A set of polynomial functions v; is
often used. The minimization of the objective functional Fy is achieved by varying the polynomial
coefficients «;, using well-known optimal control methods [22].

The external problem of synthesis is split into several stages. First, the field should be extrapo-
lated from the axis or the beam boundaries into the whole space, then the set of equipotential lines
is built, and technologically easy-to-manufacture shapes are chosen for the electrodes, solenoids
and magnetic circuits such that they approximate the synthesized field with a given accuracy. The
solution error is inferred by replacing the synthesized surfaces with the simplified ones, taking into
account aperture holes not envisioned in the prior problem formulation, and truncating the elec-
trodes to limit the dimensions of device. All these factors contribute to a more or less substantial
deviation for the electron-optical functional values given originally from the values computed using
direct calculation for the system obtained in synthesis. That is why, during the final design stage,
there is a need to optimize the synthesized system. The important difference between this final
stage and solving the ordinary optimization problem (without known good initial approximation)
is the initial approximation which, in this case, is the synthesized solution. This guarantees the
existence of a solution in the vicinity of the initial approximation and fast convergence of the opti-
mization problem. Additional benefit of our approach is that the manufacturing tolerances can be
determined simultaneously during the final solution stage.

The most complicated and laborious stage of the EOS synthesis problem is the extrapolation of
harmonic fields from some prescribed line Sy into the whole space. If, in a particular case, Sy is the
axis of a cylindrical system, the solution is given by the Scherzer series for the scalar potential ¢ in
cylindrical coordinates 7, z:
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In the general case it is possible to write down the appropriate multipole expansion for the




potential. The most complex part of the practical usage of the Scherzer series is calculation of
the higher derivatives of the axial field ®()(z) — the Cauchy data, which are known with a certain
precision. Let the initial data be defined on a line segment of length L. As shown in [23], the 1%
error in the field extrapolation is observed on the distance r/L < 0.15, where L is the length of
a section with the initial data. In some publications [24]-[25] the solution of the above mentioned
problem has been achieved using the finite-difference approximation of Cauchy problem for the
Laplace equation and fitting algorithms for smoothing a finite-difference solution or reducing it to
the Cauchy problem for the system of ordinary differential equations for the line method. For these
methods it is possible to increase the stability interval up to r/L < 0.4 for sufficiently smooth initial
data. The method of conformal mapping has similar problems of numerical precision [27]-[29]. Here
the authors obtain 10% of error in the potential evaluation on the distance r/L = 0.4 from the
beam boundary.

Most researchers have made substantial efforts to overcome the purely mathematical difficulties
associated with the necessity of solving conditionally-correct problems and building the different
algorithms of regularization. From our point of view most of such mathematical formalizms do not
reflect practical limitations. Let us explain this with examples. The classical example of solving the
synthesis problem is the Pierce gun model. The solution of the internal problem for this gun, which
produces a cylindrical beam, is given by the Child-Langmuire law for emission current density j:
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but for the external problem the field distribution has the following form

d(r, z) = C(r% + 2%)?/3 cos (arctan g) . (3)

Here ¢ is the particle charge, m is its mass, and ¢¢ is the permittivity of free space. The constant
C can be determined from the condition ®(d) = U, where d is a diode gap and U is an accelerating
potential. It is clear that the exact implementation of this model gives two electrodes of a certain
shape and of infinite extent. In practice such a system could be reproduced only approximately
since the electrode size must be finite. This is accomplished by designing the electrode-support
mechanism and by deforming the electrodes appropriately to compensate for the field perturbations
caused by finite electrode size. Additionally, it is necessary to provide an aperture hole in the anode,
to enable the beam to pass through. When the Pierce diode’s length is much less then its radius, the
anode hole has the effect of a strong defocusing lens. This effect could be reduced by introducing
an intermediate correcting electrode or by deforming the anode surface. The book by Molokovsky
and Sushkov [26] contains real gun design examples. The comparison of two pictures in Fig.1 shows
that the model of the ideal Pierce gun and the practical device from [26] are so different that the
only way to make a realistic design is, first, to solve the synthesis problem, and then modify this
solution in order to take into account additional technical requirements by solving an optimization
problem.

The numerous examples of solving the synthesis problem in its classical formulation show that
the results are far from their practical realization. One of these results from [28] is given in the
Fig. 2. It shows clearly that the solution include areas of the high gradient field which are unsafe
for vacuum breakdown.

The solution of the synthesis problem can be visualized by a set of equipotential lines. Some of
these lines can represent the surfaces of conducting electrodes. It is easy to show that in classical
formulation all of these surfaces must cross the axis, so it is impossible to synthesize the electrode



with a hole on axis by using classical formulation of the synthesis problem. The maximum principle
for harmonic functions shows that the solution of the Cauchy problem for the Laplace equation can
not give a closed or limited contour of equipotential line which is not connected with the boundary.
The existence of such a contour is only possible when the field sources are placed inside the contour.
We obtain these contours by introducing the surfaces with the field sources into the solution domain.
We will call these surfaces “skeleton” source surfaces. Further these contours will be used to form
the electrodes.

The real goal of our argument is to show that the complexity of solving the synthesis problem
for practical devices is not concerned with overcoming the mathematical difficulties of solving ill-
conditioned problems of harmonic field extrapolation. This problem can be resolved in terms of the
new formulation which reflects the practical requirements of device design. The main ideas of this
approach have been published by the authors in [30],[34]. We call this the “practical” approach.

2 Integral representations in synthesis problems

The necessity to take into account given technical requirements leads us to the mixed formulation of
the synthesis problem with two types of initial data. The first type is Cauchy data on the axis, which
is responsible for reproducing the field quality in the paraxial subdomain of the problem. The second
type are boundary values on fixed-shape surfaces that satisfy additional technical requirements.

Following our new formulation of the synthesis problem, the complete algorithm consists of the
following steps:

1. Obtain the Cauchy data by minimizing the quality functional Fy of the EOS;
2. Introduce three types of surfaces determined by the initial data for the EOS:

a) the “normal” surface with specified boundary conditions and geometry, which describes
the given elements of the construction - electrodes and dielectrics;

b) the “skeleton” surface with specified geometry but with unknown field source distribution
( as charges o and dipoles ), which is the basis of synthesized electrodes;

c¢) “Cauchy” surface with given Cauchy data obtained at step 1 or with continuity conditions
on the “free” boundaries of an embedded fragment to make the analytical continuation
through these boundaries.

3. Obtain the field source distribution on the surfaces a) and b), taking into account the space
charge of the beam. This distribution should minimize the residual of the numerical solu-
tion for the given conditions on the surfaces a) and c) in addition to limiting the potential
discontinuity across surfaces c);

4. Draw a set of equipotential lines of the calculated field. Obtain the “band of tolerance” - the
area of displacement for these lines caused by varying the problem limitations F};

5. Put in the “engineered” shapes of the electrodes in the “band of tolerance”. This step can
not be formalized automatically. It can be done only “by hand”;

6. Solve the direct problem of electron optics with the obtained electrodes to verify the quality
of the optics.



Now we will give the general mathematical formulation of the synthesis problem. It can be done
in the following way. There is a multi-connected piece-wise smooth boundary S with boundary
conditions 1)(s)

o
= 4
and a smooth surface (or line) Sy with given Cauchy data ®(7) in parametric form

Pls, = @(7), (5)

where «, 8 are given constants,s and 7 are arguments for parametric representations of both surfaces
and 77 is a unit vector of the outer normal on the boundary.

By introducing an additional (“skeleton”) surface I" with field sources of charge density o and
dipole density v we can obtain a system of integral equations for these sources

09) = [ o]+ 5] Galsst)ar +2npols) +
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This system can be rewritten in the operator form

GX =F, (8)

where X = { Z } is a source vector, and F = { g } is a right-hand vector of initial data, G is an

integral operator of the system.
The Green functions which correspond to the kernels of single-layer and double-layer potentials
in 3D are given by the formulas

1 0 1
PQ)=—— L(P,Q) = — .

Here Rpg is the distance between an observation point P(s) and a source point (Q(t), €¢ is the
permittivity of a free space.
3 Numerical solution algorithm

The complete set of equations for high-current stationary electron optics includes the field equations
(described above), the equation of motion for a relativistic particle with mass m and charge ¢ in
the Lorentz form

. . 7
p=q(E + [V x B]), p= , 10
p=a BB, p= e (10)
and conservation law for the total current
divi =0, j=p@, (11)



where E = —V ¢ is the electric field strength, B is the magnetic field induction, p'is the momentum
of a particle, ¥ is its velocity, ¢ is the speed of light in free space, ;is the beam current density.

We must also define initial conditions for the emitted/injected beam. For space charge limita-
tions they can be defined by setting the normal component of self-consistent electric field F,, to zero
on the emitter surface (E,)s = 0. The total self-consistent electric field at observation point 7 is
defined by superposition external and beam fields

1

E(f) = =V($+¢y) =~V —

Jo eV .

where ¢ is the potential of the external sources (electrodes), and ¢, is the potential of space charge
of the beam. The magnetic induction is defined in a similar way

() x (F — )
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where pg is the permeability of free space, é(] is the induction of external sources (coils or iron
magnets), and the volume integral corresponds to the self-consistent magnetic field of the relativistic
beam.

The numerical model and algorithms of self-consistent fields are accurately described in [32].
This is the quasi-laminar model, which can take into account the motion of non laminar flows for
different kinds of charged particles, as well as energy and angular distribution for emitted particles.

In numerical approximation of the system of integral equations (8) we use the method of in-
terpolation and boundary collocation, described in [32]. Here the boundary surfaces S and I' are
represented by parametric equations for piece-wise smooth segments

r=x;(1), y=vyi(r), &%<7<B, i=1,....M (14)

with given constants &; and f3;. Some set of n; points Tij»J = 1,...,n; is defined for each of the M
segments.
The solution X (t) of system (8) is approximated by cubic splines

(t; —t)° (t—tj-1)° i\t —t P\t =t
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where X; = X(s;), hj =t; —tj_1, 5 = 1,...,n;. The coefficients M; of the spline function can be
evaluated from the continuity condition for the second derivative of the solution X at the internal
points of approximation on the boundary curves [35]. According to this book, we substitute the
spline representation (15) into the the integral equations (8), and satisfy the boundary conditions
at the set of collocation points on the boundary contour. In our case the sets of the approximation
and the collocation points ¢; are not identical. Let the total number of points on the surface S be
equal to Ny, on I' - Ny, on Sy - N3. Then total number K of collocation points equals N1 + N3, but
total number of source points N equals N1 + 2No. We multiply Ny by 2 because the surface I' has
double set of sources o and v. As a result of this procedure we obtain a rectangular matrix A of
dimension N x K for the linear system AX = F, which corresponds to the operator equation 8. The
stability of the numerical solution for this linear system can be increased if the original problem is
formulated in the weak or variational form, that is, by minimizing the functional

F = (X*G* —F*)(GX — F), (16)



which corresponds to the Euler equation G*GX = G*X, where symbol ‘*’ denotes a conjugate
operator or vector.
The enlargement of a class of possible solutions is realized by introducing the modified functional

Fp = (X*G* —F")D(GX — F), (17)

where D is diagonal operator with weight ratios w;, which correspond to separate fragments of the
surface I'. These ratios reflect the influence of separate electrodes or “skeleton” surfaces on the
quality of synthesized solution. By varying these ratios one can determine the tolerance band for
variation of electrode shapes corresponding to acceptable deviation of electron optical parameters.

The final linear system can be obtained by symmetrization of the matrix A with diagonal matrix
D as

CX = A'F, C = A'DA, (18)

where weight ratios w; have been added to the diagonal elements of symmetric matrix C.A is
transpose of A.

We use the Gauss quadrature formulas for evaluation of the integrals over the boundary, and a
modified Gaussian elimination procedure to solve the linear system.

The Green functions in 2D Cartesian coordinates are given by the formulas

Go(e,y;2'y) = In[(z — a')” + (y = y')?], (19)
27(60
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In the axially symmetric case these formulas are
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where K (k) and E(k) are complete elliptic integrals of the first and second kind which depend on
the parameter k? = 4r1' /6§, &, é, and €., €, are the unit vectors of the coordinate systems.

We developed the analytical technique to normalize kernel and edge singularities in order to
obtain high precision of calculations as is described in [32].

4 Basic set of lenses forming cylindrical beams

One of the most common problem in electron optics is the problem of generating cylindrical beams
of charged particles. Let us consider one of text book examples of electron optic problems. We will
show that the classical formulation of the synthesis problem is not able to give a practical solution.
In forming cylindrical beams the main requirement on the field is that the radial component should
be proportional to radius E, ~ r. The simplest example for this field is the well known Butler lens.
Its on-axis potential is represented by a cubic parabola

B(2) = 30, <%)2<1—2—z>, 0<z<L, (23)



where L is the lens length and ®q is the accelerating potential.
By adding the symmetric continuation

<1>+(z):<1>0{1—(%)Tl—%(%—l)”, L<z<2L, (24)

we obtain a set of two lenses - focusing and defocusing. The continuity conditions in this case must
set ®(L) = &, (L),d'(L) = ¥/ (L), ®"(L) = ®"(L). The off-axis potential distribution for this
composite lens is

, 0<2< L, o
5-2)], L<z<2L (25)

Figures 3 and 4 represent on-axis and potential distributions for that composition in two cases:
symmetrical — ¢, and antisymmetrical — ¢_ discussed below. It is clear that no contrivances
can obtain the shape of the electrode dividing both lenses in solving the Cauchy problem with a
classical formulation, i.e. to obtain the branching point on the axis and equipotential domain inside
the boundary of the central electrode. The only possibility is to get such contour by placing the
field sources of unknown density o inside them. The values of o can be determined by satisfying to
the Cauchy data on the axis.

A remarkable thing in this problem is that the regions of both lenses really isolated one from
another, and perturbation of the field in one of them can not affect to the field in an other domain.
But smooth axial potential distribution “does not know” about that because it is not possible to draw
a conclusion about this isolation by looking at the axial distribution. Surely, a practical realization
of this system has an aperture hole connecting both lenses, but the conventional algorithm is not
able to synthesize this finite aperture.

The next example demonstrates an anti-symmetry configuration for a couple of the Butler lenses.
Its on-axis potential distribution

5_(2) Oy [3(2)°(1-2%)-1], o0<z<I, 6)
_(2) =

300 (3 -1)*(1-2(3-1)), L<z<2L
is shown with the curve U2 in Figure 3, but the off-axis potential distribution is described by the
formula

- o [3(3)° (1- %) - 3r2 <
¢(r’z)_{ O [3(3-12(1-2(:-1))-32(3-%)], L<z<2L

This field is shown in the Figure 4b. It has a discontinuity for the second derivative of the axial
potential (L —0) # ®”(L+0). The anti-symmetrical version of this system can not be synthesized
in the classical formulation, because it is not clear how to take into account this discontinuity for
®”(z). On the other hand our approach can easily overcome this obstacle by introducing the field
sources - dipoles of unknown density v, which can be determined by satisfying the Cauchy data.

These simplest configurations of the Butler lenses, presented above, have some disadvantages.
One of them is that there are discontinuities for the second derivatives of the axial potential on the
boundary of these lenses with equipotential or uniform-field region around the lens, which results
in spatial beam aberrations. So we can consider the systems without this defect.

(27)



The first of these examples is a “matched” lens which creates a smooth transition from the
uniform-field area to the equipotential space. The on-axis potential for this lens is represented by
the cubic parabolas

1—az+p2% 0<z<A)
P — ’ -7 =" 28
) { Az—13, A<z<l. (28)

Here A is the position of the matching point, and the off-axis potential is described by the formula

_ 1—&2+Bz3—%r23z, 0<z< A,
¢-(rz) = { Hz—1)% = 3r23(z 1), A<z<1. (29)
The matching conditions for on-axis potential give us the relations
- 3 ~ 1 . 1
=iy P xasny TTeor (30)

It is easy to verify the off-axis discontinuities 0E,(r,2) at 21 = 0,29 = A and z3 = 1 for the
accelerating fields. Normalizing these discontinuities to the maximum of the focusing field E,, and
evaluating its average value over the aperture dimension a, the defect of this field can be represented
by the functional

10 = %Z/O <r%>2dr:a4f@\), (31)

where the summation is provided over all surfaces of discontinuity.
We name “optimal” the lens for which the functional I(\) reaches its minimum. By substituting
the field distributions into the functional we obtain

) = 2/011 (321)2 (g)Q B2+ (B= ) + 4] dr =

at |1 1 I 1

— | —— 32
20 l)\2+<>\ >\—1> T (32)

The extremum condition for () leads us to a cubic equation
MrOA-1)P+X2-0-1)2=0, (33)

which has the only real root Ay = 1/2, and corresponds to a set of parameters
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An example of this lens is shown in the Fig. 5. There for the range z = 0.45 +~ 1.0 one can
see that the equipotential line ¢ = 0 is a straight line (z — 1)23/2r2, which separates the area of
electrode-like surfaces from the lines cross the axis. Therefore there is a minimal value for the
aperture ap = 1/2/3(1 — Xog), and electrode-like surfaces are absent for a < ag. We call this the
critical aperture . If the beam radius ry < ag, then decreasing the transverse dimensions for the
lens requires decreasing the critical value ag, which is possible in non optimal choice for A > Ag.
On the other hand, non linear beam aberrations are proportional to (r¢/ ao)?*, and more sensitive to



aperture value change than to increasing the function f(\). So we recommend making the optimal
relation for the aperture

o= { To, T0 > G, (35)
ag, To < ap.

The second example includes an accelerating lens, which has equipotential regions with different
potentials on both sides of the lens. It can be represented by an on-axis potential

1 ~ 3.3
_ s(I—az+p2°), 0<z<A,
(2) { Ly(z—-13, A<z<l. (36)
O(—2z) = 1-P(2), 0<z<1. (37)
The matching conditions give us the optimal relation for the functional
at [1 2
IN=—=|s+7—
N =1 [)\2 USYpR 1)2} ! (38)

whose minimal value corresponds to the real root

1]s 2 /39 3 2 /59
= 44 - — 4— —\/—| =~ 0.4534.
Ao 5 [\/ + sV 3 + \/ sV 3 ‘ 0.453 (39)

The critical aperture value for this lens is ag = 1/2/3(1 — Xg) = 0.4463.
Our third example is a single lens (Fig. 6), which is defined by an on-axis potential

[ 1-az+p28, 0<z<,
®(z) = { 3(z-13, A<z<1, (40)
O(—2) = P(2), 0<z<1. (41)
and the corresponding off-axis distribution
_ fl—az+ B2 23z —a), 0<z< A,
(r.z) = { 3z —1P =32z —1), A<z<L. (42)
¢(T, _z) = ¢(Ta Z)7 0<z<1 (43)
The matching conditions give us the optimal relation for the functional
a* 3 2
IN=— |50+ + —— 44
M) =15 [0+ 17+ 5= (14)
whose minimal value corresponds to the cubic equation
3
AP+ §(>\2 ~1)(A-1)2 =0, (45)
which has a real root g =~ 0.57095. That gives the critical values
2
ayg = \/;(1 — Xo) = 0.3503178, I(\g) ~ 3.357632ag. (46)

All examined lenses are different configurations of basic lenses. You can get an electron optic
system of arbitrary configuration using this basic set, which forms the cylindrical beams with defined
energy features.
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5 Results of numerical simulations

We have used the code “Synthesis-2” to model the following examples. In numerical simulation of the
Butler lenses with total length 2L shown in the Fig. 4 a, the total number of nodal values for sources
was N =48 and L = 1. The accuracy of the solution reproduction in the area z € [0,2] x r € [0,1]
was d¢/¢ ~ 5-10~* with the weight coefficient w? = 2- 1073 for the “skeleton” surface, which was
chosen to be a straight line z = 1. The accuracy was evaluated at the nodes of rectangular mesh
11 x 12 covering the simulated domain. However that problem has no practical interest because of
the absence of the hole between lenses, and so we examined a modified problem (Fig. 7). Here the
Cauchy data have been defined on the segment 0.5 < z < 1.5, and the “skeleton” surface ended
on the distance r = 0.1 from the axis. The external electrodes on the boundary of the rectangular
domain have Dirichlet conditions (24). The Figure 7 represents a map of equipotential lines for
two different values of the weight coefficients. The relative error for the extrapolated potentials
was 6¢/¢p ~ 5-1073. These two simulations a) and b) have been done to determine the band of
tolerances for the geometry of the electrodes. This band can be obtained by superposition of two
maps of equipotentials.

A less evident map of equipotential lines corresponds to the anti-symmetrical configuration of
the Butler lenses shown in the Fig. 8. Here introducing of the “skeleton” surface with dipole sources
creates the pairs of electrode-like surfaces with positive and negative potentials.

The Figs. 9 and 10 show examples of the analytical continuation problem, where a synthesized
fragment must be embedded into some external a priori defined field. In our case the external field is
expanded through the upper boundary, where we defined a uniform Neumann condition d¢/97 = 0,
and linear Dirichlet condition. This potential for the symmetric configuration is

4z — 1.5, 0<z<1,
$(1,2) = { —A(z—1)+25, 1<z<2, (47)
and for anti-symmetric one is
4z — 2.5, 0<2z<1,
$(1.2) _{ Az—1)—15 l<z<2 (48)

In the case the upper boundary plays the role of the axis with the Cauchy data.

The following Figs. 11, 12 and 13 show the results of numerical synthesis for matching, ac-
celerating and single lenses with different sizes of the aperture holes. The stability of numerical
solution decreases when the aperture dimension a is less then its critical value ag. In that case the
smoothness of equipotential lines is decreased.

Solving self-consistent problem for a cylindrical beam does not introduce the new moments to
the synthesis procedure. However in this case the problem is non linear, and we use an iterative
procedure to take into account the space charge effects. We note that structure of the on-axis field
for a beam with space charge given by a formula

p(r,z) = h(z) +r%g(z), r < Ry, (49)

which is a cubic polynomial of z, leads us to the linear focusing components of the field E,(r, z) ~ r.
Here Ry is a radius of a beam, h(z) and g(z) are some smooth functions. Thus, using (49), we can
compensate the geometric aberration due the space charge effects by satisfying the Cauchy data
for the ideal parallel beam. The results of numerical simulations are shown in the Fig. 14. In our
case the initial energy for the particles was eqial to 4 KeV, and perveance P = 0.55uA/ V3/2 The
trajectories of the beam are practically parallel.
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The next Fig. 15 gives an example of numerical synthesis of focusing electrodes for a Pierce
gun and for post-accelerating section for this gun. Here the cathode electrode was fixed in shape
with potential ¢ = 0, the upper boundary had a linear distribution of potential to prevent vacuum
breakdown, but the shapes of focusing electrodes were synthesized.

The last example presents the results of numerical synthesis for an insulator of an accelerating
tube. The outer boundary for that insulator is a ceramic cylinder (c), internal cylinders (i) are
accelerating electrodes. The goal is to synthesize the shape for tops of electrodes, which overlap
the area of direct line of sight from the beam to ceramic and provide minimal values for the field
strength, because one of the reason for the breakdown in high vacuum is induced by the particles
crossing the gap and acummulating on ceramics. Figure 16 shows the results of simulations with
different values for the weight coefficients.

6 Conclusions

Our publications [30],[34] are devoted to the detailed description of the algorithm for solving the
synthesis problem and to models of electron lenses with minimal aberrations forming the round
beams. One of the advantages of our approach is that it can evaluate the tolerance to geometry
variations for the previously defined optical quality requirements.

We also pay attention to the problem of analytical continuation of the solution through the
boundary of arbitrary shape. To solve this problem, some assemblies and subsystems of the device
are considered fixed, and the problem is to extrapolate the the fields of these parts to some embedded
fragment of the device in a smooth way.

We will also present the results of numerical simulations for the test and practical problems
provided using our code “Synthesis-2”, which is devoted to solving 2D problems of electron optics
similarly to the earlier code “Poisson-2” [31]. Both are included in the “TOPAZ” CAD system
[32]. The ideas of the practical approach to 2D synthesis problems can be applied to 3D problems
without any restrictions, for example, with the code “Poisson-3” [33].
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Figure 1: Analytical solution for the Pierce gun and the real Pierce gun. Courtesy of [26], p.12 and
161. 1 - heater; 2 - cathode; 3 - grid; 4 - anode; 5 - ceramic insulator; 6 - collector
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Figure 2: The results of numerical synthesis in the classical formulation. Courtesy of [28]. Dashed
lines show the nominal beam boundary.

Figure 3: On-axis potential
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Figure 4: Off-axis potentials for a couple of Butler lenses, a) symmetrical configuration; b) anti-
symmetrical case.
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Figure 5: The ideal matching lens.
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Figure 7: The results of numerical synthesis for a couple of Butler lenses. Symmetrical case, a)
w=0.09; b) w=0.2.
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Figure 8: The results of numerical synthesis for a couple of Butler lenses. Anti-symmetry case, a)
w=0.09; b) w=0.2.
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Figure 9: Analytical continuation of the field. Symmetric case, a) w = 0.2; b) w = 0.22.
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Figure 10: Analytical continuation of the field. Anti-symmetric case, a) w = 0.09; b) w = 0.2.

Figure 11: The results of numerical synthesis for a matching lens, a) aperture a=0.3; b) aperture
a=0.4.
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Figure 12: The results of numerical synthesis for an accelerating lens, a) aperture a=0.3; b) aperture
a=0.4.
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Figure 13: The results of numerical synthesis for a single lens, a) aperture a=0.3; b) aperture
a=0.43.
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Figure 14: The results of numerical synthesis for the Butler lens with cylindrical beam , a) w = 0.09;
b) w = 0.2. Equipotential lines and trajectories are shown.
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Figure 15: The results of numerical synthesis for the Pierce gun a) and post-accelerating section b).
Equipotential lines and trajectories are shown.

Figure 16: Numerical synthesis for the insulator, a) w = 0.09; b) w = 0.2.
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