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Abstract 

The ionization of residual gas by an electron beam in an accelerator generates 

ions that can resonantly couple to the beam through a wave propagating in 

the beam-ion system. Results of the study of a beam-ion instability [1,2] are 

presented for a multi-bunch train taking into account the decoherence of ion 

oscillations due to the ion frequency spread and spatial variation of the ion 

frequency. It is shown that the combination of both effects can substantially 

reduce the growth rate of the instability. 

I. INTRODUCTION 

A fast beam-ion instability which is caused by the interaction of a single electron bunch 

train with the residual gas ions, has been studied recently in Ref. [ l ,2] .  The instability 

mechanism is the same in both linacs and storage rings assuming that the ions are not 

trapped from turn-to-turn. The ions generated by the head of the bunch train oscillate 

in the transverse direction and resonantly interact with the betatron oscillations of the 

subsequent bunches, causing the growth of the initial perturbation of the beam. 

The nature of the instability closely resembles the beam-breakup instability due to trans- 

verse wakefields. It differes from instabilities previously studied [3-91, where the ions, usually 

treated as being in equilibrium, interact with a circular electron or proton beam. The insta- 

bility we discuss can occur in a transport line, linac, or a storage ring with a clearing gap 

to prevent ion trapping. 
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An important element that has to be included into the treatment of the instability is 

a frequency spread within the ion population. It is known that the frequency spread and 

associated with it decoherence in an instability problem usually results in Landau damping 

effect and in some situations can suppress the instability. We show that although the ion 

frequency spread does not fully suppress the instability, it decreases the growth rate making 

it in a typical situations two or tree times smaller than that predicted without decoherence 

effects. 

We also consider spatial modulation of the ion frequency due to the variation of the 

beta and dispersion functions along the beam path. It turns out that combination of this 

variation with the frequency spread can substantially weaken the instability. This is not a 

very important effect in a FODO lattice, but it could prove to be much more significant 

in other lattices such as the TBA or Chasman-Green structures used in many synchrotron 

light sources. 

For the sake of simplicity, we focus on the interaction of an electron beam with ions, 

although similar effects apply to a positron beam trapping free electrons. 

The variation of the ion frequency w; included in this paper is caused by two sources. 

One of them is due to the horizontal beam density profile in a flat beam which causes the 

local ion frequency to depend on the horizontal position. Another source of spread in w; is 

the nonlinearity of the ion oscillations inside the beam. 

For analytical study we adopt a model that treats the bunch train as a continuous beam. 

This model is applicable if the distance between the bunches l b  is smaller than the betatron 

wavelength, !b << c/wp and the ion oscillation wavelength Ib << c/w; .  This condition is well 

satisfied for multi-bunch machines such as the PEP-I1 High Energy Ring [ll] or the NLC 

Damping Ring [12]. We assume a one-dimensional model that treats only vertical linear 

oscillation of the centroids of the beam and the ions. 

The paper is structured as follows. In Section 11, the differential equations of motion 

are derived. Section 111 discusses averaging of the equations based on different time scales 

associated with oscillations and growth of the instability. The ion frequency spread and 
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resulting decoherence of ion oscillations are analyzed in Section IV. Analytical and numerical 

solutions of the equations for the NLC Damping Ring and PEP-I1 High Energy Ring are 

presented in Sections V and VI respectively. They are compared with direct computer 

simulation of the instability in Section VII. Effects of spatial ion frequency variation are 

discussed in Sections VI11 and IX. The results are summarized in Section X. 

11. THE EQUATIONS OF MOTION 

We will assume a rigid vertical motion of the beam and define the offset of the centroid at 

time t and longitudinal position s as Y b  ( s , t ) .  The distance s is measured from the injection 

point at t = 0. The equation for the beam centroid, including the interaction with the ion 

background, is 

The left hand side of this equation accounts for the free betatron oscillation of a moving 

beam (we assume Vbeam c ). On the right hand side, we included the force acting on the 

beam from the ions whose centroid is offset by y; ( s , t ) .  In the linear theory, this force is 

proportional to both the relative displacement between the beam and ions centroids and the 

ion density. Assuming a continuous electron beam with a uniform density per unit length, 

the ion density increases due to collisional ionization as ct - s (it is equal to zero before the 

beam head arrives at the point s at time t = s/c). After separating the factor ct - s on the 

right hand side of Eq. (l), the coefficient K. is 

where y denotes the relativistic factor for the beam, re 

(2) 

is the classical electron radius, o,,~ 

denotes the horizontal and vertical rms-beam size respectively, and Xion is the number of 

ions per meter generated by the beam per unit time. Assuming a cross section for collisional 

ionization of about 2 Mbarns (corresponding to carbon monoxide at 40 GeV), we have 
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iion[rn -1 s -1 ] M 1.8.  10gn,[m-']p,,,[torr] , 
(3) 

where ne is the number of electrons in the beam per meter, and pgas the residual gas pressure 

in torr. 

To find the equation for ions, we will assume that they perform linear oscillations inside 

the beam with a frequency w; .  Furthermore, we will allow a cont.inuous spectrum of w; given 

by a distribution function f (w;)  normalized so that 

(in Sec. VI11 we will consider a more general case when f also depends on s). The spread 

in w; at a given position s (and for a given ion species) is caused by several sources; they are 

discussed in more detail in Sec. IV. The distribution f (w i )  is peaked around the frequency 

w; = q0 corresponding to small vertical oscillations on the axis, 

where A designates the atomic mass number of the ions, ne the number of electrons in the 

beam per unit length, and r, the classical proton radius (r ,  * 1.5 . 10-16cm ). Typically, 

the frequency spread Aw; is not large; we assume Aw; << wi0. 

We also have to distinguish between the ions generated at different times t' because 

they will have an initial offset equal to the beam coordinate yb ( s ,  t ' ) .  Let us denote by 

y"; (s , t l t ' ,w;)  the displacement, at time t and position s, of the ions generated at t' (t' 5 t ) 

and oscillating with the frequency w;. We have an oscillator equation for iji 

with initial condition 

Finally, averaging displacement of the ions produced at different times t' and having different 

frequencies w; gives the ion centroid y; (s, t )  

Published in the Proceedings of the
International Workshop on Collective Effects and Impedance for B-Factories (CEIBA95),

6/12/1995 - 6/17/1995, Tsukuba, Japan



e- ... 

Equations (l), (6)-(8) constitute a full set of equations governing the development of the 

instability in the beam-ion interaction. 

111. AVERAGING OF THE EQUATIONS 

Equation (6) can be easily integrated with the initial conditions ( 7 )  yielding 

Now using Eq. (8), Eq. (1) reduces to an integro-differential equation 

where D ( t  - t’) denotes a decoherence function defined as 

D ( t  - t’) = J dw; cos w; (t  - t’)f (w;) . (11) 

This function represents the oscillation of the centroid of an ensemble of ions with a given 

frequency distribution f (w ; )  having an initial unit offset. 

Instead of t and s, it is convenient to transform to new independent variables z and s ,  

where z = ct - s. The variable z measures the distance from the head of the beam train 

and for a fixed z the variable s plays a role of time. Denoting 

Eq. (10) takes the form 

If D ( z )  = coswiz (no frequency spread), Eq. (13) reduces to the equation derived in Ref. 1. 

We will assume that the interaction between the beam and the ions is small, 
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C 2 K l  << w,20, w; , 

where 1 denotes the length of the bunch train, so that the instability develops on a time 

scale which is much larger than both the betatron period and the period of ion oscillations. 

Typically this inequality is easily satisfied. In such a situation, the most unstable solution 

of Eq. (13) can be represented as a wave propagating in the beam with a slowly varying 

amplitude and phase, 

7 (15) y (s, z )  = ReA ( s ,  z )  e- iwp s/c+iw,o z / c  

where the complex amplitude A ( s ,  z )  is a ‘slow’ function of its variables, 

For a fixed z ,  the s-dependence of Eq. (15) describes a pure betatron oscillation, while, for 

a fixed s (that is in the ion frame of rest), the z-dependent part implies oscillations with the 

frequency wi0. Hence the wave resonantly couples the ions and the electrons. 

Substituting Eq. (15) into Eq. (13) and averaging it over the rapid oscillations with the 

frequencies wio and wp, one finds 

where the function h ( 2 )  is 

One of the advantages of the above approach is that it allows a simple scaling of the 

instability with the vacuum pressure. Indeed, the only place where the pressure p enters 

Eq. (17) is the parameter K which is proportional to p (see Eqs. (2) and (3)). By introducing 

a new variable S K  instead of s, we can eliminate IC from the equation. This means that 

increasing the pressure n times is equivalent to the shrinking the s axis by the same factor. 

Thus, having solved Eq. (17) for one particular value of pressure, we can use the result for 

various p by simply rescaling the s variable, s cx p - l .  
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IV. ION DECOHERENCE 

The frequency spread of the ions at a given longitudinal coordinate s stems from several 

sources. One of them is a variation of the electron density in the beam along the horizontal 

axis. Since the ion frequency scales as the square root of the electron density, wi c( 6, 
ions located at different coordinates z in a flat beam will have different w;. For a Gaussian 

distribution of electrons in 2 ,  ne cx exp (-z2/2a2), and we obtain w; (z) oc exp (-z2/4a2) . 

Hence, 

w; (2) - w;o = w;o [exp (-z2/4a:) - 11 , 

where wio is the frequency at x = 0. 

To find the decoherence function b, we will utilize a simple one-dimensional model that 

assumes that the ion frequency of horizontal oscillations is much smaller than the vertical 

frequency w;,  and neglects the horizontal ion motion on the time scale of the decoherence. 

In this model, the ion distribution in x is the same as the electron distribution (because the 

rate of ionization is proportional to ne) ,  

and Eq. (18) takes the form 
00 

6 ( t> = S dzf; (z> exp {-iw;ot 11 - exp (-x2/4a:)]} . (21) 
-a2 

Note that in this model we overestimate the effect of the decoherence. For flat beams, a 

typical ratio of the horizontal and vertical oscillation frequencies is roughly 3. Thus, the 

horizontal motion of the ions modulates the vertical oscillation frequency w; between w;o 

and w; (2) making the average w; smaller than w; (z). To fully account for this effect, one 

has to deal with the two-dimensional ion motion which would make the consideration much 

more involved. 

At this point, we note that Eq. (21) has been defined as the average offset of the ions at 

a given s. However, the quantity relevant to the electron-ion coupling is the average force 
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that acts on the electron beam. The force differs from the average displacement because the 

ion density decreases with s and thus the ion electric field at the beam edges is suppressed 

relative to that at the bunch center. To account for this effect, we correct fi ( t )  by including 

the electron density ne in the integrand of Eq. (21) 

03 

b ( t )  = const / dx f; (s) ne (z) exp [-iw;Ot (1 - e - x 2 / 4 d ) ]  , 

where the constant in Eq. (22) must be chosen such that 3 (0) = 1. This gives 

D ( t )  = - 
--co 

The plots of the real and imaginary parts of this function are shown in Fig. 1. Asymptoti- 

cally, for large values of w;Ot, 

b (t) x (1 + iaw;ot)-1’2 , (24) 

where the numerical factor cy = 1/4. 

Another source of ion decoherence is the nonlinearity of the electron potential. It results 

in a dependence of w; on the amplitude of the oscillation and causes an additional spread 

in the oscillation frequencies w;. We have numerically computed the decoherence function 

due to nonlinearity in a manner similar to the approach of Ref. 13 ; it is also plotted in 

Fig. 1. One can show that the decoherence due to nonlinearity has the same asymptotes as 

Eq. (24) with a somewhat smaller a. In what follows, we will use the simple form given by 

Eq. (24) for fi ( t )  in which we put CY = 3/8 to account for the additional decoherence due 

to the nonlinearity. 

V. ANALYSIS 

Let us for a moment ignore the ion decoherence in Eq. (17) and put D ( z )  E 1. In 

this case, the equation can easily be solved analytically. Differentiation with respect to z ,  

reduces Eq. (17) to the differential equation 
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d 2 A  ( s ,  Z )  K U ; ~  

asaz 4WP 
= - zA  ( s ,  Z )  

For the initial condition A (0, z )  = 1, the solution is 

where 10 is the zeroth order Bessel function of imaginary argument. This solution was 

found in Ref. 1 using a different method. For large values of the argument the asymptotic 

expansion of the Bessel function yields 

which indicates an instability with a characteristic time T x 2wp/~wioZ~c ,  where I is the 

length of the bunch train. Note that since A ( s , z )  o( exp ( z / Z m ,  the characteristic 

time T does not represent an e-folding time, and the instability develops much slower than 

it would be in the case of normal exponential growth c( exp ( s / c T ) .  

VI. NUMERICAL RESULTS 

To study the effect of the decoherence in more realistic cases, we wrote a computer code 

that numerically integrates Eq. (17) with b ( t )  given by Eq. (24). The two input parameters 

for the code are the characteristic time T = 2 w p / ~ w ; ~ l ~ c ,  and the train length w;oZ/c. 

Simulations have been performed for the NLC Damping Ring and the PEP-I1 HER. In 

the NLC Damping Ring (see relevant parameters in Ref. [l]), we assumed a residual gas 

with a vacuum pressure of p = Torr and an atomic number of A=28. This corresponds 

to a characteristic time of T = 45 ns and a bunch length of wiOZ/c = 150. The results are 

depicted in Fig. 2 for the initial condition A ( 0 , z )  = 1; for comparison, in Fig. 3, we 

plot the solution of Eq. (27) for the same parameters but without the decoherence. The 

plots show the growth of the beam centroid at 10 positions evenly spaced along the bunch 

train. Comparing Fig. 2 and 3, shows the decoherence slowing down the instability. To 

characterize the growth rate of the instability, we defined ~~~~~~h as an e-folding time for the 
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last bunch in the train. Since the instability is not exponential, ~~~~~~h varies with time. For 

the time interval 1 ps < t < 2 p s ,  we find that TgTgrowth M 0.5 ps without decoherence and 

T~~~~~~ x 1 ps with ion decoherence; the decoherence decreases the growth rate by a factor 

of two. 

Figures 2 and 3 illustrate the growth of the instability from an initial condition Eq. 

(15) which is the most unstable perturbation. In reality, the initial noise in the beam will 

contain different harmonics of which only one or two, having a spatial period 27rc/wi0, are 

very unstable. Assuming that the number of bunches in the train equals Nb and their 

displacements are uncorrelated with the rms value of 6, a simple statistical argument shows 

that the amplitude of harmonics in the bunch will be of the order of S / a .  To illustrate 

the effect of random initial positions, we integrated Eq. (17) including the effect of the ion 

decoherence with the initial condition corresponding to uncorrelated displacement with 6 = 1 

for 90 bunches in the NLC Damping Ring. The result is shown in Fig. 4 for p = and 

p = lo-' (as noted in Section 111, variation of the pressure simply re-scales the horizontal 

axis in the plot). The figure shows that the development of the instability is somewhat 

delayed until the amplitude of the unstable mode with an initial value S/m % 0.1 reaches 

the value comparable to 1; for p = lo-', this occurs after roughly 5ps. After this point, the 

growth proceeds at about the same rate as in Fig. 2. 

For the PEP-I1 High Energy Ring, we assumed a vacuum pressure of p = lo-' Torr and 

A=28. This corresponds to a characteristic time 7 = 5.511s and a bunch length wtOl/c = 220. 

The bunch offsets at 10 positions in the train are shown in Fig. 5 as a function of s for the 

initial condition A (0, z )  = 1. From this figure, we estimate that the e- folding growth time, 

on the time interval 200 ps < t < 400 p s ,  is roughly ~~~~~~h G 150 ps. As noted before, this 

growth time depends on the interval considered. 
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VII. COMPUTER SIMULATIONS 

Direct macro-particle simulations of the instability have been performed [2 ]  using a 

computer code described in Ref. In the simulations, each of the bunches is repre- 

sented by 10,000 macro-particles and they interact with the ions which are represented 

by roughly 50,000 macro-particles. In this manner, the beam and ion distributions evolve 

self-consistently as the beam is tracked through the magnet lattice. 

1. 

The results of a simulation for the NLC Damping Ring with a vacuum pressure of p = 

lo-' Torr are shown in Fig. 6 where we have plotted the oscillation amplitude, normalized 

by J G / a y ;  this allows for a direct comparison with Fig. 4. Comparing Fig. 6 with 

Fig. 4 shows a good agreement for the growth rate of the instability during the initial 

stage ( t  < 6 ps ). At later times, the macro-particle simulation exhibits saturation which is 

presumably due to the nonlinearity of the beam-ion force as the amplitude of the oscillations 

become comparable to the rms beam size a,; this occurs at a value of 100 in the normalized 

units of the plot. 

VIII. EFFECT OF SPATIAL ION FREQUENCY VARIATION 

An inhomogeneity of w, has different effect on the instability depending on the typical 

scale A, on which the ion frequency varies. If this scale is much smaller than a half of 

the wavelength X z n s t  associated with the instability, Aznst = 27r/(wp + u ~ ) ,  (about 15 m for 

CO ions in the HER of the PEP-11), A, << X z n s t ,  fluctuations of w; can be considered as 

an effective frequency spread in the ion population which contributes to Landau damping 

mechanism. In the opposite limit, A, >> Azns t ,  one has to deal with the problem where the 

unstable perturbation propagates in a system which characteristics slowly vary is space. 

Here we consider only the effect of long-range variation of the w,. They result in breaking 

the synchronism between the ion and electron oscillations and suppression of the resonant 

interaction between the species. We will show that this effect may result in a substantial 
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weakening of the instability. 

The governing equation (17) remains valid in the case of slow modulation of the ion 

frequency if one considers the distribution function f (s ,w;)  and the decoherence function 

( s ,  z )  as depending on s. Eq. (18) now takes the form 

We further assume that f (s,w;)  is such that 

f ( s , w ; )  = F ( w ; - w ; o - S w i ( s ) ) ,  (29) 

where Sw; (s )  << w;o. This means that moving to a new location s shifts the distribution 

function in w;-space as a whole but does not change its form. Putting Eq. (29) into Eq. 

(28) yields 

where 

is the decoherence function in the homogeneous case given by Eq. 

inhomogeneity effectively modifies the decoherence function. 

(24). We see that 

IX. NUMERICAL RESULTS AND ANALYSIS 

Equation (1) has been integrated numerically for the parameters of the HER of the 

PEP-I1 assuming the gas pressure p = lo-' torr of CO (A=28), and 

where C is the circumference of the ring and a is the relative variation of the frequency, 

Fig. 7 shows the result for 10% variation of w;o, a = 0.1, and n = 1. Note the exponential 

growth of the amplitude with an estimated e-folding time T~ = 400ps (cf. with 150 ps in 
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the homogeneous case). Fig. 8 shows the result for a = 0.3 and n = 1, with the e-folding 

time about 800 ps. 

The exponential nature of the instability and the increase of the growth time can be 

explained in the following way. Inclusion of the ion frequency variation makes the decoher- 

ence function Eq. (30) such that it is effectively localized on a scale that is much smaller 

than the characteristic distance (in z )  on which A (s, z )  varies. This allows us to neglect the 

variation of the z’A(s,z’) in the integrand of the right hand side of Eq. (17) and put it in 

front of the integral, 

02 

(33) 
Kiwi0 

M -zA ( s ,  z )  (s, z - z‘) dz‘ R --A (s, z )  1 h (s, z‘) dz‘. 
4WP 0 4WP 0 

a A ( S , z )  KU;o  

d S  

Furthermore, since the instability is developing on a large time scale, we can average the 

function fi (s, z )  over s. This gives 

a A ( s , z )  1 
= -A (s, 2) , 

ds TeC 
(34) 

with the exponential solution 

where 

and the angular brackets denote averaging over s. Eq. (36) can be rewritten as 

where T = 2 w p / ~ w ; ~ c Z ~  is the characteristic time introduced Section V ( r  = 5 . 5 p  for the 

HER of the PEP-11), and 1 is the length of the bunch train. Using Eqs. ( 3 7 ) ,  (30) and (24), 

one finds 

1’ 
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Numerical integration for the above examples gives 7, = 350ps for a = 0.1, z = I, and 

T, = 760ps for a = 0.3, z = I ,  in good agreement with the simulations.. 

Asymptotically, for a > 0.3, the integral in Eq. (38) approaches 1, yielding a simple 

formula for T,, 

1 alwio 
7,  NN 2r-- 

z c  (39) 

In order to apply the above analysis to a particular lattice, it is necessary to include many 

spatial harmonics in E,q. (32). This has not been accomplish yet. To get a rough estimate 

of the amplitude of the ion frequency variation we plotted in Fig. 9 the ion frequency (CO) 

in the PEP-I1 HER as a function of the position in the ring. The plot indicates that one 

can expect 10-20% variation of w; in the ring. 

X. DISCUSSION 

In this paper, we described a fast beam-ion instability which can develop in a train of 

bunches with a clearing gap. We have included into consideration the ion frequency variation 

due to the nonlinearity of the beam-ion force in both the z and y planes. In general, the 

dependence of w; on the horizontal motion is the more important effect and strictly should 

be described with a two-dimensional treatment of the ion motion. There are other sources 

of ion frequency spread that we have not considered although they can be included in our 

formalism in a straightforward manner. 

In all cases, the variation of the ion frequency causes Landau damping and slows the 

instability growth rate. In the two examples that we studied, the growth rate was reduced 

by roughly a factor of 2. For longer bunch trains, where the factor w;,J/c becomes larger, 

the reduction of the growth rate should be more pronounced. We should also note that we 

have characterized the instability with an approximate e-folding time 7gTowth. While this 

differs from the characteristic time T that more accurately describes the instability which 

grows as e x p ( f i ) ,  it provides a more intuitive estimate of the impact of the instability. 

Published in the Proceedings of the
International Workshop on Collective Effects and Impedance for B-Factories (CEIBA95),

6/12/1995 - 6/17/1995, Tsukuba, Japan



For example in the PEP-I1 HER, Tggrowth is roughly 150 ps while T 6 ps. This growth 

rate could be decreased further by adding additional clearing gaps in the bunch train [I]. 

For example, a second gap will increase the instability rise time to roughly Tggrowth M 0.6 ms 

which is inside the bandwidth of the feedback system. 

Our analytical model is confirmed by comparison with a macro-particle computer simu- 

lation and shows a good agreement. An important effect which is not included in the model 

but. will also suppress the instability is the tune spread in the electron beam. The tune 

spread can arise from the beam energy spread and the chromaticity of the optical lattice, 

the nonlinearity of the lattice, the space charge force due to the ions or the electrons them- 

selves, or the beam-beam collision in a colliding beam storage ring. For example, in the 

PEP-I1 High Energy Ring with a beam-beam collision parameter E = 0.03, the estimated 

decoherence time for the betatron oscillations is 200 ps and it is comparable with the growth 

rate of the instability. 

We have shown that even slight variation of the ion frequency along the beam path 

makes the instability truly exponential and, what is more important, further suppresses the 

growth rate. For synchrotron light sources, where the ion frequency variation is very large, 

this mechanism can be a strong stabilizing factor for the fast-ion instability. 
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FIGURES 

Figure 1. Real (1) and imaginary (2) parts of the function b ( t )  given by Eq. (23), and 

the asymptotes of Eq. (24) (dashed lines). Curves 3 and 4 shows real and imaginary parts 

respectively of the decoherence function due to nonlinearity of the ion motion. 

Figure 2. Growth of an initial unit offset in the NLC Damping Ring at  10 different points 

in the train (the line corresponding to the first point is superimposed on the abscissa) with 

ion decoherence. 

Figure 3. Growth of an initial unit offset in the NLC Damping Ring at 10 different 

points in the train (the line corresponding to the first point is superimposed on the abscissa) 

without decoherence. 

Figure 4. Instability in the NLC Damping Ring with random initial condition and with 

ion decoherence. 

Figure 5 .  Growth of an initial unit offset in the PEP-I1 High Energy Ring. 

Figure 6. Macro-particle simulation of of the instability in the NLC Damping Ring with 

a vacuum pressure of lo-* Torr and A=28; the position of every 10th bunch is plotted. 

Figure 7. Instability in the PEP-I1 High Energy Ring for 10% variation of the ion 

frequency. The vertical scale is logarithmic. 

Figure 8. Instability in the PEP-I1 High Energy Ring for 30% variation of the ion 

frequency. 

Figure 9. The oscillation frequency for CO ions in the PEP-I1 HER as a function of the 

position in the ring. 
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Fig. 7. 
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Fig. 8. 
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