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Abstract

Eigen-mode coupling ellipses’ tilt angles and axis ratios can be precisely measured with a Model-

Independent Analysis (MIA) of the turn-by-turn BPM data from resonance excitation of the be-

tatron motion. For each BPM location one can measure 4 parameters from the two resonance

excitation, which completely describe the linear coupling of the location. Results from application

to PEP-II LER storage rings are presented.
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I. INTRODUCTION

For an e+-e- collision, such as the PEP-II B-factory at the Stanford Linear Accelerator

Center, a solenoid is usually imposed at the interaction point. This necessarily causes

beam motion coupling between horizontal and vertical planes in each of the collision storage

rings. To correct these coupling effect at IP and outside the solenoid region, designed lattice

includes global skew and Local skew quadrupoles inserted at the suitable locations. However,

during commissioning and operation, the linear coupling correction is not automatic; it

usually requires dedicated effort of which precise measurement of the linear coupling is the

key. Taking PEP-II Low-Energy Ring (LER) as an example, we show, in this paper, how

we measure the linear coupling by measuring the eigen-mode coupling ellipses’ tilt angles

and axis ratios to survey the linear couplings along an entire storage ring.

II. HIGH-RESOLUTION TURN-BY-TURN ORBITS

The concept of coupling ellipses in a storage ring had been well known [1, 2]. Here we

present a precision measurement technique with a simple model-independent analysis.

To overcome the synchrotron radiation damping, We make two resonance excitations,

one at the horizontal tune and the other at the vertical tune, for turn-by-turn BPM buffer

data acquisition of about 2000 turns. Each excitation would allow for 2 sets of data stored

in two matrices, one for the horizontal and the other for the vertical beam centroid readings.

Columns of the matrices represent BPMs while rows represent the turns. For example,

the PEP-II LER has 118 double-view BPMs and a total of 319 BPMs which can read 222

horizontal (X) and 215 vertical (Y) data per turn. Thus, for 2000 turn data acquisition, we

would obtain, from each resonance excitation, a 2000-by-222 matrix for x readings and and

a 2000-by-215 matrix for y readings. Excluding the closed-orbit mode, one can, through

an automatical testing process, choose the right number of turns (< 1800 turns for 2000

turn data) such that making Fourier transformations on columns, one can match one and

only one stand-out peak Fourier mode to the resonance frequency (tune) to obtain a cosine-

like and a sine-like orbits from the mode for each of the excitation [3]. Therefore the two

resonance excitations can offer a complete set of 4 clean betatron-motion orbits for one

turn. Shown in Figure 1 is a typical set of 4 orbits for a given turn. To obtain the next turn
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FIG. 1: Four High-resolution independent betatron motion orbits from measurement for PEP-II

LER. The top two (blue) are from horizontal tune resonance excitation while the bottom two (red)

are from vertical tune resonance excitation. (data acquired on September 30, 2003.)

orbits, one simply use the same number of turns for Fourier transformation but advance 1

turn for the block sub-matrix to be performed with the Fourier transformation. Repeat the

process until one gets about 200 turns of the high resolution orbits. These consecutive-turn

orbits from resonance excitations form two eigen-mode coupling ellipses at each double-view

BPM location. Shown in Figure 2 are eigen-mode coupling ellipses at 4 double-view BPM

locations, where, in each plot, the horizontal eigen-mode coupling ellipse is colored in blue

while the vertical eigen-mode coupling ellipse is colored in red. Also shown in Figure 3 is

a complete survey of the eigen-mode coupling ellipses for all but malfunction double-view
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FIG. 2: Eigen-mode coupling ellipses at 4 double-view BPM locations of the PEP-II LER. The top

2 are at the two BPMs beside the IP while the bottom 2 are at the tenth BPMs from IP in each

side. (data acquired on September 30, 2003.)

BPMs in PEP-II LER.

III. TILT ANGLE MEASUREMENT

For a horizontal eigen-mode coupling ellipse in the x-y plane, we define the tilt angle,

αx as the counterclockwise angle of its long axis with respect to the x axis. If we make a

counterclockwise rotation of the x-y axis for an angle that is equal to the tilt angle αx, then
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FIG. 3: Eigen-mode coupling ellipses for all but malfunction double-view BPMs in PEP-II LER.

The horizontal eigen-mode coupling ellipses are colored in blue while the vertical eigen-mode cou-

pling ellipses are colored in red. Generally, a stronger coupling at a BPM location would result in a

larger tilt angle and a larger short-to-long axis ratio at the location. (data acquired on September

30, 2003.)
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the ellipse long axis matches the new x axis, and the orbits’ new coordinates are given by

x′i = xi cos αx + yi sin αx,

y′i = yi cos αx − xi sin αx.

Considering a Least-Square fitting that the sum, D(αx), of the distances of the ellipses’

orbits to the long axis be the minimum, one would have dD2(αx)/dαx = 0, where

D2(αx) =
∑

i

y′2i

=
∑

i

y2
i cos2 αx +

∑
i

x2
i sin2 αx −

∑
i

xiyi sin 2αx,

and so one obtains

αx =
1

2
tan−1 2

∑
i xiyi∑

i(x
2
i − y2

i )
. (1)

By the same token, For a vertical eigen-mode coupling ellipse in the x-y plane, we define the

tilt angle, αy as the counterclockwise angle of its long axis with respect to the y axis and

obtain

αy = −1

2
tan−1 2

∑
i xiyi∑

i(y
2
i − x2

i )
. (2)

The tilt angles for the horizontal eigen-mode coupling ellipses shown in Figure 2 are re-

spectively (12.0811o, 21.6461o, 25.9331o,−15.5012o) for Plots 1-4. The corresponding vertical

eigen-mode coupling ellipses tilt angles are (−3.8063o, 3.5516o, 28.3203o,−69.2074o).

IV. AXIS RATIOS MEASUREMENT

The horizontal eigen-mode coupling ellipse equation is given by

x′2

a2
x

+
y′2

a2
y

= 1,

where ax is the long axis and ay is short axis. Letting X ′ = x′2, Y ′ = y′2, A = 1
a2

x
, and

B = 1
a2

y
, one have a linear equation of

AX ′ + BY ′ = 1, (3)
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which can be solved through Least-Square fitting of (X ′
i, Y

′
i )s for the ratio of the short axis

length over the long axis length given by

(ay/ax) =
√

A/B. (4)

By the same token, one can get the axis ratio for the vertical eigen-mode coupling ellipse’s.

Shown in figure 5 is the measurement of the eigen-mode coupling ellipse axis ratios at LER

double-view BPM locations.

The axis ratios for the horizontal eigen-mode coupling ellipses shown in Figure 2 are

respectively (0.0630, 0.2867, 0.3560, 0.2494) for Plots 1-4. The corresponding vertical eigen-

mode coupling ellipses axis ratios are (0.0044, 0.0078, 0.1075, 0.4166).

V. TILT ANGLE AND AXIS RATIO CALCULATION FROM ONE-TURN LIN-

EAR MAP

Let us first assume that the one-turn linear map, the 4-by-4 matrix M , has been decoupled

and normalized as given by the following factorization [4],

M = CARA−1C−1,

where

R =




cos µx sin µx 0 0

− sin µx cos µx 0 0

0 0 cos µy sin µy

0 0 − sin µy cos µy




,

A =




√
βx 0 0 0

−αx√
βx

1√
βx

0 0

0 0
√

βy 0

0 0 − αy√
βy

1√
βy




,

and
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C =


 I cos φ W̄ sin φ

−W sin φ I cos φ




where

W =


 a b

c d


 ,

and its conjugate W̄ = −SW T S;

S =


 0 1

−1 0


 ; I =


 1 0

0 1


 .

For horizontal eigen motion we have, in the eigen-mode plane at the nth-turn,


 x

px




n

=



√

βx 0

− αx√
βx

1√
βx







cos nµx sin nµx

− sin nµx

cosnµx





 cos µox sin µox

− sin µox cos µox





 Aox

0




= Aox

√
βx


 cos θx

− 1
βx

(αx cos θx + sin θx)


 , (5)

where Aox is the resonance excitation normalized amplitude in the eigen space, and θx =

nµx + µox. Transferring to the measurement (coupled) frame, at the nth-turn, we have

x = Aox

√
βx cos φ cos θx = Ax cos θx, (6)

which would yields

cos θx = x/Ax

and

sin θx =
√

A2
x − x2/Ax,

where

Ax = Aox

√
βx cos φ.
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FIG. 4: Comparison of the PEP-II LER eigen-mode coupling ellipses tilt angles between measure-

ment and the ideal lattice model. (data acquired on September 30, 2003.)

We would also have

y = −Aox

√
βx sin φ(a cos θx − b

βx
(αx cos θx + sin θx))

= −Axtanφ(a x
Ax
− b

βx
(αx

x
Ax

+
√

A−x2−x2

Ax
).

We therefore get the ellipse equation as

(D2
xtan2φ)x2 + 2[(a− bαx

βx

)tanφ]xy + y2 = A2
x

b2

β2
x

tan2φ,

where

Dx =

√
(a− bαx

βx

)2 +
b2

βx

.
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FIG. 5: Comparison of the PEP-II LER eigen-mode coupling ellipses (short vs. long) axis ratios

between measurement and the ideal lattice model. (data acquired on September 30, 2003.)

Counterclockwise rotating axis angle by ψx such that in the new coordinate frame, the x’y’

cross term disappear would yield

ψx =
1

2
tan−1(

−2(a− bαx

βx
)tanφ

1−D2
xtan2φ

), (7)

and the right ellipse equation would be given by Eq. 3 while the axis ratio given by Eq. 4,
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FIG. 6: Comparison of the PEP-II LER eigen-mode coupling ellipses’ tilt angles and (short vs.

long) axis ratios between measurement and the virtual machine obtained through Green’s functions

fitting [5]. (data acquired on September 30, 2003.)

where A and B are given by

A =
cos2 ψxD

2
xtan2φ + sin2 ψx + (a− bαx

βx
) sin 2ψxtanφ

A2
x

b2

β2
x
tan2φ

,

B =
sin2 ψxD

2
xtan2φ + cos2 ψx − (a− bαx

βx
) sin 2ψxtanφ

A2
x

b2

β2
x
tan2φ

.

By the same token one can calculate the tilt angle for the vertical eigen motion as

ψy = −1

2
tan−1(

2(d + bαy

βy
)tanφ

1−D2
ytan2φ

),
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where

Dy =

√
(d +

bαy

βy

)2 +
b2

β2
y

.

The vertical eigen-mode coupling ellipse axis ratio (short axis over long axis) would be given

by

(a′x/a
′
y) =√√√√cos2 ψyD2

ytan2φ + sin2 ψy + (d + bαy

βy
) sin 2ψytanφ

sin2 ψyD2
ytan2φ + cos2 ψy − (d + bαy

βy
) sin 2ψytanφ

.

Comparison of the LER eigen-mode oupling ellipses tilt angles between measurement and

the ideal lattice model are shown in Figure 4. Figure 5 shows the corresponding comparison

of the axis ratios. These linear coupling ellipses’ tilt angles and axis ratios can also be used

to check if a virtual machine [5] is reliable by comparing these coupling parameters to see if

they match each other automatically as shown in Figure 6.

VI. SUMMARY AND DISCUSSION

From resonance excitations of the two betatron motions, one can obtain two eigen-mode

coupling ellipses in the transverse coordinates (x,y) space by tracing turn-by-turn high-

resolution orbits that are extracted with MIA from the BPM buffer data. One can then

measure the tilt angle and the axis ratio for each of the coupling ellipse. Therefore, at

each double-view BPM location, one can obtain 4 coupling parameters (two tilt angles and

two axis ratios) that would describe the linear coupling completely. On the other hand,

one can also calculate the corresponding parameters from the one-turn linear maps of the

lattice model and so compare with the measurement results to check the machine optics.

Examples from PEP-II LER measurement on September 30, 2003 show that the PEP-II

LER linear coupling pattern follows the lattice design as expected. However, there seems to

have rooms for linear coupling improvement. Also, this high-resolution eigen-mode coupling

ellipse measurement technique can be combined with the IP optics measurement [6] to

improve the results.

It should be noted that alternatively, one can get the clean turn-by-turn orbits for the

eigen-mode coupling ellipses plots as shown in Figure 2 and Figure 3 by adjusting and finding

the optimal number of turns for performing Fourier transformation and picking the only one
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peak Fourier mode and then make the inverse Fourier transformation. One can also use

the singular value decomposition (SVD) to identify the two degrees of freedom betatron

modes [7] and then make an inverse SVD after eliminating all other modes. However, the

resolution of using SVD in this case would not match that of the Fourier transformation

process unless the total BPM numbers used in the SVD process is about the same as the

number of turns for data acquisition, which is usually not the case as one can always increase

the number of turns if higher resolution is needed.
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