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12 Université Paris VI & VII, Paris, France
13 INFN, Perugia, Italy
14 INFN, Pisa, Italy
15 CTS, Indian Institute of Science, Bangalore, India
16 Paul Scherrer Institut, Villigen PSI, Switzerland
17 Tata Institute of Fundamental Research, Mumbai, India
18 Physics Dept., University of California, Davis, USA
19 LMU Munich, Munich, Germany
20 SLAC, Stanford, USA
21 Institute of Theoretical Physics, Warsaw University, Warsaw, Poland
22 YITP, Kyoto University, Japan
23 LAPP, Annecy-le-Vieux, France
24 Dept. of Physics, University of Oslo, Oslo, Norway
25 Cavendish Laboratory, University of Cambridge, Cambridge, UK
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Abstract
The work contained herein constitutes a report of the “Beyond the Stan-
dard Model” working group for the Workshop “Physics at TeV Collid-
ers”, Les Houches, France, 26 May–6 June, 2003. The researchpre-
sented is original, and was performed specifically for the workshop.
Tools for calculations in the minimal supersymmetric standard model
are presented, including a comparison of the dark matter relic density
predicted by public codes. Reconstruction of supersymmetric particle
masses at the LHC and a future linear collider facility is examined. Less
orthodox supersymmetric signals such as non-pointing photons and R-
parity violating signals are studied. Features of extra dimensional mod-
els are examined next, including measurement strategies for radions and
Higgs’, as well as the virtual effects of Kaluza Klein modes of gluons.
Finally, there is an update on LHCZ ′ studies.
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Part I

Introduction
B.C. Allanach

The workshop took place at the école de physique in the lee ofMont Blanc, and lasted for
two weeks. Computer systems were installed by the helpful LAPP staff for use by participants
throughout the workshop. The first two days consisted of plenary talks intended to stimulate
ideas and the proposition of projects. A couple of further plenary seminars on hot topics occured
sporadically later in the workshop. The Beyond the StandardModel working group (convened
by M Battaglia, M Nojiri, T Rizzo, A de Roeck, D Tovey, M Spiropoulu and the author) held a
meeting on the second evening to set individual projects forsmall groups of interested parties.
This report contains a summary of the fruits of participants’ labour during and after the work-
shop on those projects. The projects were phenomenologicalstudies of both supersymmetric
and non-supersymmetruc models and. The report first discusses the studies of supersymmetric
models and then those of extra dimensions. We close with an update onZ ′ studies.

At the time of the workshop the Tevatron and DESY collider runs were proceeding, and
the start-up of the Large Hadron Collider (LHC) was eagerly awaited. Many hopes are concen-
trating upon the production and detection of supersymmetric (SUSY) particles at these colliders.
Although an immense amount of literature has been accumulated on SUSY phenomenology,
there is still a large amount of work to do because of its complexity and the abundance of mod-
els of SUSY breaking. The models predict different cascade chains leading to radically differing
signals in experiments. In order to facilitate the phenomenological study of SUSY models, we
need to both calculate the sparticle spectrum and also we need to simulate events. These two
calculations are typically performed by seperate calculational tools. For each calculation, there
exist several competing tools performing the same task withdifferent approximations or as-
sumptions. A common interface between the different tools has clear advantages, and much
time was spent at (and after) the workshop arguing, debatingand negotiating the various con-
ventions. The write-up of this “SUSY Les Houches Accord” constitutes part II of this report.
A form-based web tool is presented in part III in which one candetermine the spectra from
mSUGRA models via the different public sparticle spectrum generators. The difference be-
tween the predictions of the different generators gives an idea of the theoretical uncertainties
involved in the calculation. Many recent works have used theWMAP determination of the
cold dark matter densityΩCDM to vastly restrict the minimal supersymmetric standard model
(MSSM) parameter space. An initial study on the uncertaintyinduced from sparticle masses
upon the prediction of the dark matter density is then entered in part IV. Supposing supersym-
metric particles are measured in colliders, aχ2 fit to the observables (such as the masses) will
restrict the SUSY breaking parameter space, and discriminate models of SUSY breaking. A
tool which enables one to perform this fitting efficiently is presented in part V. A new code to
determine the branching ratios and decays of SUSY particlesis presented in part VI.

The report then turns to issues surrounding the measurementof sparticle mass and mixing
parameters. The measurement of the lightest chargino mass in a universal minimal supergravity
(mSUGRA) model is presented in part VII. It is pointed out in part VIII that withoutassump-
tions about SUSY breaking, information coming from a futurelinear collider facility could be
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extremely useful when analysing neutralino and chargino signals at the LHC. A bold new re-
construction technique for SUSY processes at the LHC is proposed in part IX. Normally, it is
not possible to reconstruct the neutralino momenta involved in R-parity conserving events since
they remain undetected and the overall energy of the hard collision is not known. In the new
technique, particularly long SUSY cascade chains are identified and lead to an over-constrained
system when pairs of events are considered. The idea is pushed further to ensembles of more
than 20 events in part X. If the idea stands up to further scrutiny, the new method would be the
one yielding the most information about sparticle masses (provided the relevant decay chain(s)
is(are) present).

We next consider non-standard supersymmetric signatures,such as (part XI) non-pointing
photons at the CERN LHC, which are often predicted in gauge mediated SUSY breaking mod-
els. R-parity violation provides an oppurtunity to understand neutrino masses without the need
for adding gauge singlets, and also to correlate neutrino oscillation observables with SUSY col-
lider signatures. Part XII shows that the scenario predictsa relation between branching ratios
of lightest SUSY particle (LSP) decay modes given the atmospheric neutrino mixing angle,
providing a useful test. In part XIII, resonant slepton production at the LHC is examined in
scenarios with ultra-light gravitinos.

Models and signals incorporating extra dimensions are thenconsidered. Many extra di-
mension models predict an additional higgs-like scalar (the radion), which stabilizes the branes.
In part XIV, the mixing between radion and Higgs’ in a two-Higgs doublet model is investi-
gated. The discovery potential for two decay modes of the radion is determined in part XV.
Models with flat dimensions often predict Higgs decays into invisible graviscalars. These de-
cays would provide a signal for the extra dimensions via an invisible Higgs width, and they are
investigated in part XVI. Also, certain models have the lightest Higgs as a mixture of brane
and bulk scalars. This unfortunately would suppress Tevatron Run II or 500 GeV linear collider
Higgs signals, but would enhance production at the LHC or CLIC. Such issues are examined
in part XVII. Part XVIII examines the sensitivity of the LHC for gluonic Kaluza-Klein states
by their effects on dijet production. An update onZ ′ studies at the LHC is presented in the
final part XIX. The analysis focuses on the combination of several measurements in order to
distinguish models. A modification of the leptonicAFB measurement proves to be very useful
in this respect.
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Part II

The SUSY Les Houches Accord Project
P. Skands, B.C. Allanach, H. Baer, C. Balázs, G. B́elanger, F. Boudjema, A. Djouadi, R. God-
bole, J. Guasch, S. Heinemeyer, W. Kilian, J-L. Kneur, S. Kraml, F. Moortgat, S. Moretti,
M. Mühlleitner, W. Porod, A. Pukhov, P. Richardson, S. Schumann, P. Slavich, M. Spira, G. Wei-
glein

Abstract
An accord specifying a unique set of conventions for supersymmetric
extensions of the Standard Model together with generic file structures
for (1) supersymmetric model specifications and input parameters, (2)
electroweak scale supersymmetric mass and coupling spectra, and (3)
decay tables is defined, to provide a universal interface between spec-
trum calculation programs, decay packages, and high energyphysics
event generators.

1. INTRODUCTION

An increasing number of advanced programs for the calculation of the supersymmetric (SUSY)
mass and coupling spectrum are appearing [1, 2, 3, 4, 5] in step with the more and more refined
approaches which are taken in the literature. Furthermore,these programs are often interfaced to
specialized decay packages, [6, 7, 8], relic density calculations [9, 10], and (parton–level) event
generators [11,12,13,14,15,16,17,18], in themselves fields with a proliferation of philosophies
and, consequentially, programs.

At present, a small number of specialized interfaces exist between various codes. Such
tailor-made interfaces are not easily generalized and are time-consuming to construct and test
for each specific implementation. A universal interface would clearly be an advantage here.
However, since the codes involved are not all written in the same programming language, the
question naturally arises how to make such an interface workacross languages. At this point, we
deem an inter–language runtime linking solution too fragile to be set loose among the particle
physics community. Instead, we advocate a less elegant but more robust solution, exchanging
information between FORTRAN and C(++) codes via three ASCIIfiles, one for model input,
one for model input plus spectrum output, and one for model input plus spectrum output plus
decay information. The detailed structure of these files is described in [19]. Briefly stated, the
purpose of this Accord is thus the following:

1. To present a set of generic definitions for an input/outputfile structure which provides a
universal framework for interfacing SUSY spectrum calculation programs.

2. To present a generic file structure for the transfer of decay information between decay
calculation packages and event generators.

Note that different codes may have different implementations of how SUSY Les Houches Ac-
cord (SLHA) input/output istechnicallyachieved. The details of how to ‘switch on’ SLHA
input/output with a particular program should be describedin the manual of that program and
are not covered here.
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2. CONVENTIONS

One aspect of supersymmetric calculations that has often given rise to confusion and consequent
inconsistencies in the past is the multitude of ways in whichthe parameters can be, and are
being, defined. Hoping to minimize both the extent and impactof such confusion, we have
chosen to adopt one specific set of self-consistent conventions for the parameters appearing in
this Accord. These conventions are described in the following subsections. As yet, we only
consider R–parity and CP conserving scenarios, with the particle spectrum of the MSSM.

2.1 STANDARD MODEL PARAMETERS

In general, the SUSY spectrum calculations impose low–scale boundary conditions on the
renormalization group equation (RGE) flows to ensure that the theory gives correct predic-
tions for low–energy observables. Thus, experimental measurements of masses and coupling
constants at the electroweak scale enter as inputs to the spectrum calculators.

In this Accord, we choose a specific set of low–scale input parameters, letting the elec-
troweak sector be fixed by

1. The conventional electromagnetic coupling at theZ pole,αem(mZ):

αem(mZ) =
α

1 − ∆αlep(mZ) − ∆α
(5)
had(mZ) − ∆αtop(mZ)

, (1)

whereα is the fine structure constant,∆αlep(mZ) and∆αtop(mZ) represent the quan-
tum corrections coming from leptons and top quarks, respectively (see [20, 21]), and
∆α

(5)
had(mZ) is the contribution from the five light quark flavours (see e.g. [22]).

2. The Fermi constant determined from muon decay,GF .
3. TheZ boson pole mass,mZ .

All other electroweak parameters, such asmW andsin2 θW , should be derived from these inputs
if needed.

The strong interaction strength is fixed byαs(mZ)MS (five–flavour), and the third gener-
ation Yukawa couplings are obtained from the top and tau polemasses, and frommb(mb)

MS,
see [22]. The reason we takemb(mb)

MS rather than a pole mass definition is that the latter
suffers from infra-red sensitivity problems, hence the former is the quantity which can be most
accurately related to experimental measurements. If required, relations between running and
pole quark masses may be found in [23,24].

It is also important to note that all the parameters mentioned here should be the ‘ordinary’
ones obtained from SM fits, i.e. with no SUSY corrections included. The spectrum calculators
themselves are then assumed to convert these parameters into ones appropriate to an MSSM
framework.

Finally, while we assumeMS running quantities with the SM as the underlying theory
as input, all running parameters in theoutputof the spectrum calculations are defined in the
modified dimensional reduction (DR) scheme [25, 26, 27], with different spectrum calculators
possibly using different prescriptions for the underlyingeffective field content. More on this in
section 2.5.
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2.2 SUPERSYMMETRIC PARAMETERS

The chiral superfields of the MSSM have the followingSU(3)C ⊗ SU(2)L ⊗ U(1)Y quantum
numbers

L : (1, 2,−1
2
), Ē : (1, 1, 1), Q : (3, 2, 1

6
), Ū : (3̄, 1,−2

3
),

D̄ : (3̄, 1, 1
3
), H1 : (1, 2,−1

2
), H2 : (1, 2, 1

2
) . (2)

Then, the superpotential (omitting RPV terms) is written as

W = ǫab
[
(YE)ijH

a
1L

b
iĒj + (YD)ijH

a
1Q

b
iD̄j + (YU)ijH

b
2Q

a
i Ūj − µHa

1H
b
2

]
. (3)

We denoteSU(2)L fundamental representation indices bya, b = 1, 2 and generation
indices byi, j = 1, 2, 3. Colour indices are everywhere suppressed.ǫab is the antisymmetric
tensor, withǫ12 = ǫ12 = 1. Lastly, we will uset, b, τ to denote thei = j = 3 entries of mass or
coupling matrices (top, bottom and tau).

The Higgs vacuum expectation values (VEVs) are〈H0
i 〉 = vi/

√
2, andtanβ = v2/v1.

We also use the notationv =
√

v2
1 + v2

2. Different choices of renormalization scheme and scale
are possible for definingtanβ. For the input to the spectrum calculators, we adopt by default
the commonly encountered definition

tan β(mZ)DR, (4)

i.e. thetan β appearing in the input is defined as aDR running parameter given at the scalemZ .
However, an option is included to allowtan β to be input at a different scale,tanβ(Minput 6=
mZ)DR. Lastly, the spectrum calculator may be instructed to writeout one or several values of
tan β(Q)DR at various scalesQi, see [19].

Finally, the MSSMDR gauge couplings are:g′ (hypercharge gauge coupling in Standard
Model normalization),g (SU(2)L gauge coupling) andg3 (QCD gauge coupling).

2.3 SUSY BREAKING PARAMETERS

We now tabulate the notation of the soft SUSY breaking parameters. The trilinear scalar inter-
action potential is

V3 = ǫab
∑

ij

[

(TE)ijH
a
1 L̃

b
iL
ẽ∗jR + (TD)ijH

a
1 Q̃

b
iL
d̃∗jR + (TU)ijH

b
2Q̃

a
iL
ũ∗jR

]

+ h.c. , (5)

where fields with a tilde are the scalar components of the superfield with the identical capital
letter. In the literature the T matrices are often decomposed as

Tij
Yij

= Aij ; (no sum over i, j) , (6)

whereY are the Yukawa matrices and A the soft supersymmetry breaking trilinear couplings.

The scalar bilinear SUSY breaking terms are contained in thepotential

V2 = m2
H1
H∗

1 aH
a
1 +m2

H2
H∗

2 aH
a
2 + Q̃∗

iLa
(m2

Q̃
)ijQ̃

a
jL

+ L̃∗
iLa

(m2
L̃
)ijL̃

a
jL

+

ũiR(m2
ũ)ij ũ

∗
jR

+ d̃iR(m2
d̃
)ij d̃

∗
jR

+ ẽiR(m2
ẽ)ij ẽ

∗
jR

− (m2
3ǫabH

a
1H

b
2 + h.c.) . (7)
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Instead ofm2
3 itself, we use the more convenient parametermA, defined by:

m2
A =

m2
3

sin β cosβ
, (8)

which is identical to the pseudoscalar Higgs mass at tree level in our conventions.

Writing the bino as̃b, the unbrokenSU(2)L gauginos as̃wA=1,2,3, and the gluinos as
g̃X=1...8, the gaugino mass terms are contained in the Lagrangian

LG =
1

2

(

M1b̃b̃+M2w̃
Aw̃A +M3g̃

X g̃X
)

+ h.c. . (9)

2.4 MIXING MATRICES

In the following, we describe in detail our conventions for neutralino, chargino, sfermion, and
Higgs mixing. Essentially all SUSY spectrum calculators onthe market today work with mass
matrices which include higher–order corrections. Consequentially, a formal depencence on the
renormalization scheme and scale, and on the external momenta appearing in the corrections,
enters the definition of the corresponding mixing matrices.Since, at the moment, no consensus
exists on the most convenient definition to use here, the mixing matrices should be thought
of as ‘best choice’ solutions, at the discretion of each spectrum calculator. For example, one
program may output on–shell parameters at vanishing external momenta in these blocks while
another may be usingDR definitions at certain ‘characteristic’ scales. For details on specific
prescriptions, the manual of the particular spectrum calculator should be consulted.

Nonetheless, for obtaining loop–improved tree–level results, these parameters can nor-
mally be used as is. They can also be used for consistent crosssection and decay width cal-
culations at higher orders, but then the renormalization prescription employed by the spectrum
calculator must match or be consistently matched to that of the intended higher order calcula-
tion.

Finally, different spectrum calculators may disagree on the overall sign of one or more
rows in a mixing matrix, owing to different diagonalizationalgorithms. Such differences do
not lead to inconsistencies, only the relative sign betweenentries on the same row is physically
significant, for processes with interfering amplitudes.

2.41 NEUTRALINO MIXING

The Lagrangian contains the (symmetric) neutralino mass matrix as

Lmass
χ̃0 = −1

2
ψ̃0TMψ̃0ψ̃

0 + h.c. , (10)

in the basis of 2–component spinorsψ̃0 = (−ib̃, −iw̃3, h̃1, h̃2)
T . We define the unitary 4 by 4

neutralino mixing matrixN , such that:

− 1

2
ψ̃0TMψ̃0ψ̃

0 = −1

2
ψ̃0TNT

︸ ︷︷ ︸

χ̃0T

N∗Mψ̃0N
†

︸ ︷︷ ︸

diag(mχ̃0 )

Nψ̃0

︸︷︷︸

χ̃0

, (11)

where the (2–component) neutralinosχ̃0
i are defined such that their absolute masses increase

with increasingi. Generically, the resulting mixing matrixN may yield complex entries in
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the mass matrix,diag(mχ̃0)i = mχ̃0
i
eiϕi . If so, we absorb the phase into the definition of the

corresponding eigenvector,χ̃0
i → χ̃0

i e
iϕi/2, making the mass matrix strictly real:

diag(mχ̃0) ≡
[
N∗Mψ̃0N

†]

ij
= mχ̃0

i
δij. (12)

Note, however, that a special case occurs when CP violation is absent and one or more of the
mχ̃0

i
turn out to be negative. In this case, we allow for maintaining a strictly real mixing matrix

N , instead writing thesignedmass eigenvalues in the output. Thus, a negativemχ̃0
i

in the output
implies that the physical field is obtained by the rotationχ̃0

i → χ̃0
i e
iπi/2.

2.42 CHARGINO MIXING

We make the identificatioñw± = (w̃1 ∓ iw̃2)/
√

2 for the charged winos and̃h−1 , h̃
+
2 for the

charged higgsinos. The Lagrangian contains the chargino mass matrix as

Lmass
χ̃+ = −1

2
ψ̃−TMψ̃+ψ̃

+ + h.c. , (13)

in the basis of 2–component spinorsψ̃+ = (−iw̃+, h̃+
2 )T , ψ̃− = (−iw̃−, h̃−1 )T . We define the

unitary 2 by 2 chargino mixing matrices,U andV , such that:

− 1

2
ψ̃−TMψ̃+ψ̃

+ = −1

2
ψ̃−TUT

︸ ︷︷ ︸

χ̃−T

U∗Mψ̃+V
†

︸ ︷︷ ︸

diag(mχ̃+ )

V ψ̃+

︸︷︷︸

χ̃+

, (14)

where the (2–component) charginosχ̃+
i are defined such that their absolute masses increase

with increasingi and such that the mass matrix,mχ̃+

i
, is strictly real:

diag(mχ̃+) ≡
[
UMψ̃+V

T
]

ij
= mχ̃+

i
δij . (15)

2.43 SFERMION MIXING

At present, we restrict our attention to left–right mixing in the third generation sfermion sector
only. The convention we use is, for the interaction eigenstates, thatf̃L and f̃R refer to the
SU(2)L doublet and singlet superpartners of the fermionf ∈ {t, b, τ}, respectively, and, for the
mass eigenstates, thatf̃1 andf̃2 refer to the lighter and heavier mass eigenstates, respectively.
With this choice of basis, the spectrum output should contain the elements of the following
matrix: (

f̃1

f̃2

)

=

[
F11 F12

F21 F22

](
f̃L
f̃R

)

, (16)

whose determinant should be±1. We here deliberately avoid notation involving mixing angles,
to prevent misunderstandings which could arise due to the different conventions for these angles
used in the literature. The mixing matrix elements themselves are unambiguous, apart from the
overall signs of rows in the matrices, see above.

2.44 HIGGS MIXING

The conventions forµ, v1, v2, v, tanβ, andm2
A were defined above in sections 2.2 and 2.3. The

angleα we define by the rotation matrix:
(
H0

h0

)

=

[
cosα sinα
− sinα cosα

](
H0

1

H0
2

)

, (17)
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whereH0
1 andH0

2 are the CP–even neutral Higgs scalar interaction eigenstates, andh0 and
H0 the corresponding mass eigenstates (including any higher order corrections present in the
spectrum calculation), withmh0 < mH0 by definition.

2.5 RUNNING COUPLINGS

In contrast to the effective definitions adopted above for the mixing matrices, we define the
gauge couplings, the Yukawa couplings, and the soft breaking Lagrangian terms which appear
in the output asDR running parameters, computed at a user–specifiable scaleQ (or grid of
scalesQi, see below).

That theDR scheme is adopted for the output of running parameters is simply due to the
fact that this scheme substantially simplifies many SUSY calculations (and hence all spectrum
calculators use it). However, it does have drawbacks which for some applications are serious.
For example, theDR scheme violates mass factorization as used in QCD calculations [28]. For
consistent calculation beyond tree–level of processes relying on this factorization, e.g. cross
sections at hadron colliders, theMS scheme is the only reasonable choice. At the present level of
calculational precision, this is fortunately not an obstacle, since at one loop, a set of parameters
calculated in either of the two schemes can be consistently translated into the other [29], see
also [19] for explicit prescriptions.

Note, however, that different spectrum calculators use different choices for the underlying
particle content of the effective theory. The programs SOFTSUSY(v. 1.8), SPHENO (v. 2.1), and
SUSPECT(v. 2.2) use the full MSSM spectrum at all scales, whereas in ISAJET (v. 7.69) a more
involved prescription is followed, with different particles integrated out of the effective theory
at different scales. Whatever the case, these couplings should not be used ‘as is’ in calculations
performed in another renormalization scheme or where a different effective field content is
assumed.

Unfortunately, ensuring consistency of the field content assumed in the effective theory
must still be done on a per program basis, though informationon the prescription used by a par-
ticular spectrum calculator may conveniently be given as comments, when running parameters
are provided.

Technically, we treat running parameters in the output in the following manner: since
programs outside the spectrum calculation will not normally be able to run parameters with
the full spectrum included, or at least less precisely than the spectrum calculators themselves,
an option is included to allow the spectrum calculator to write out values for each running
parameter at a user–defined number of logarithmically spaced scales, i.e. to give output on
running parameters at a grid of scales,Qi, where the lowest point in the grid will normally be
mZ and the highest point is user–specifiable. A complementary possibility is to let the spectrum
calculator give output for the running couplings at one or more scales equal to specific sparticle
masses in the spectrum.

3. DEFINITIONS OF THE INTERFACES

The following general structure for the SLHA files is proposed:

• All quantities with dimensions of energy (mass) are implicitly understood to be in GeV
(GeV/c2).

• Particles are identified by their PDG particle codes. See [19] for lists of these, relevant to
the MSSM.
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• The first character of every line is reserved for control and comment statements. Data
lines should have the first character empty.

• In general, formatted output should be used for write-out, to avoid “messy-looking” files,
while a free format should be used on read-in, to avoid misalignment etc. leading to
program crashes.

• A “#” mark anywhere means that the rest of the line is intended as acomment to be
ignored by the reading program.

• All input and output is divided into sections in the form of named “blocks”. A “BLOCK
xxxx” (with the “B” being the first character on the line) marks the beginning ofentries
belonging to the block named “xxxx”. E.g. “BLOCK MASS” marks that all following
lines until the next “BLOCK” (or “DECAY”) statement contain mass values, to be read in a
specific format, intrinsic to theMASS block. The order of blocks is arbitrary, except that
input blocks should always come before output blocks.

• Reading programs should skip over blocks that are not recognized, issuing a warning
rather than crashing. Thereby, stability is increased and private blocks can be constructed,
for instanceBLOCK MYCODE could contain some parameters that only the program MY-
CODE (or a special hack of it) needs, but which are not recognized universally.

• A line with a blank first character is a data statement, to be interpreted according to
what data the current block contains. Comments and/or descriptions added after the data
values, e.g. “... # comment”, should always be added, to increase readability of
the file for human readers.

Finally, program authors are advised to check that any parameter relations they assume in their
code (implicit or explicit) are obeyed by the parameters in the files. For instance, tree–level
relations should not be used with loop–corrected parameters.

For the technical specifications of the blocks contained in the SUSY Les Houches Accord
files the full writeup [19] should be consulted.

4. OUTLOOK

The present Accord [19] specifies a unique set of conventionstogether with ASCII file formats
for model input and spectrum output for most commonly investigated supersymmetric models,
as well as a decay table file format for use with decay packages.

With respect to the model parameter input file, mSUGRA, mGMSB, and mAMSB scenar-
ios can be handled, with some options for non-universality.However, this should not discourage
users desiring to investigate alternative models; the definitions for the spectrum output file are
at present capable of handling any CP and R–parity conserving supersymmetric model, with the
particle spectrum of the MSSM. Specifically, this includes the so-called SPS points [30].

Also, these definitions are not intended to be static solutions. Great efforts have gone into
ensuring that the Accord may accomodate essentially any newmodel or new twist on an old one
with minor modifications required and full backwards compatibility. Planned issues for future
extensions of the Accord are, for instance, to include options for R–parity violation and CP
violation, and possibly to include definitions for an NMSSM.Topics which are at present only
implemented in a few codes, if at all, will be taken up as the need arises. Handling RPV and
CPV should require very minor modifications to the existing structure, while the NMSSM, for
which there is at present not even general agreement on a unique definition, will require some
additional work.
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Part III

Web Tool For The Comparison Of Susy
Spectrum Computations
B. C. Allanach, S. Kraml

Abstract
We present and describe an internet resource which allows the user to
compare different calculations of MSSM spectra. After providing (cur-
rently mSUGRA) SUSY breaking input parameters, the spectrapre-
dicted by the publicly available programsISASUGRA, SOFTSUSY,
SPHENO andSUSPECT are output by the resource. The variance and
range of results is also produced.

1. INTRODUCTION

Several publicly-available computer programs exist that calculate the MSSM spectrum consis-
tent with current data on particle masses and gauge couplings, and a theoretical boundary con-
dition on SUSY breaking. Given the experimental accuraciesthat are expected for SUSY anal-
yses at both the LHC and a futuree+e− Linear Collider, theoretical uncertainties in spectrum
computations are important to consider in the total uncertainty of any fit to a SUSY breaking
pattern.

As was pointed out in Ref. [31], important sources of such uncertainties are the treatement
of thresholds in the renormalization group (RG) running, and SUSY loop corrections to the top
and bottom Yukawa couplings. There has in fact been much progress recently in improving
the spectrum calculations in commonly used public codes around ‘tricky’ corners of the SUSY
parameter space, such as largetanβ or largem0. However, depending on the specific parameter
point chosen, the differences in the results of various state-of-the-art codes may still be of the
same order as or even larger than the expected experimental accuracies. Differences in earlier
program versions tend to be significantly larger.

2. ONLINE SPECTRUM COMPARISON

A pragmatic approach, which was also used in Ref. [31], is to estimate the to-date uncertainty as
the spread in the results of the most advanced public codes. As mentioned above, this ‘compu-
tational uncertainty’ varies over the SUSY parameter spaceand should therefore be evaluated
for each particular benchmark point. There also exist several private RG codes, which their
authors might like to compare to the available public ones inan easy way. Moreover, it can be
useful to check the results of older program versions against newer ones.

For these reasons we have set up a web application which allows to compare the results
of Isajet [11], Softsusy [1], Spheno [5], and Suspect [3] online. The location is

http://cern.ch/kraml/comparison/

Here the user can input a mSUGRA parameter point1 and choose the program versions to
1At the moment of writing, only the mSUGRA model is supported.Other models may be added at a later stage.
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Table 1: Sparticle masses as obtained by Isajet 7.69, Softsusy 1.8, Spheno 2.1.3 and Suspect 2.1.0.2 for SPS1a. The

uncertainty∆ is calculated as∆(x) = 0.5[max(x) − min(x)]. All values are in GeV.

χ̃0
1 χ̃0

2 ẽR ẽL τ̃1 τ̃2 ũR ũL t̃1 b̃1 g̃
Isajet 95.5 181.7 143.1 204.7 134.5 207.7 548.3 564.7 401.3 514.8 611.7
Softsusy 96.3 179.3 143.3 200.7 133.9 204.8 546.5 563.0 399.5 513.7 608.8
Spheno 97.7 183.1 143.9 206.6 134.5 210.4 547.8 564.9 398.8 516.3 594.3
Suspect 96.5 183.0 144.9 204.4 135.5 208.2 552.6 572.5 412.9 522.0 617.3

∆ 1.1 1.9 0.9 3.0 0.8 2.8 3.0 4.7 7.0 4.1 11.5

compare. On clicking thesubmit button he then gets a list of sparticle masses from the
four codes together with the mean, the range and the varianceof the results. Note that for the
Standard Model input the default values of the various codesare used.

Figure 1 shows a screenshot of the webpage. The application was set up for the Les
Houches workshop in June 2003. By 31 Oct 2003, it was used by over 30 different users about
twice a day on average.

3. RESULTS FOR SPS1A AND SPS2

In order to give a concrete example, we list in Table 1 some sparticle masses as obtained by
today’s most recent program versions for the SPS1a benchmark point [30] (m0 = 100 GeV,
m1/2 = 250 GeV,A0 = −100 GeV, tanβ = 10, µ > 0, mt = 175 GeV). As can be seen, the
relative differences amout to about 1–2% at SPS1a.

The agreement is less good for neutralino and chargino masses at SPS2 (m0 = 1450 GeV,
m1/2 = 300 GeV,A0 = 0 GeV, tanβ = 10, µ > 0, mt = 175 GeV), as shown in Table 2.
The differences amout to 3 – 7% due to the notoriously difficult calulation of theµ parameter
for largem0. Here note that a variation of the inputmt by 1 GeV has a similar effect on thẽχ0

andχ̃± masses. The reason is that large cancellations makeµ extremely sensitive to the precise
value of the top Yukawa coupling. Table 2 shows, however, an order-of-magnitude improvement
compared to older program versions, where huge discrepancies have been encountered at large
m0.

We note that the effect of going from 2 to 3-loop renormalisation group evolution [32] is
comparable in size to the differencies we find between the latest 2-loop RGE codes.

ACKNOWLEDGEMENTS
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Table 2: Neutralino masses as obtained by Isajet 7.69, Softsusy 1.8, Spheno2.1.3 and Suspect 2.1.0.2 for SPS2

(mχ̃±
1

≃ mχ̃0

2
,mχ̃±

2

≃ mχ̃0

4
). The uncertainty∆ is calculated as∆(x) = 0.5[max(x)− min(x)]. All values are in

GeV.

χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4

Isajet 120.1 235.1 431.3 448.0
Softsusy 118.4 233.0 490.1 509.8
Spheno 124.5 237.2 456.8 472.4
Suspect 123.5 247.6 495.9 509.8

∆ 3.1 7.3 32.3 30.9
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Comparison of sparticle mass predictions http://kraml.home.cern.ch/kraml/comparison/

1 of 1 27/02/04 16:19

Comparison of sparticle mass predictions

On this website you can compare the mass spectra of four public
SUSY computational tools: Isajet, Softsusy, Spheno and Suspect.

Theoretical background: JHEP03(2003)016 [ hep-ph/0302102 ]

Choose versions: Isajet     Softsusy     Spheno     Suspect 

7.69 

7.64 

7.58 

7.51 

1.8.0 

1.7.2 

1.7.1 

1.6   

2.1.3 

2.1.0 

2.0   

2.102 

2.101 

2.005 

mSUGRA input:       m_0 GeV

m_1/2 GeV

A_0 GeV

tan beta (ca 1.6 - 50)

sign(mu) +1+1

m_t GeV

submit      reset

For comparing different Isajet versions with each other click here.

Created by Sabine Kraml for the Les Houches 2003 workshop.
Many thanks to Peter Zemp for help with the script.

Last update: 31 Oct 2003.

100

250

-100

10

175

Figure 1: Screenshot of the online spectrum comparison webpage.
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Part IV

Uncertainties in Relic Density Calculations
in mSUGRA
B. Allanach, G. B́elanger, F. Boudjema, A. Pukhov, W. Porod

Abstract
We compare the relic density of neutralino dark matter within the min-
imal supergravity model (mSUGRA) using four different public codes
for supersymetric spectra evaluation.

1. INTRODUCTION

One of the most stringent constraints on supersymmetric models with R-parity conservation
arises from the upper limit on the relic density of dark matter. This is particularly true with the
recent precise measurements of the cosmological parameters realised by WMAP. It is therefore
crucial to quantify the theoretical uncertainties that enter the calculation of the relic density
of the lightest supersymmetric particle (LSP) and to see howthey reflect on the allowed pa-
rameter space. We do not attempt to answer this question fully here. We will only consider
one aspect: the uncertainty introduced by the calculation of the weak scale SUSY parameters
using renormalization group equations (RGE) within the context of the mSUGRA model. As
a measure of the theoretical uncertainty on the mSUGRA parameters, we use the four public
state-of-the-art RGE codes:Isajet7.69 [33], SOFTSUSY1.8.3 [1], SPHENO2.20 [5]
andSuspect2.2 [3], link them tomicrOMEGAs1.2 [9] and compare estimates for the relic
density. At this point no attempt is made to estimate the uncertainties that could arise directly
in the calculation of the relic density itself.

2. RGE CODES AND RELIC DENSITY CALCULATION

A detailed study of theoretical uncertainties on the supersymmetric spectra as obtained by RGE
codes was presented in [31]. It was shown that differences inmasses less than a few percent
are usually found, although some corners of parameter spaceare still difficult to tackle and can
display much larger differences. The discrepancies can be traced back to the level of approxi-
mation used in the weak-scale boundary conditions. The large tan β region and the focus point
region (largeM0) are still subject to large theoretical errors. Both of these regions are pre-
cisely where one can find cosmologically interesting valuesfor the relic density,Ωh2 < .128.
In the focus point region, the LSP is mainly a Higgsino and annihilates efficiently into gauge
bosons. At largetan β, even rather heavy neutralinos can annihilate intobb pairs via s-channel
exchange of a heavy Higgs. The coannihilation region where the Next-to-Lightest supersym-
metric particle (NLSP) is nearly degenerate in mass with theLSP, is another cosmologically
relevant region. Although it is a priori not difficult to handle by the RGE codes, the value of
the relic density depends sensitively on the mass difference between the NLSP and the LSP and
even shifts ofO(1) GeV can cause large shifts in the relic density. The other cosmologically
viable mSUGRA region, the bulk region, shows a much smaller induced sensitivity upon the
MSSM mass spectrum.
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Figure 1: a)Ωh2 for M0 = 150 GeV, tanβ = 10, A0 = 0, µ > 0 for SOFTSUSY1.8.3 (full),

Isajet7.69 (dashed), Suspect2.2 (dash-dotted), andSPHENO2.20 (dotted). At large M1/2,

Isajet7.69 andSuspect2.2 give nearly identical results. b)Ωh2 vsmτ̃1
− mχ̃0

1
for the same set of pa-

rameters as a).

The link betweenmicrOMEGAs1.2 and the RGE codes is done within the spirit of the
SUSY Les Houches Accord [19] : common input values are chosenand pole masses, mixing
matrices, theµ parameter and the trilinear couplings are calculated by theRGE codes. All
parameters are read bymicrOMEGAs1.2 1.2. The annihilation cross-sections are then evalu-
ated at tree-level. Important radiative corrections to theHiggs widths and in particular the∆mb

correction are taken into account.

3. RESULTS

For the numerical results as default values we have fixedmt = 175 GeV,αs(MZ)MS = .1172

andmb(mb)
MS = 4.16 GeV. This corresponds tomb(MZ)DR = 2.83 GeV. We concentrate

on the three regions where the relic density is within the WMAP range and where potentially
large discrepancies can be observed: the focus point region, the largetan β region and the
coannihilation region.

3.1 Coannihilation
M0 = 150 GeV,A0 = 0, tan β = 10, µ > 0

The smallM1/2 region corresponds to the so-called bulk region where the bino-LSP annihilates
into lepton pairs via s-channelZ or Higgs exchange or t-channel slepton exchange. Here one
finds very good agreement between the values ofΩh2using the different RGE codes (see Fig. 1a)
since the predicted values for slepton and neutralino masses are in good agreement (within a
few GeV). The exact position of theZ pole (corresponding to the big dip inΩh2) is slightly
shifted forSPHENO2.20 but the range of values ofM1/2 for which Ωh2 < .128 are basically
identical. Note that theZ pole region is ruled out by the LEP constraints on neutralinos within
the context of mSUGRA models.
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Figure 2: a)Ωh2 as a function ofM0 for M1/2 = 300 GeV, tanβ = 10, A0 = 0 andµ > 0 andmt =

175. Same labels as in Fig. 1. b) Dependence of the relic density on mt for SOFTSUSY1.8.3 (full) and

SPHENO2.20 (dash) .

As one moves up inM1/2, one reaches the so-called coannihilation region where theτ̃ is
the NLSP and is nearly degenerate with the neutralino, as in Fig. 1b. Coannihilation with thẽτ ,
and to a lesser extent the selectron and smuon, brings the relic density in the desired range. For
a given value ofM1/2, differences between the codes can reach a factor 2, the largest differences
are found betweenSPHENO2.20 andSOFTSUSY1.8.3. However very good agreement is
found between all codes when the relic density is plotted as afunction of the mass difference
between the LSP and the NLSP (here theτ̃ ). All codes obtain values ofΩh2compatible with
WMAP for mass differencesmτ̃1 −mχ̃0

1
≈ 4 GeV (at the extreme left of Fig. 1b), even though

the corresponding value of the neutralino mass can differ. The value ofM1/2 for which the relic
density becomes compatible with WMAP varies from 670 GeV (SPHENO2.20) to 790 GeV
(SOFTSUSY1.8.3), a 12% difference onM1/2.

3.2 Focus point
M1/2 = 300 GeV,A0 = 0, tan β = 10, µ > 0

In addition to the smallM0 (bulk/coannihilation region) where annihilation into leptons is im-
portant, the cosmologically relevant region is found at values ofM0 well above1TeV. As one
approaches the region where electroweak symmetry breakingis forbidden, theµ parameter ap-
proaches zero. This means that the LSP is mainly Higgsino. This LSP can then annihilate very
efficiently into gauge bosons (WW/ZZ) and to a lesser extent intoZh. The parameterµ is how-
ever very sensitive [34] to the top Yukawa coupling,ht (which is also reflected in a sensitivity to
the value of the top quark mass) and huge differences betweencodes were observed [31]. The
impact on the relic density and on the exclusion region is likewise very significant.

As can be seen in Fig. 2, all codes agree very well forM0 < 1TeV but as one gets to
large values ofM0, more than one order of magnitude differences inΩh2 can be found. For
mt = 175 GeV, only Isajet finds a large drop in theµ parameter as one moves toM0 ≈ 3000
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Figure 3: a)Ωh2 as a function ofM1/2 for mt = 175, tanβ = 52, A0 = 0 andµ > 0. Same labels as in Fig. 1.

b) Dependence of the relic density onmb(mb) for SOFTSUSY1.8.3 (full) andSPHENO2.20 (dash).

GeV, this is whenΩh2 drops below the upper limit from WMAP. The other codes do not find
this drop inµ and do not obtain a cosmologically interesting region forM0 < 4000 GeV.
These large differences between codes however are just a reflection of the sensitivity to the top
Yukawa,ht(MSUSY ) which is proportional tomt. We show in Fig. 2b, the variation ofΩh2 with
mt usingSOFTSUSY1.8.3 andSPHENO2.20 for M0 = 3000 GeV. The valueΩh2 = .128
found inIsajet7.69 formt = 175 GeV can be reproduced inSOFTSUSY1.8.3 (SPHENO)
by changing the input tomt = 172.2(172.5) GeV.

3.3 Large tanβ
m1/2 = 1500 GeV,A0 = 0,tanβ = 52 µ > 0

At large tan β the new feature is the annihilation of neutralinos intobb via heavy Higgs ex-
change. With the current version of the RGE codes, this is observed only for very large values
of tanβ. The crucial parameter here isMA/2mχ̃0

1
which must be close to unity to provide suf-

ficient annihilation of neutralinos. Large differences in the value ofMA between the different
RGE codes occur because of the sensitivity of the RGE to the bottom Yukawa as well as from
taking into account higher loop effects.

As Fig. 3a shows, all 4 programs predict a large drop in the relic density when the neu-
tralino mass gets close toMA/2 although this drop occurs at much lower values ofM1/2 for
SPHENO,M1/2 ≈ 1250 GeV than forIsajet7.69 ,M1/2 ≈ 1750 GeV. However, here again
the results are very sensitive to the input parameters, in this case the value of the b-quark mass.
ForM1/2 = 1300 GeV, we find an order of magnitude shift inΩh2 for mb(mb) = 4 − 4.4 GeV
with the programSOFTSUSY1.8.3. By a slight shift of the b-quark mass we can find perfect
agreement betweenSPHENO2.20 andSOFTSUSY1.8.3, as shown in Fig. 3b.
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4. CONCLUSION

While the predictions for the relic density of neutralinos are rather stable in most of the mSUGRA
space, it is in the most physically interesting region that large discrepancies can be observed,
in particular the focus point/largetan β and coannihilation regions. It is however reassuring to
find that with the newer versions of the codes, the discrepancies in the sparticle spectra tend to
be reduced. More details on the theoretical uncertainties in the evaluation of the relic density
arising from the standard model parameters,αs, mb, mt, used as input in a RGE code can be
found in [35].
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Part V

SFITTER: A Tool To Determine
Supersymmetric Parameters
R. Lafaye, T. Plehn, D. Zerwas

Abstract
SFITTER is a new tool to determine supersymmetric model parameters
from collider measurements. It allows to perform a grid search for the
minimalχ2 and/or a fit of a given model. Currently, the model param-
eters in the general MSSM or in a gravity mediated SUSY breaking
model can be tested using a given set of mass, branching ratioand cross
section measurements.

1. Introduction

The most important task for the LHC as well as for any future Linear Collider is to study
in detail the mechanism which leads to electroweak symmetrybreaking. While the Standard
Model describes all available high energy physics experiments, it still has to be regarded as an
effective theory, valid at the weak scale. New physics are expected to appear at the TeV energy
scale. The minimal supersymmetric extension of the Standard Model (MSSM) can provide a
description of physics up to the unification scale.

If supersymmetry or any other high-scale extension of the Standard Model is discov-
ered, it will be crucial to determine its fundamental high-scale parameters from weak-scale
measurements [36, 37]. The LHC and a future Linear Collider will provide a wealth of mea-
surements [38], which due to their complexity require a proper treatment to unravel the corre-
sponding high-scale physics. Even in the general weak-scale MSSM without any unification
or SUSY breaking assumptions the measurements of masses andcouplings are not likely to
be independend measurements; moreover, linking supersymmetric particle masses to weak-
scale SUSY parameters involves non-trivial mixing to mass eigenstates in essentially every
sector of the theory. On top of that, for example in gravity mediated SUSY breaking scenarios
(mSUGRA/cMSSM) a given weak-scale SUSY parameter will always be sensitive to several
high-scale parameters which contribute through renormalization group running. Therefore, a
fit of the model parameters using all experimental information available will lead to the best
sensitivity and make the most efficient use of the information available.

If the starting point of the fit is not known and many parameters are involved, the allowed
parameter space might not be sampled completely in the fit approach. To avoid boundaries
imposed by non-physical parameter points, which can confinethe fit to a ‘wrong’ parameter
region, combining the fit with an initial evaluation of a multi-dimensional grid is the optimal
approach. In the general MSSM the weak-scale parameters canvastly outnumber the collider
measurements, so that a complete parameter fit is not possible and one has to limit oneselve to a
subset of parameters. In SFITTER both grid and fit are realised and can be combined, including
a general correlation matrix and the option to exclude parameters of the model from the fit/grid
by fixing them to a value.
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2. SFITTER — Program Structure

Currently, SFITTER uses the predictions for the supersymmetric masses provided by SUS-
PECT [3], but the conventions of the SUSY Les Houches accord [19] could be helpful, if
provided as a common block/C-structure, to ease interfacing other programs. The branching
ratios ande+e− production cross sections are provided by MSMlib [39], which has been used
extensively at LEP and cross checked with Ref. [40]. The next-to-leading order hadron col-
lider cross sections are computed using PROSPINO [41, 42, 43]. The fitting program uses the
MINUIT package [44]. The determination ofχ2 includes a general correlation matrix between
measurements. For unphysical points in supersymmetric parameter space,χ2 is set to 1030.

2.1 Initialization and Steering
The program SFITTER is driven by two files: the first one sets upthe measurements and the
corresponding errors. For each measurement one specifies ifit is to be used in the grid (G) or
in the MINUIT fit (M) or in both.

//set all errors to 0.5% of their central value
DATA_ERR = 0.005
//randomize the measurements around their nominal value
RANDOMIZE = 1
//Higgs mass and error to be used in the Fit only
m_h = 112.6 +/- 0.1 [-/M]
//Neutralino1 mass to be used in Grid and Fit
m_chi0_1 = 180.2 +/- 5.1 [G/M]
//Correlation between two chargino mass measurements
CORR(m_chi+_1,m_chi+_2) = 0.03

The second file initializes everything related to the weak-scale or high-scale MSSM model
parameters. First the model (mSUGRA, pMSSM etc) is specified, then the starting values of
all MSSM parameters, boundaries, stepsize and the number ofpoints in the grid are specified.
Moreover, the user defines if a certain MSSM model parameter is included in the grid and in
the fit:

MODEL=MSUGRA // use MSUGRA
// use the GRID (or not)
GRID=1
// M0 used in grid and fit, grid of 10+1 steps between 0 and 1000.
M0=500. [M/G] STEP=200. LOW=0. HIGH=1000. GRID=10
// A0 used only in fit
A0=0. [M/-] STEP=200. LOW=-1000. HIGH=1000.

2.2 mSUGRA/cMSSM Parameter Determination

Assuming that SUSY breaking is mediated by gravitational interactions (mSUGRA/cMSSM)
we fit four universal high-scale parameters to a toy set of collider measurements: the univer-
sal scalar and gaugino masses,m0, m1/2, the trilinear couplingA0 and the ratio of the Higgs
vacuum expectation values,tanβ. The sign of the Higgsino mass parameterµ is a discrete
parameter and therefore fixed. The assumed data set is the setof all supersymmetric particle
masses for the SUSY parameter point SPS1a [30,45], as computed by SUSPECT. The errors on
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True FitStart FitResult
m0 100 500 100.01±0.58
m1/2 250 500 249.99±0.31
tanβ 10 50 10.03±0.37
A0 -100 0 -100.1±5.26

m0 m1/2 tanβ A0

m0 1 -0.47 0.41 0.26
m1/2 1 -0.07 -0.30
tanβ 1 0.35
A0 1

Table 1: Left: summary of mSUGRA fit in SPS1a: true values, starting values, fit values. As in SPS1a we fix

µ > 0. All mass values are given in GeV. Right: the (symmetric) correlation matrix of all SUSY parameters in the

mSUGRA fit.

the toy mass measurements are uniformly set to 0.5%. The starting points for the mSUGRA pa-
rameters are fixed to the mean of the lower and upper limit in the fit, i.e. they are not necessarily
even close to the true SPS1a values. The result of the fit is shown in Tab. 1. With SFITTER
the true parameter values were reconstructed well within the quoted errors, in spite of starting
values relatively far away from the true ones. The measurement ofm0 andm1/2 is very precise,
while the sensitivity of the masses ontan β andA0 is significantly weaker.

The correlations between the different high-scale SUSY parameters are also given in
Tab. 1. One can understand the correlation matrix step by step [46]: first, the universal gaugino
massm1/2 can be extracted very precisely from the physical gaugino masses. The determina-
tion of the universal scalar massm0 is dominated by the weak-scale scalar particle spectrum,
but in particular the squark masses are also strongly dependent on the universal gaugino mass,
because of mixing effects in the renormalization group running. Hence, a strong correlation
between them0 andm1/2 occurs. The universal trilinear couplingA0 can be measured through
the third generation weak-scale mass parametersAb,t,τ . However, theAb,t,τ which appear for
example in the off-diagonal elements of the scalar mass matrices, also depend onm0 andm1/2,
so thatA0 is strongly correlated withm0 andm1/2.

In the SPS1a scenario, the pseudoscalar Higgs is heavy and the Higgs masses do not
show a strong dependence ontan β. Because of the large mass difference between gauginos
and Higgsinos they essentially decouple, and the neutralino/chargino sector will not yield a
good determination oftan β. The stop mixing is governed byAt, and not byµ/ tanβ, while
the sbottom mixing is small altogether. Only the stau mixingis large and driven byµ tanβ
in the off-diagonal element of the stau mass matrix. The staumass parameters are dominated
by m0, in particular the smaller right handed stau mass. Therefore, one expectstanβ to be
strongly correlated withm0 and less withm1/2. The result from SFITTER as shown in Tab. 1 is
in agreement with this prediction. Thus, the results obtained with SFITTER can be understood
from the particular features of the SPS1a spectrum.

2.3 MSSM Parameter Determination

In total 24 parameters describe the unconstrained weak-scale MSSM. They are listed in Tab. 2:
tan β just like in mSUGRA, plus three soft SUSY breaking gaugino massesMi, the Higgsino
mass parameterµ, the pseudoscalar Higgs massmA, the soft SUSY breaking masses for the
right sfermions,Mf̃R

, the corresponding masses for the left doublet sfermions,Mf̃L
and finally

the trilinear couplings of the third generation sfermionsAt,b,τ .

In any MSSM spectrum, in first approximation, the parametersM1, M2, µ and tan β
determine the neutralino and chargino masses and couplings. We exploit this feature to illustrate
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AfterGrid AfterFit SPS1a AfterGrid AfterFit SPS1a
tanβ 10 10.62±2.5 10 MũR

528.03 528.06±2.8 532.1
M1 100 102.05±0.61 102.2 Md̃R

525.12 525.14±2.8 529.3
M2 200 191.65±1.4 191.8 Mc̃R 528.03 528.06±2.8 532.1
M3 579.37 579.33±4.8 589.4 Ms̃R

525.12 525.15±2.8 529.3
µ 300 344.04±1.2 344.3 Mt̃R 417.36 415.44±5.7 420.2
mA 399.38 399.14±1.2 399.1 Mb̃R

524.59 523.99±2.9 525.6
MẽR

138.24 138.23±0.76 138.2 Mq̃1L
549.58 549.61±2.1 553.7

Mµ̃R
138.24 138.23±0.76 138.2 Mq̃2L

549.58 549.61±2.1 553.7
Mτ̃R 135.58 135.51±2.1 135.5 Mq̃3L

493.59 494.38±2.7 501.3
MẽL

198.74 198.75±0.68 198.7 Aτ̃ -724.25 -286.78±549 -253.5
Mµ̃L

198.74 198.75±0.68 198.7 At̃ -502.19 -495.19±15 -504.9
Mτ̃L 197.79 197.81±0.89 197.8 Ab̃ 975.12 999.78±49 -799.4

Table 2: Result for the general MSSM parameter determination in SPS1a. Shown are the nominal parameter values,

the result after the grid and the final result. The deviation in the squark sector of 1% is an artefact of differences

between MSSM and mSUGRA part of the renomalization group code [3]. All masses are given in GeV.

the option to use a grid before the start the complete MINUIT fit. For testing purposes, the error
on all mass measurements is again set 0.5%. The starting values of the parameters are set to their
nominal values, this study is thus less general than the one of mSUGRA. Then we minimize
χ2 on a grid. For this grid minimization the six chargino and neutralino masses are used as
measurements to determine the four SUSY parametersM1,M2, µ andtanβ only. The step size
of the grid is 10 fortan β and 100 GeV for the three mass parameters. After the minimization,
these four parameters obtained from the minimumχ2 on the grid are fixed and all remaining
parameters are fitted. Only in a final run all SUSY parameters are released and fitted, to give
the final results quoted in Tab. 2.

In Tab. 2 the intermediate (after the grid evaluation) results, the final results and the nom-
inal values are shown. The final fit values indeed converges tothe correct central values within
its error. The central values of the fit are in good agreement with generated values, except for
the trilinear couplingAb. As already mentioned in the discussion of the mSUGRA fit, themix-
ing between the two sbottom mass states is very small, so the assumed precision of the 0.5%
is insufficient to determine the parameter from the mass measurements alone. AsAt enters in
the calculation of the lightest Higgs, additional sensitivity for this parameter comes from the
mass measurement of the lightest Higgs boson. The use of branching ratios and cross section
measurements should significantly increase the precision in future studies, especially forAτ
andAb.

3. Conclusions

SFITTER is a new program to determine suspersymmetric parameters from experimental mea-
surements. The parameters can be extracted either using a fit, a multi-dimensional grid minimi-
sation, or a combination of the two. Correlations between measurements can be specified and
are taken into account in the calculation of theχ2. SUSPECT, MSMlib and PROSPINO are
used to calculate the predictions for the masses, branchingratios and production cross sections.
A more realistic set of the measurements for example assuming the SPS1a mass spectrum for
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the LHC and and a future Linear Collider will be studied as a next step. The impact of corre-
lations between measurements on the estimated errors of MSSM parameters will be studied in
detail. In the future public version of the program we will include different generators for the
calculation of masses and branching ratios.
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Part VI

SDECAY: a Code for the Decays of the
Supersymmetric Particles
A. Djouadi, Y. Mambrini and M. M̈uhlleitner

Abstract
We present the Fortran codeSDECAY, a program which calculates the
decay widths and branching ratios of all supersymmetric particles in
the Minimal Supersymmetric Standard Model, including higher order
effects. The usual two-body decays of sfermions and gauginos as well
as the three-body decay modes of charginos, neutralinos andgluinos are
included. Furthermore, the three-body and even the four-body decays
of top squarks are calculated. The important loop-induced decays, the
QCD corrections to the two-body widths involving strongly interacting
particles and the dominant electroweak effects to all processes are eval-
uated as well.

1. Introduction

The search for new particles predicted by supersymmetric (SUSY) theories is a major goal
of present and future colliders. In the Minimal Supersymmetric Standard Model (MSSM) [47]
there are still over 20 free parameters even in a phenomenologically viable model. It is therefore
a very complicated task to deal with all the properties of theSUSY particles once they are
found. Since their properties will be determined with an accuracy of a few per cent at the LHC
and a precision at the per cent level or below at futuree+e− linear colliders, the mass spectra,
the various couplings, the decay branching ratios and the production cross sections have to be
calculated with a rather high precision, also including higher order effects. The Fortran code
SDECAY2 [8] which is presented here calculates the decays of SUSY particles in the MSSM,
including the most important higher order effects. The Renormalization Group Equation (RGE)
programSuSpect [3] is used for the calculation of the mass spectrum and the soft SUSY-
breaking parameters. [Of course,SDECAY can be easily linked to any other RGE code.] Due to
the limited space we refer for details of the notation, the description of the algorithm that is used
in the code and the various higher order effects that have been included to the user’s manual of
SuSpect. The programSDECAY then evaluates the various couplings of the SUSY particles
and MSSM Higgs bosons and calculates the decay widths and thebranching ratios of all the
two-body decay modes, including the QCD corrections to the processes involving coloured
particles and the dominant electroweak effects to all processes. The loop-induced two-body
decay channels as well as the possibly important higher order decays are included, such as the
three-body decays of charginos, neutralinos, gluinos and top squarks and the four-body decays
of the lighter top squark. In addition, the top quark SUSY decay widths and branching ratios
are implemented. The program will be presented in the following.

2The code can be obtained at the url: http://people.web.psi.ch/muehlleitner/SDECAY
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2. The decays of the supersymmetric particles

2.1 The tree level two-body decays

The Fortran codeSDECAY includes the two-body decays of sfermions into a fermion anda
gaugino, as well as into a lighter sfermion of the same isodoublet and a gauge bosonV =W,Z
or a Higgs bosonΦ = h,H,A,H±

f̃i → χjf
(′) (1)

f̃i → V f̃
(′)
j (2)

f̃i → Φf̃
(′)
j (3)

For squarks heavier than the gluino the decay into a gluino-quark final state is also possible

q̃i → qg̃ (4)

The heavier neutralino and chargino decays into the lighterchargino and neutralino states and
gauge or Higgs bosons as well as the decays into fermion-sfermion pairs have been implemented

χi → χjV (5)

χi → χjΦ (6)

χi → f f̃
(′)
j (7)

For the gluinos the only relevant decay into a squark-quark pair is calculated

g̃ → qq̃i (8)

In the case of a GMSB model the decays of the next-to-lightestSUSY particle (NLSP), which
can be either the lightest neutralinoχ0

1 or the lightest sfermion, in general theτ̃1, into a Gravitino
G̃ and a photon,Z or neutral Higgs boson (forχ0

1) and aτ (for τ̃1) are implemented

χ0
1 → γG̃, ZG̃,ΦG̃ (9)

τ̃1 → τG̃ (10)

The masses entering the phase space in the calculation of thewidths are the pole masses, but
when they enter the various couplings they are - for the third-generation fermions - the running
DR masses at the scale of Electroweak Symmetry Breaking (EWSB). This is also the case for
all soft SUSY-breaking parameters and the third generationsfermion mixing angles involved
in the couplings. In addition, we have left the option for theQCD coupling constant and the
bottom, top Yukawa couplings to be evaluated at the scale of the decaying superparticle or any
other scale. In this case, only the standard QCD correctionsare included in the running [48].

2.2 The QCD corrected two-body decays

The one-loop QCD corrections to the following two-body decays involving (s)quarks and gluinos
have been implemented using the formulae of Refs. [49, 50], [51, 52, 53, 54] and [55, 56], re-
spectively,

q̃i → χjq
(′) (11)

q̃i → Φq̃
(′)
j (12)

q̃i → qg̃ and g̃ → q̃iq (13)
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All the corrections have been included in theDR scheme. The bulk of the electroweak radiative
corrections due to the running of the gauge and third-generation fermion Yukawa couplings has
been taken into account by evaluating these parameters at the EWSB scale.

2.3 Loop-induced decays

In case the two-body decays of the next-to-lightest neutralino are kinematically not allowed the
loop-induced decay into the lightest supersymmetric particle (LSP)χ0

1 and a photon is calcu-
lated [57,58,59,60]

χ0
2 → χ0

1γ (14)

For completeness, the loop-induced decay of a gluino into a gluon and the LSP has also been
considered [61,62,63]

g̃ → gχ0
1 (15)

If the tree-level stop two-body decays are kinematically closed the loop-induced decay into a
charm andχ0

1 [64] is calculated

t̃i → cχ0
1 (16)

2.4 Multibody decay modes

If the two-body decays of the gauginos Eqs. (5-7) are kinematically forbidden the three-body
decays into a lighter gaugino and a fermion pair and a gluino and two quarks are calculated

χi → χjf f̄
(′) (17)

χi → g̃qq̄(′) (18)

Analogously, the gluino three-body decays into a gaugino and two quarks are considered when
the gluino two-body modes are closed

g̃ → χiqq̄
(′) (19)

For the calculation of the processes Eqs. (17-19) we have used the formulae given in [65,66,67,
68, 69]. Furthermore, the possibly important gluino decay into stop, bottom and aW boson as
well as the decay into stop, bottom and a charged Higgs boson have been implemented [70,71]

g̃ → t̃1b̄W
− (20)

g̃ → t̃1b̄H
− (21)

In case the stop two-body decays are not accessible, there are several three-body decay modes
[72, 73, 74, 75, 76, 77] that can dominate over the loop-induced decay Eq. (16) in rather large
areas of the MSSM: the decays into a bottom, lightest neutralino and aW or charged Higgs
boson, the decay modes into bottom, lepton and slepton, the decays into the lightest sbottom
and a fermion pair as well as for the heavy stop the possibility of decaying into the lighter stop
and a fermion pair

t̃i → bW+χ0
1 , bH+χ0

1 (22)

t̃i → bl+ν̃l and/or bl̃+νl (23)

t̃i → b̃1f f̄
′ (24)

t̃2 → t̃1f f̄ (25)



32

SDECAY evaluates the three-body decays if the two-body decays are closed, taking into account
all possible contributions of virtual particles, the radiatively corrected Yukawa couplings of
third-generation fermions, the mixing pattern for their sfermion partners and the masses of the
sparticles and gauge/Higgs bosons involved in the processes. Even the masses of the final state
fermions have been included. The total decay widths of the exchanged particles have not been
included in the propagators of the virtual particles.

If the stop three-body decay channels are kinematically forbidden thẽt1 four-body decay
mode into a bottom, the LSP and two massless fermions can become competitive with the loop
induced decay into a charm and a neutralino, cf. Eq. (16), so that this channel [78] has also been
included in the program,

t̃1 → bχ0
1f f̄

′ (26)

2.5 Top quark decays

For the top quark the following decays in the MSSM are calculated bySDECAY

t → bW+ (27)

t → bH+ and t̃1χ
0
1 (28)

3. How to useSDECAY

Apart from the files of the programSuSpect, i.e.suspect2.in,suspect2.f,subh hdec.f,
feynhiggs.f, hmsusy.f, the programSDECAY consists of three files:

1) The input filesdecay.in where one can choose the accuracy of the algorithm and the
various options whether QCD corrections and multibody or loop decays are included or not,
which scales and how many loops are used for the running couplings and if top and GMSB
decays are calculated or not.

2) The main routinesdecay.f where the couplings of the SUSY and Higgs particles are
evaluated and the decay branching ratios and total widths are calculated.

3) The output filesdecay.out which gives the results for the branching ratios and total
widths, as well as the masses of the SUSY and Higgs particles,the mixing matrices and the
gauge and third-generation Yukawa couplings at the EWSB or achosen scale. The output is
given in two possible formats, either in a simple and transparent form or according to the SUSY
Les Houches Accord [19] which uses the PDG notation for the particles.
All these files together with a makefile to compile the files canbe found on the web page dedi-
cated toSDECAY at the address:

http://people.web.psi.ch/muehlleitner/SDECAY

4. Conclusions

We have presented the Fortran codeSDECAY, which calculates the decay widths and branch-
ing ratios of all the two-body decays of the SUSY particles inthe framework of the MSSM,
including the QCD corrections to the decays involving strongly interacting particles, the three-
body decays of the gauginos, gluinos and stops, as well as thefour-body decays of the lightest
top squark. Furthermore, the loop-induced decays of the gluino, the lightest neutralino and the
lightest top squark, the decays of the next-to-lightest SUSY particle in GMSB models and the
standard and SUSY decay modes of the top quark have been implemented. The dominant elec-
troweak corrections due to the running of the gauge and fermion Yukawa couplings have been
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incorporated. The program which uses the RGE codeSuSpect can be easily linked to any
other spectrum calculator. It is user-friendly, flexible for the choice of options and approxima-
tions and quite fast. The program is under rapid developmentand will be updated regularly.
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Part VII

Measuring The Mass Of The Lightest
Chargino At The CERN LHC
M.M. Nojiri, G. Polesello and D.R. Tovey

Abstract
Results are presented of a feasibility study of techniques for measuring
the mass of the lightest chargino at the CERN LHC. These results sug-
gest that for one particular mSUGRA model a statistically significant
chargino signal can be identified and the chargino mass reconstructed
with a precision∼ 11% for∼ 100 fb−1 of data.

1. INTRODUCTION

Much work has been carried out recently on measurement of themasses of SUSY particles at
the LHC [79, 80, 81, 82, 83, 84]. These measurements can oftenbe considered to be ‘model-
independent’ in the sense that they require only that a particular SUSY decay chain exists with
an observable branching ratio. A good starting point is often provided by the observation of an
opposite-sign same-flavour (OS-SF) dilepton invariant mass spectrum end-point whose position
measures a combination of the masses of theχ̃0

2, theχ̃0
1 and possibly also thẽl±. Observation

of end-points and thresholds in invariant mass combinations of some or all of these leptons
with additional jets then provides additional mass constraints sufficient to allow the individual
sparticle masses to be reconstructed unambiguously. A question remains however regarding
how the mass of a SUSY particle can be measured if it does not participate in a decay chain
producing an OS-SF dilepton signature. This problem has been addressed for some sparticles
(e.g. for thẽqR [85]) however significant exceptions remain. Notable amongthese is the case of
the lightest charginõχ±

1 , which does not usually participate in decay chains producing OS-SF
dileptons due to its similarity in mass to theχ̃0

2.

In this paper we attempt to measure the mass of theχ̃±
1 by identifying the usual OS-SF

dilepton invariant mass end-point arising from the decay via χ̃0
2 of theother initially produced

SUSY particle (i.e. not the one which decays to produce theχ̃±
1 ). We then solve the mass

constraints for that decay chain to reconstruct the momentum of theχ̃0
1 appearing at the end of

the chain, and use this to constrain the momentum (viaEmiss
T ) of theχ̃0

1 appearing at the end of
the decay chain involving thẽχ±

1 . We finally use mass constraints provided by additional jets
generated by this chain to solve for theχ̃±

1 mass. The technique requires that both the decay
chain

q̃L → χ̃0
2q → l̃Rlq → χ̃0

1llq

and the decay chain
q̃L → χ̃±

1 q → qW±χ̃0
1 → qq′q′′χ̃0

1

are open with significant branching ratios, and that the masses of theχ̃0
1, χ̃

0
2, l̃R and q̃L are

known. No other model-dependent assumptions are required however.
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2. SUSY MODEL AND EVENT GENERATION

The SUSY model point chosen was that used recently by ATLAS for full simulation studies
of SUSY mass reconstruction [86]. This is a minimal Supergravity (mSUGRA) model with
parametersm0 = 100 GeV,m1/2 = 300 GeV,A0 = -300 GeV,tan(β) = 6 andµ > 0. The
mass of the lightest chargino is 218 GeV, while those of theq̃L, the l̃R, the χ̃0

2 and theχ̃0
1 are

∼ 630 GeV, 155 GeV, 218 GeV and 118 GeV respectively. One of the characteristics of this
model is that the branching ratio ofχ̃±

1 → W±χ̃0
1 is relatively large (∼ 28 %). Chargino mass

reconstruction involving the decaỹχ±
1 → τ̃1ντ (BR ∼ 68 %) is likely to be very difficult due

to the additional degress of freedom provided by the missingneutrino. Consequently theW±

decay mode must be used.

The electroweak SUSY parameters were calculated using the ISASUGRA 7.51 RGE code
[11]. SUSY events equivalent to an integrated luminosity of100 fb−1 were then generated using
Herwig 6.4 [12,87] interfaced to the ATLAS fast detector simulation ATLFAST 2.21 [88]. With
the standard SUSY selection cuts described below Standard Model backgrounds are expected
to be negligible. An event pre-selection requiring at leasttwo ATLFAST-identified isolated
leptons was applied in order to reduce the total volume of data.

3. CHARGINO MASS RECONSTRUCTION

Events were required to satisfy ‘standard’ SUSY selection criteria requiring a high multiplicity
of highpT jets, largeEmiss

T and multiple leptons:

• at least 4 jets (default ATLFAST definition [88]) withpT > 10 GeV, two of which must
havepT > 100 GeV,

•
(
∑4

i=1 p
i
T (jet) + Emiss

T

)

> 400 GeV,

• Emiss
T > max

(

100GeV, 0.2
(
∑4

i=1 p
i
T (jet) + Emiss

T

))

,

• exactly 2 opposite sign same flavour isolated electrons or muons withpT > 10 GeV,
• no b-jets orτ -jets.

Events were further required to contain dileptons with an invariant mass less than the
expectedl±l∓ end-point position (100.2 GeV) and at least one dilepton + hard jet combination
(one for each combination of the dilepton pair with each of the two hardest jets) with an invariant
mass less than the expectedl±l∓q end-point position (501.0 GeV). The smaller dilepton + hard
jet combination then defined which jet (assumed to be from thedecayq̃L → χ̃0

2q) would be used
together with the dileptons to reconstruct theχ̃0

2 production and decay chain.

The momentum of thẽχ0
1 at the end of thẽχ0

2 decay chain was calculated by solving ana-
lytically the kinematic equations relating the momenta of the decay products (including thẽχ0

1)
to the masses of the SUSY particles, which were assumed to be known from conventional end-
point measurements [79,80,81,82,83,84]. This process is described in more detail in Ref. [89]
and results in two solutions for thẽχ0

1 momentum for each of the two possible mappings of the
reconstructed leptons to the sparticle decay products. In the present analysis just one such map-
ping was assumed with no attempt being made to select the correct assignment. Two possible
solutions for thẽχ0

1 momentum were therefore obtained for each event.

The nest step in the reconstruction was to find the jet pair resulting from a hadronicW±

decay following production viãχ±
1 → W±χ̃0

1. The potentially large combinatorial background
was reduced by rejecting jet combinations involving eitherof the two hardest jets (since these



36

M(jj) (GeV)

dN
/d

M
(jj

) 
(E

ve
nt

s/
10

0 
fb

-1
/5

 G
eV

)

 

II I III

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200

Figure 1: Reconstructed dijet invariant mass distributions for all events (data points) and events not containing

the decay chaiñχ±

1 → W±χ̃0
1 → q′q′′χ̃0

1 selected using Monte Carlo truth. The signal band is labelled ‘I’ in the

figure, while the two sideband are labelled ‘II’ and ‘III’ respectively.

were assumed to arise from̃qL decay) and by requiring that the harder(smaller) of the two jets
possessedpT greater than 40(20) GeV (i.e. selecting asymmetric jet pairs consistent with a
significant boost in the lab frame). A further cut was appliedon the invariant mass of the com-
bination of the jet pair with the hard jet giving the larger dilepton + jet mass (assumed therefore
to be the jet from thẽqL → χ̃±

1 q decay preocess). This invariant mass was conservatively
required to be less than that of theq̃L.

For each event any jet pairs satisfying the above criteria and possessing|mjj −mW | <
15 GeV (Fig. 1), were considered to formW candidates. For each event the candidate withmjj

nearestmW was then selected and used together with the momentum of the hard jet identified
previously and the two assumedx andy components of thẽχ0

1 momentum (calculated from
the two solutions for the momentum of thẽχ0

1 from the χ̃0
2 decay andEmiss

T ) to calculate the
chargino mass. Each of the two solutions for theχ̃0

1 momentum gives two possible solutions for
mχ̃±

1
, the smaller of which is usually physical. Consequently twopossible values formχ̃±

1
were

obtained from each event (plotted in Fig. 2).

Following this procedure significant backgrounds remain from combinatorics in SUSY
signal events (due to their high average multiplicity), andfrom SUSY background events (i.e.
events in which the decay processq̃L → χ̃±

1 q → qW±χ̃0
1 → qq′q′′χ̃0

1 is not present). These
backgrounds (or at least those not involving a realW± decay) were removed statistically using
a sideband subtraction technique similar to that describedin Ref. [90]. All jet pairs satisfying all
the above selection criteria except the|mjj−mW | requirement were recorded if they satisfied the
alternative requirement that 15 GeV< |mjj −mW | < 45 GeV. This requirement then defined
two side-bands located on either side of the main signal band(|mjj − mW | < 15 GeV) of
equal width 30 GeV. The momentum of each jet pair was then rescaled such that the difference
between its rescaled mass andmW was the same as the difference between its original mass and
the centre of its sideband (50 or 110 GeV respectively). Eachjet pair was then given a weight of
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Figure 2: Reconstructed̃χ±

1 mass distributions showing signal distributions with|mjj −mW | < 15 GeV (data

points) and sideband distributions with 15 GeV< |mjj −mW | < 45 GeV (histograms). The left hand figure was

obtained by selecting events containing the decay chainχ̃±

1 → W±χ̃0
1 → q′q′′χ̃0

1 using Monte Carlo truth. The

central figure was obtained by selecting background events not containing this decay chain. The right hand figure

was obtained by using all data.

1.3 (lower sideband) or 1.0 (upper sideband) to account for the variation of the backgroundmjj

distribution withmjj (Fig. 1). Values for the chargino mass were then calculated for each jet pair
and used to create a sideband mass distribution (Fig. 2). Finally the sideband mass distribution
was subtracted from the signal mass distribution with a relative normalisation factor of 0.7 to
account for the differing efficiencies for selecting sideband events and background events in the
signal region.

4. RESULTS

The sideband subtracted chargino mass distributions obtained from this process are shown in
Fig. 3, both with and without a selection requirement forχ̃±

1 →W±χ̃0
1 → q′q′′χ̃0

1 obtained from
Monte Carlo truth. In both cases no events are observed at masses below the kinematic limit
of 198 GeV (= mW + mχ̃0

1
) due to the origin of the mass values as solutions to the kinematic

mass relations. In the case where Monte Carlo truth was used as input a clear peak is seen in
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Figure 3: Reconstructed̃χ±

1 mass distribution for̃χ±

1 → W±χ̃0
1 → q′q′′χ̃0

1 signal events (histogram) and all

events (points with errors).

the 200 GeV - 250 GeV bin, corresponding well to the actual mass of 218 GeV. At higher mass
values the sideband subtraction process has worked well andthe distribution is consistent with
zero. In the case where no Monte Carlo truth signal event selection has been performed (points
with errors) a clear peak is again seen in the vicinity of the chargino mass, with few events
at higher values. For 100 fb−1 the statistical significance of the peak is around 3σ indicating
that more integrated luminosity (or an improved event selection) would be required to claim a
5 σ discovery. Nevertheless it seems reasonable to claim that if this data were generated by
an LHC experiment such as ATLAS, and that the observed signalwere indeed not a statistical
fluctuation, then the mass of the lightest chargino could be measured to a statistical precision
∼ ± 25 GeV (∼ 11 %). More work is needed to determine the likely systematicerror in
this quantity arising from effects such as the statistical and systematic uncertainty in the input
sparticle masses used when calculating theχ̃0

1 momentum and̃χ±
1 mass.

More work is needed to identify the optimum set of selection criteria required to identify
hadronicW± decays in this sample, with the efficiency of the tau veto (required to removẽχ±

1

decays viãτ1ντ ) in particular needing to be optimised. Possible methods for selecting the correct
lepton mapping used to calculate theχ̃0

1 momentum also deserve further study. With these
improvements and/or more integrated luminosity it should then be possible both to increase the
accuracy of the chargino mass measurement and to study quantities such as the helicity of the
χ̃±

1 through measurement of the invariant mass distribution of theW± and the hard jet produced
alongside thẽχ±

1 in the decay of the parent̃qL.

5. CONCLUSIONS

A study of the identification and measurement of charginos decaying toW±χ̃0
1 produced at

the LHC has been performed. The results indicate that for oneparticular mSUGRA model the
mass of thẽχ±

1 can be measured with a statistical precision∼ 11 % for 100 fb−1 of integrated
luminosity.
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Part VIII

Chargino/Neutralino Sector In Combined
Analyses At LHC/LC
K. Desch, J. Kalinowski, G. Moortgat-Pick, M.M. Nojiri and G. Polesello

Abstract
We demonstrate how the interplay of a futuree+e− LC at its first stage
with

√
s <∼ 500 GeV and of the LHC could lead to a precise determina-

tion of the fundamental SUSY parameters in the gaugino/higgsino sec-
tor without assuming a specific supersymmetry breaking scheme. The
results are shown for the benchmark scenario SPS1a, taking into ac-
count realistic errors for the masses and cross sections measured at the
LC with polarised beams and mass measurements at the LHC.

1. INTRODUCTION

The unconstrained MSSM has 105 new parameters and SUSY analyses at future experiments,
at the LHC and at a future Linear Collider (LC), will have to focus on the determination of
these parameters [91, 92]. An interesting possibility to explore SUSY is to start with the gaug-
ino/higgsino particles which are expected to be among the lightest SUSY particles. At tree
level, this sector depends only on 4 parameters:M1, M2, µ andtanβ – the U(1) and SU(2)
gaugino masses, the higgsino mass parameter and the ratio ofthe vacuum expectations of the
two Higgs fields, respectively.

Some strategies have been worked out for the determination of the parametersM2, M1,
µ, tanβ even if only the light gaugino/higgsino particles,χ̃0

1, χ̃
0
2 and χ̃±

1 were kinematically
accessible at the first stage of the LC [93,94]. In this contribution we demonstrate how such an
LC analysis could be strengthened if in addition some information on the mass of the heaviest
neutralino from the LHC is available. We consider the cases:(i) stand alone LC data and
(ii) joint analysis of the LC and the LHC data. The results in the last scenario will clearly
demonstrate the essentiality of the LHC and LC and the benefitfrom the joint analysis of their
data.

We take the SPS1a as a working benchmark [30, 45] and assume that only the first phase
of a LC with a tunable energy up to

√
s = 500 GeV would overlap with the LHC running.

Furthermore, we assume an integrated luminosity of
∫
L ∼ 500 fb−1 and polarised beams with

P (e−) = ±80%, P (e+) = ±60%. In the followingσL will refer to cross sections obtained with
P (e−) = −80%, P (e+) = +60%, andσR with P (e−) = +80%, P (e+) = −60%.

2. THE GAUGINO/HIGGSINO SECTOR

The mass matrixMC of the charged gauginõW± and higgsinoH̃± depends onM2, µ, tanβ.
The mass eigenstates are the two charginosχ̃±

1,2. For realMC the two unitary diagonalisation
matrices can be parameterised with two mixing anglesΦL,R. The mass eigenvaluesm2

χ̃±

1,2

and

the mixing angles are analytically given by the Susy parameters (see e.g. [95, 96]). The cross
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sectionσ±{ij} = σ(e+e− → χ̃±
i χ̃

∓
j ) can be expressed as a function of(cos 2ΦL,R, m

2
χ̃±

i

); the

coefficients forσ±{11} are explicitly given in [97].

The neutralino mixing matrixMN depends onM1, M2, µ andtanβ. Analytic expres-
sions for the mass eigenvaluesm2

χ̃0
1,...,4

and the eigenvectors are e.g. given in [93, 94]. The

characteristic equation of the mass matrix squared,MNM†
N , is written explicitly as a quadratic

equation for the parameterM1 [97].

3. STRATEGY FOR THE DETERMINATION OF THE SUSY PARAMETERS

At the initial phase of futuree+e− linear–collider operations with polarised beams, the col-
lision energy may only be sufficient to reach the production thresholds of the light chargino
χ̃±

1 and the two lightest neutralinos̃χ0
1, χ̃

0
2. Nevertheless the entire tree level structure of the

gaugino/higgsino sector can be unraveled [93,94,95].

Chargino cross sections measured at
√
s = 400 GeV and 500 GeV with polarised beams

and the lightest chargino mass are sufficient to determine unambiguously the mixing angles
cos 2ΦL,R. Then theM1 can be obtained from the quadratic equationMNM†

N . However,
using the kinematically accessible cross sections for the neutralino productionσ0

L,R{12} and
σ0
L,R{22} leads to a precise determination of the fundamental Susy parameters [97].

In the following we perform this strategy for the benchmark scenario SPS1a [30, 45]
defined at the electroweak scale:M1 = 99.13 GeV, M2 = 192.7 GeV, µ = 352.4 GeV,
tan β = 10; the resulting masses are given in table 1.

3.1 SUSY PARAMETERS FROM THE LC DATA

We use the light chargino and neutralino massesmχ̃±

1
,mχ̃0

1,2
and the polarised cross sections for

the processese+e− → χ̃+
1 χ̃

−
1 , χ̃0

1χ̃
0
2, χ̃

0
2χ̃

0
2 at

√
s = 400, 500 GeV as experimental input.

In our scenario the light charginõχ±
1 and also the neutralinõχ0

2 decay mainly viãτ1 chains
producing the final states similar to that of stau pair production, however with different topology.
Therefore, we assume that the contamination of stau production events can be subtracted from
the chargino and neutralino production [97].

In our analysis we take the production cross sections with statistical errors induced by the
following uncertainties:

• The chargino mass measurement has been simulated and the expected error is 0.55 GeV,
see table 1.

• With
∫
L = 500 fb−1 at the LC, we assume 100 fb−1 per each polarisation configuration

and we take into account 1σ statistical error.
• Since the chargino (neutralino) production is sensitive tomν̃e (mẽL,R

), we include the
experimental error of their mass determination of 0.7 GeV (0.2 GeV, 0.05 GeV), see
table 1.

• Concerning the neutralino cross sections we estimate the statistical error based on an ex-
perimental simulation3 yielding an efficiency of 25% and include an additional systematic
error (δσbg) which takes into account the uncertainty in the backgroundsubtraction, for
details see [97].

3M. Ball, diploma thesis, University of Hamburg, January 2003, http://www-
flc.desy.de/thesis/diplom.2002.ball.ps.gz.
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χ̃±
1 χ̃±

2 χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 ẽR ẽL ν̃e
mass [GeV] 176.03 378.50 96.17 176.59 358.81 377.87143.0 202.1 186.0
error [GeV] 0.55 0.05 1.2 0.05 0.2 0.7

Table 1: Chargino, neutralino and slepton masses in SPS1a, and the simulated experimental errors at the LC2.

It is assumed that the heavy chargino and neutralinos are notobserved at the first phase of the LC operating at√
s ≤ 500 GeV.

√
s 400 GeV 500 GeV

(P (e−), P (e+)) (−80%,+60%) (+80%,−60%) (−80%,+60%) (+80%,−60%)
σ(e+e− → χ̃+

1 χ̃
−
1 ) 215.84 6.38 504.87 15.07

δσtotal 7.27 0.35 5.28 0.51

σ(e+e− → χ̃0
1χ̃

0
2) 148.38 20.06 168.42 20.81

δσtotal 3.0 1.58 3.52 1.57

σ(e+e− → χ̃0
2χ̃

0
2) 85.84 2.42 217.24 6.10

δσtotal 3.6 0.41 4.3 0.62

Table 2: Cross sectionsσ±

L,R{11} = σL,R(e+e− → χ̃+
1 χ̃

−

1 ), σ0
L,R{12} = σL,R(e+e− → χ̃0

1χ̃
0
2) and

σ0
L,R{22} = σL,R(e+e− → χ̃0

2χ̃
0
2) with polarised beamsP (e−) = ∓80%, P (e+) = ±60% at

√
s = 400

and 500 GeV and assumed errors (in fb) corresponding to 100 fb−1 for each polarisation configuration.

• The beam polarisation measurement is assumed with an uncertainty of∆P (e±)/P (e±) =
0.5%.

The resulting errors are listed in table 2.

Fromσ±
L (χ̃+

1 χ̃
−
1 ) at

√
s = 500, 400 GeV andσ±

R(χ̃+
1 χ̃

−
1 ) at

√
s = 500 GeV exploiting the

relationcos 2ΦR = f(cos 2ΦL, σ
±
L,R{11}) we first predetermine chargino mixing angles as

cos 2ΦL = [0.62, 0.72], cos 2ΦR = [0.87, 0.91] (1)

Then using the neutralino cross sectionsσ±
L (χ̃0

1χ̃
0
2), σ

±
L (χ̃0

2χ̃
0
2) at

√
s = 500, 400 GeV and light

neutralino massesmχ̃0
1,2

within their experimental errors, a rather accurate determination of the

SUSY parameters can be obtained from the∆χ2 test defined as∆χ2 =
∑

i |(Oi − Ōi)/δOi|2.
The sum over physical observablesOi includesmχ̃0

1
, mχ̃0

2
and neutralino production cross sec-

tions σ0
L,R{12}, σ0

L,R{22} measured at both energies of 400 and 500 GeV,Ōi stands for the
physical observables taken at the input values of all parameters, andδOi are the correspond-
ing errors. The∆χ2 is a function of unknownM1, cos 2ΦL, cos 2ΦR with cos 2ΦL, cos 2ΦR

restricted to the ranges given in eqn. (1) as predetermined from the chargino sector. In fig. 1a
the contour of∆χ2 = 1 is shown in theM1, cos 2ΦL, cos 2ΦR parameter space along with its
three 2dim projections. The projection of the contours ontothe axes determines 1σ errors for
each parameter.

Values obtained forM1, cos 2ΦL, cos 2ΦR together withmχ̃±

1
can be inverted to derive the

fundamental parametersM2, µ andtanβ. At the same time the masses of the heavy chargino
and neutralinos are predicted, see table 3. As can be seen in table 3, the parametersM1 andM2

are determined at the level of a few per-mil. Theµ is reconstructed within a few per-cent, while
for tan β the error is of order 15%.

2H.U. Martyn, LC-note LC-PHSM-2003-071.



43

Figure 1:The∆χ2 = 1 contour in the{M1, cos 2ΦL, cos 2ΦR} parameter space derived a) from the LC data and

b) from the joint analysis of the LC data and LHC data [97].

SUSY Parameters Mass Predictions
M1 M2 µ tan β mχ̃±

2
mχ̃0

3
mχ̃0

4

LC 99.1 ± 0.2 192.7 ± 0.6 352.8 ± 8.9 10.3 ± 1.5 378.8 ± 7.8 359.2 ± 8.6 378.2 ± 8.1

LC/LHC 99.1 ± 0.1 192.7 ± 0.3 352.4 ± 2.1 10.2 ± 0.6 378.5 ± 2.0 358.8 ± 2.1 –

Table 3: SUSY parameters with 1σ errors derived from the analysis of the LC data and from the combined analysis

of the LHC and LC data (withδmχ̃0

2

= 0.08 GeV andδmχ̃0

4

= 2.23 GeV derived from the LHC when using the

LC input of δmχ̃0

1
= 0.05 GeV) collected at the first phase of operation. Shown are alsothe mass predictions of

the heavier chargino/neutralinos.

3.2 COMBINED STRATEGY FOR THE LHC AND LC

A rather large error of theµ parameter derived above stems from the gaugino-dominated char-
acter of the light charginos/neutralinos in the SPS1a scenario. A significant improvement for
theµ (andtanβ) is expected with additional information on heavy neutralinos available from
the LHC.

The LHC will provide a first measurement of the masses ofχ̃0
1, χ̃

0
2 and χ̃0

4, see3. The
measurements of̃χ0

2 and χ̃0
4 will be achieved through the study of the processesχ̃0

i → ℓ̃ℓ →
ℓℓχ̃0

1, (with i = 2, 4) in which the invariant mass of the two leptons in the final state shows an
abrupt edge at(mmax

l+l−)2 = m2
χ̃0

i
(1 −m2

ℓ̃
/mχ̃0

i
)(1 −mχ̃0

1
/m2

ℓ̃
).

With the LHC data, the achievable precision onmχ̃0
2

andmχ̃0
4

is expected be respectively
4.5 and 5.1 GeV for an integrated luminosity of 300 fb−1. However, since the uncertainty on
themχ̃0

2
andmχ̃0

4
depends both on the endpoint determination and also onmχ̃0

1
andmℓ̃, a much

higher precision can be achieved withmχ̃0
1
, mẽR

andmẽL
measured at the LC with precisions

respectively of 0.05, 0.05 and 0.2 GeV, table 1. With this input the precisions on the LHC+LC
measurements ofmχ̃0

2
andmχ̃0

4
become:δmχ̃0

2
= 0.08 GeV andδmχ̃0

4
= 2.23 GeV. Performing

again the∆χ2 test with this additional input one gets a significant improvement in the accuracy,
see fig. 1b and table 3 for the final results. The accuracy for the parametersµ and particularly
tan β is now much better, better than from other SUSY sectors [98, 99, 100] (and references
therein).

3B.K. Gjelsten, J. Hisano, K. Kawagoe, E. Lytken, D. Miller, M. Nojiri, P. Osland, G. Polesello, contribution
in the LHC/LC working group document, see also http://www.ippp.dur.ac.uk/˜georg/lhclc/.
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4. SUMMARY

We have worked out in a specific example, an mSUGRA scenario with rather hightanβ = 10,
how the combination of the results from the two accelerators, LHC and LC, allows a precise de-
termination of the fundamental SUSY parameters without assuming a specific supersymmetry
breaking scheme. We have shown that a promising hand-in-hand procedure consists of feeding
the LSP and slepton masses from the LC to the LHC analyses and injecting back a precise ex-
perimental determination of thẽχ0

2 andχ̃0
4 masses. It provides a determination ofM1, M2, µ

at the≤ O(1%) level and of (rather high)tanβ of the order of≤ 10%, reaching a stage where
radiative corrections become relevant in the electroweak sector and which will have to be taken
into account in future fits.
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Part IX

Proposal For A New Reconstruction
Technique For Susy Processes At The
LHC
M.M. Nojiri, G. Polesello and D.R. Tovey

Abstract
When several sparticle masses are known, the kinematics of SUSY de-
cay processes observed at the LHC can be solved if the cascadedecays
contain sufficient steps. We demonstrate four examples of this full re-
construction technique applied to channels involving leptons, namely
a) gluino mass determination, b) sbottom mass determination, c) LSP
momentum reconstruction, and d) heavy higgs mass determination.

1. INTRODUCTION

The potential of the LHC for SUSY parameter determination has been studied in great detail for
the past seven years. One of the most promising methods involves the selection of events from
a single decay chain near the kinematic endpoint. Information on the masses involved in the
cascade decay can be extracted from the endpoint measurements. It has been established that
one can achieve a few percent accuracy for sparticle mass reconstruction using this technique
with sufficient statistics.

In this paper we propose a new method for reconstructing SUSYevents which does not
rely only on events near the endpoint. Instead one kinematically solves for the neutralino mo-
menta and masses of heavier sparticles using measured jet and lepton momenta and a few mass
inputs.

To illustrate the idea we take the following cascade decay chain

g̃ → b̃b→ χ̃0
2bb→ ℓ̃bbℓ → χ̃0

1bbℓℓ. (1)

This decay chain is approximately free from SM background with appropriate cuts. The five
SUSY particles which are involved in the cascade decay have five mass shell conditions;

m2
χ̃0

1

= p2
χ̃0

1

,

m2
ℓ̃

= (pχ̃0
1
+ pℓ1)

2,

m2
χ̃0

2

= (pχ̃0
1
+ pℓ1 + pℓ2)

2,

m2
b̃

= (pχ̃0
1
+ pℓ1 + pℓ2 + pb1)

2,

m2
g̃ = (pχ̃0

1
+ pℓ1 + pℓ2 + pb1 + pb2)

2. (2)

Of these five masses,mχ̃0
1
,mχ̃0

2
andmℓ̃ can be measured at the LHC using first generation

squark cascade decays with an accuracy of∼ 10% (the mass difference is measured more
precisely). Moreover, with input from a future high energy Linear Collider these masses might
be determined with an accuracy∼ O(1%). We therefore assume for the present work that the
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masses of the two lighter neutralinos and of the right handedslepton are known, and we ignore
the corresponding errors.

For abbℓℓ event, the equations contain six unknowns (mg̃, mb̃ andpχ̃0
1
) which satisfy five

equations. For twobbℓℓ events, we have ten equations while we only have ten unknowns(two
neutralino four momenta,mg̃ andmχ̃0

1
). Mathematically, one can obtain the sbottom and gluino

masses and all neutralino momenta if there are more than twobbℓℓ events.

We call this technique the “mass relation method” as one usesthe fact that sparticle masses
are common for events which go though the same cascade decay chain. Note events need not be
near the endpoint of the decay distribution to be relevant tothe mass determination. In the next
section we demonstrate the practical application of this method to measurement of the masses
of the gluino and sbottom.

As a byproduct of the technique, once the mass of the squark and of all the sparticles
involved in the decay are known, the momentum of the lighter neutralino can be fully recon-
structed, and this further constrains the event.

In SUSY events sparticles are always pair produced and thereare two lightest neutralinos
in the event. If squark decays viãq → χ̃0

2 → ℓ̃ → χ̃0
1 can be identified on one side of the

event then the neutralino momentum can be reconstructed as described above. The transverse
momentum of the lightest neutralino in the other cascade decay can then be obtained using the
following equation

pT(χ̃0
1(2)) = pT(miss) + pT(χ̃0

1(1)), (3)

provided that there are no hard neutrinos involved in the decay. This transverse momentum can
be used to constrain the cascade decay of the other sparticle.

For the case where the other squark decays viaq̃ → χ̃+
1 q → χ̃0

1qW followed byW →
q′q′′, the chargino mass can be determined by using Eq. (3) and the following relations,

pq̃ = pχ̃0
1
(2) + pj + pW ,

p2
q̃ = m2

q̃ , (4)

wherepj is the momentum of the selected highpT jet which comes from the squark decay and
pW is the momentum of the two jet system consistent with theW interpretation. The neutralino
momentum resolution is important for the chargino mass reconstruction and we discuss this in
section 3. The reconstruction will be discussed in a separate contribution [101].

The full reconstruction technique can be extended for higgsmass reconstruction. In sec-
tion 4, we discuss the heavy higgs mass determination from the processH → χ̃0

2χ̃
0
2 followed

by χ̃0
2 → ℓ̃ℓ → llχ̃0

1. This process is also useful for discovery of heavy higgs bosons. The four
lepton momenta and missing momentum can be used to reconstruct the higgs mass assuming
that thepT of the higgs boson is very small.

2. GLUINO CASCADE DECAY

We first discuss the results of a simulation study of the process where a gluino cascade decays
into a sbottom at model point SPS1a [30]. The relevant sparticle masses for this study are listed
in Table 1. The events were generated using the HERWIG 6.4 generator [12] [87] and passed
through ATLFAST [88], a parametrised simulation of the ATLAS detector.

We study only events which contain the cascade decay shown inEq.(1). We then apply
the following preselections to reduce backgrounds:
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mg̃ mb̃1(2) mχ̃0
2

mℓ̃R
mχ̃0

1

595.2 491.9(524.6) 176.8 136.2 96.0

Table 1: Some sparticle masses in GeV at SPS1a.

• pmissT > 100 GeV
• Meff > 600 GeV
• at least 3 jets withpT1 > 150 GeV,pT2 > 100 GeV andpT3 > 50 GeV.
• exactly two jets withpT > 50 GeV tagged asb-jets
• exactly two OS-SF leptons withpT l1 > 20 GeV, pT l2 > 10 GeV, and invariant mass

40GeV< mll < 78 GeV.

The solution of Eq. (2) can be written in the following form:

m2
g̃ = F0 + F1m

2
b̃
± F2D,

where D2 ≡ D0 +D1m
2
b̃
+D2m

4
b̃
. (5)

HereFi andDi depend uponpℓi andpbi and the neutralino and slepton masses. In the event,
there are twob jets and we assume that theb jet with largerpT originates from thẽb decay.
The two leptons must come from̃χ0

2 andℓ̃ decay. There are maximally four sets of gluino and
sbottom mass solutions together with two lepton assignments for each decay, because we cannot
determine from which decay the lepton originates. To reducecombinatorics we take the event
pair which satisfies the following conditions:

• Only one lepton assignment has a solution to the Eq. (5)
• For a pair of events there are only two solutions and there is adifference of more than

100 GeV between the two gluino mass solutions.
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Figure 1:mg̃ obtained by using Eq. (5) for twobbℓℓ events.



48

In Fig 1, we plot the minimummg̃ solution which satisfies the conditions given above.
The peak position is consistent with the gluino mass, and theerror on the peak position obtained
by a Gaussian fit is around 1.7 GeV for 100 fb−1. For the events used in the reconstruction, each
event is used on average five times. Note that theσ of the Gaussian fit is large (∼ 56.7 GeV)
and is determined by the resolution on the momentum measurement of the fourb-jets. It is
worth stressing that the results presented here were produced by using a parametrised simulation
of the response of the ATLAS detector to jets, based on the results of a detailed simulation.
Results which crucially depend on the detailed features of the detector response, such as the
possibility of discriminating the two sbottom squarks (seebelow) need to be validated by an
explicit detailed simulation of the detector performed on the physics channel of interest. We
only attempt here to evaluate the impact of the new techniqueon sparticle reconstruction.

Once the gluino mass has been determined one can reconstructthe sbottom mass by fixing
the gluino mass to the measured value. Here one need only solve Eq.(5), which involves only
two b-jets in the fit, and therefore errors due to the jet resolution are expected to be less than
those for the gluino mass reconstruction.

For each event, there are two sbottom mass solutionsmb̃(sol1) andmb̃(sol2), each sensi-
tive to the gluino mass input. The difference between the gluino and sbottom mass solutions is
however stable against variation in the assumed gluino mass. The mass itself may have a large
error in the absolute scale, but the mass differences are obtained rather precisely, as is the case
in the endpoint method.

In Fig. 2 (left), we plot the solutions for all possible lepton combinations in themg̃ −mb̃

(sol1)mg̃ − mb̃ (sol2) plane. Here we use theb-parton momentum obtained from generator
information. One of the solutions tends to be consistent with the input sbottom mass. Moreover
the two decay modes̃g → b̃1b andb̃2b are clearly separated.

We can compare the results from the previous analysis with those from the endpoint anal-
ysis [85], where one uses approximate the formula

pχ̃0
2

=

(

1 −
mχ̃0

1

mℓℓ

)

pℓℓ. (6)

This formula is correct only at the endpoint of the three bodydecayχ̃0
2 → χ0

1ℓℓ, but is never-
theless approximately correct near the edge ofχ̃0

2 → ℓ̃ℓ → ℓℓχ̃0
1 for SPS1a. The sbottom mass

obtained by using Eq.(6) is shown in Fig. 2(right). For this case, thẽb2 peak at 70.6 GeV is not
separated from thẽb1 peak at 103 GeV.

The b̃1 mass, or the weighted average of the sbottom masses, is easily obtained. Theb
jet resolution is not sufficient however to clearly separatethe b̃1 and b̃2. This can be seen in
Fig. 3 where the plots show the distributions correspondingto Fig.2(left) and (right) but now
with theb parton momenta replaced byb jet momenta. For the endpoint analysis (Fig.3 right),
a correct evaluation of the sbottom masses would require a fittaking into account the shape of
the response of ATLAS to b-jets. In order to approximately evaluate the achievable statistical
precision, a naive double gaussian fit was performed on the distribution shown in Fig.3 right,
which corresponds to

∫
dtL = 300 fb−1. The resulting statistical uncertainties are±1 GeV

(±2.5 GeV) for themg̃ −mb̃1
(mg̃ − mb̃2

) peak positions respectively. Additional systematic
uncertainties, not yet evaluated, as well a 1% error due to the uncertainty on the jet energy scale
should also be considered. These numbers are obtained assuming the presence of two gaussian
peaks in the data.

For the mass relation method the number of events available for the study is larger by a
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Figure 2: The distribution ofmg̃ −mb̃ calculated using the parton levelb momentum by solving Eq.(2) (left) and

using the approximate relation Eq. 6(right).

factor of 2 because events away from the endpoints can be used. We also use the exact formula
for the mass relation method. Although the analysis is more complicated due to the multiple
solutions, we believe it to be a worthwhile technique for usewhen attempting to reconstruct the
b̃1 andb̃2 masses.

3. NEUTRALINO MOMENTUM RECONSTRUCTION

In this section, we discuss the reconstruction of the momentum of the lightest neutralino. As we
have discussed already, the mass shell condition can be solved for long decay cascades, such as
q̃ → χ̃0

2q → ℓ̃qℓ → χ̃0
1qℓℓ. For this process we have two neutralino momentum solutionsfor

each lepton assignment. One may wonder if the solutions for the neutralino momentum might
be smeared significantly, because of the worse jet energy resolution as compared to leptons, and
the jetpT is generally much larger than the neutralino momentum for the cascade decay. In Fig.
4(left) we show the distribution ofpT (reco)/pT (truth) for the point studied in [101]. Here we
choose the correct lepton combination using generator information, and take the solution which
minimizes|pT (reco)/pT (truth)−1|. Except for the case where we took the wrong jet as input
the reconstructedpT is within 20% of the true neutralino momentum. The result forthe gluino
cascade decay into sbottom Eq.(1) is similar.

In Fig. 4(right) we show a similar reconstruction for the gluino cascade decay, but unlike
Fig.4(left), we use both lepton combinations. We fix the gluino mass to the input value4 and
take events where one of the four sbottom mass solutions is consistent with the input sbottom
mass such that|mb̃1

−mb̃(best)| < 10 GeV. We then take the solution where the sbottom mass is
closest to the inputmb̃1

. There are still twopχ̃0
1

solutions, and we choose the one which minimize
|min(pT (reco)/pT (truth), pT (truth)/pT (reco)) − 1|. The neutralino momentum resolution is
worse than that obtained using the correct lepton assignments only. Nevertheless a significant
fraction of events are reconstructed with0.8 < |p(reco)/p(truth)| < 1.2.

4Here we adopt an event selection which makes use of the true (input) gluino and sbottom mass values, although
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Figure 3: As for Fig. 2 but with theb jet momentum used instead of theb parton momentum.

4. HIGGS MASS RECONSTRUCTION

A promising decay for the observation of heavy and pseudo-scalar higgs bosons in the difficult
region with intermediatetan β is the decay into two neutralinos. When both neutralinos decay
through the chain

χ̃0
2 → ℓ̃Rℓ→ ℓℓχ̃0

1

the resulting signature consists of events with four isolated leptons (paired in opposite-sign
same-flavour pairs) and no jet activity. The main SM backgrounds to this signature arett̄ pro-
duction, where both theb-jets and theWs decay into leptons andZbb production. The key
element for the rejection of these backgrounds is the fact that the leptons fromb decays are not
isolated. A detailed study of the performance of lepton isolation in the detector is needed to
assess the visibility of the signal. Additionally there is an important SUSY background, includ-
ing irreducible backgrounds from direct slepton and gaugino decay. Full background studies
as a function of the SUSY parameters were performed by the ATLAS and CMS Collabora-
tions [79, 102]. We propose here, along the lines of the previous sections, a technique for the
complete reconstruction of the higgs peak, based on the knowledge of the masses of̃χ0

2, ℓ̃R
and χ̃0

1. In this case one has 8 unknown quantities: the 4-momenta of the two LSP’s, and 8
constraints: six on-shell mass constraints (3 for each leg), and the twoEmiss

T components.

To demonstrate the power of the method, we apply it to Point SPS1a, for which the mass
of theA and of theH is ∼ 394 GeV. The BR intoχ̃0

2χ̃
0
2 is 6% (1%) for theA(H). We perform

the study on 1000 events for
A→ χ̃0

2χ̃
0
2 → ℓℓℓℓχ̃0

1χ̃
0
1

corresponding approximately to the expected statistics for 300 fb−1. We simply require 2 iso-
lated leptons withpT > 20 GeV and 2 further isolated leptons withpT > 10 GeV, all within
|η| < 2.5. The efficiency of these cuts is∼ 60%.

We have not performed any background simulations because atthis stage we only wish to
explore the viability of the full reconstruction technique. The main problem for the reconstruc-

in practice fitted values would be used.
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Figure 4: Left: The calculated̃χ0

1 transverse momentum divided by the true transverse momentum. The de-

cay q̃L → χ̃0
2q → ℓ̃qℓ → χ̃0

1qℓℓ is studied for the model point used for the chargino study:m0 = 100 GeV,

m1/2 = 300 GeV,A0 = −300 GeV, tanβ = 6, andµ > 0. Only the correct lepton choice is used. Right:

|p(reco)/p(truth)| for the decay chain Eq.(1) for SPS1a.

tion is the correct assignment of the leptons to the appropriate decay chain. The first selection
is based on requiring a unique identification of the lepton pairs coming from the decays of the
two χ̃0

2s. We therefore require that either of the following two criteria is satisfied:

• the flavour configuration of the leptons ise+e+µ+µ−

• the lepton configuration is eithere+e−e+e− orµ+µ−µ+µ−, but for one of the two possible
pairings the invariant mass of one of the pairs is larger than78 GeV, i.e. above the lepton-
lepton edge for thẽχ0

2 decay.

The total efficiency after these cuts is∼ 30%. At this point, on each of the two legs there is
still an ambiguity due to the fact that each lepton can be either the product of the first or of
the second step in the decay chain. This gives 4 possible combinations. Furthermore, the full
reconstruction results in a quartic equation which can havezero, two or four solutions. We show
in Fig. (5) the distribution of the calculatedA mass for all of the retained combinations as a full
line. The dashed line shows the combinations with the wrong lepton assignment. A clear and
narrow peak emerges over the combinatorial background. Thewidth is approximately 6 GeV,
determined by the resolution of the measurement of the momentum of the leptons.

5. CONCLUSIONS

In this contribution, we have described a novel technique for reconstructing the mass and mo-
menta of SUSY particles. This technique does not rely on any approximate formulae nor on
endpoint measurements. All events contribute to the sparticle mass determination and decay
kinematics reconstruction, even if they are away from the endpoint of the distribution. The
method may be particularly useful when the SUSY mass scale islarge. In that case the statistics
can be so low that the endpoint cannot be seen clearly while the SUSY sample itself is very
clean.
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The method applies most effectively when we know some of the sparticles’ masses ex-
actly, because the number of unknown parameters in e.g. Eq.(2) is reduced. In the particular
case where some of the sparticle masses are measured at a LC the sparticle cascades may be
solved completely and study of the decay distributions and higher mass determination becomes
possible at LHC.

When all the sparticle masses are known the neutralino momentum can be reconstructed if
four sparticles are involved in the cascade decay. The sparticles would be pair produced, and if
we can identify both of the cascade decay chains in the eventsthen we only need six sparticles in
the cascade decay to solve both of the neutralino momenta on account of the missing momentum
constraint. The reconstruction of sparticle momenta provides us with an interesting possibility
for studying the decay distribution at the LHC.

On the other hand, our method is not valid when some of the particles in the cascade
produce hard neutrinos. This is unfortunately the case whenthe chargino decays into (s)leptons,
when aτ̃ is involved in the decay, or when aW is produced and decays leptonically. If such
SUSY decay processes dominate then this method may not be useful.
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Part X

Building on a Proposal for a New
Reconstruction Technique for SUSY
Processes at the LHC
C.G. Lester

Abstract
There has recently been interest in “a new reconstruction technique for
SUSY processes at the LHC”. The primary intention of this note is to
describe a modification to the way the technique is used. Thismodifi-
cation suggests the method is much more powerful than originally pro-
posed. We demonstrate that, in principle at least, the method does not
need to rely on input from other experiments. We show that themethod
is capable of standing on its own, and is able to measure the masses
of all the sparticles participating in the relevant decay chains. Results
from other experiments such as a future linear collider may easily be
incorporated if desired.

1. INTRODUCTION

The authors of [103] propose “a new reconstruction technique for SUSY processes at the LHC”.
Their method is described in detail in their article elsewhere in these proceedings, and so only
an outline of their method will be provided here. The reader is strongly encouraged to read their
article before reading this one.

The authors of [103] refer to their technique as the “mass relation method”. I wish to
narrow the meaning of this phrase, as I want to draw a distinction between (1) theidea that
makes the whole method work, and (2) any particularimplementationof that idea. I will use the
phrase “mass relation method” to describe any method which,for its success, is forced to rely
on the extraction of information fromtwo or more independent eventswhich are related only
by their sharingsimilar or identical particle content.

2. OUTLINE OF ORIGINAL IMPLEMENTATION

In [103] it is suggested that “when several sparticle massesare known, the kinematics of SUSY
decay processes observed at the LHC can be solved if the cascade decay contains sufficient
steps”. Therein, an original implementation is described which accomplishes this solution. The
efficacy of this implementation is demonstrated using the decay chain

g̃ → b̃b→ χ̃0
2bb → l̃bbl → χ̃0

1bbll. (1)

In order to complete the demonstration, the authors make theassumption that “... the masses
of the two lighter neutralinos and the right handed slepton are known, and [they] ignore the
corresponding errors”. By ignoring the corresponding errors, they in effect demonstrate their
method in a scenario in which the slepton and neutralino masses are already known to something
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like the one-percent level – something not usually assumed to be possible with LHC data alone.
Having made these assumptions, the authors set out to measure the masses of the two remaining
sparticles. Firstly, on an event-pair by event-pair basis,they obtain an estimate of their gluino
mass with an accuracy of about±60 GeV (approximately 10%). By histogramming the results
from all these event-pairs an overall measurement of the gluino mass is obtained with an error
of a fewGeV . This measurement is then fed back into the events which are analysed in a second
pass in order to make a measurement of the sbottom mass.5

2.1 A small part of the original implementation in more detail

As already mentioned in Section 1., the authors begin by assuming prior knowledge ofmχ̃0
1
,

ml̃ andmχ̃0
2
; that is to say the masses of the two lightest neutralinos andthe mass of the slep-

ton participating in the decay chain shown in Equation (1). This leaves in any one event the
six unknown real quantities comprising:mg̃, mb̃ and the four components ofpχ̃0

1
. These six

unknowns, are however constrained to satisfy the five mass constraints:

m2
χ̃0

1

= p2
χ̃0

1

,

m2
l̃

= (pχ̃0
1
+ pl1)

2,

m2
χ̃0

2

= (pχ̃0
1
+ pl1 + pl2)

2, (2)

m2
b̃

= (pχ̃0
1
+ pl1 + pl2 + pb1)

2, and

m2
g̃ = (pχ̃0

1
+ pl1 + pl2 + pb1 + pb2)

2,

in which pl1 , pl2 , pb1 andpb2 are the four-momenta of the emitted standard model particles.6

Since the number of unknowns (six) exceeds the number of constraints (five) it is not possible
to conclude much from one event.

Taking a second event together, however, the number of unknowns rises by only four,
namely the four components of thẽχ0

1-momentum in the new event. As ever, the new event,
like the old, will satisfy another five mass constraints of the form shown in Equation (2). With
two events, then, the number of unknowns and number of constraints have each risen to ten.
So in principle, with only two non-degenerate events, it is now possible to determine all the
unknowns. This amounts to full reconstruction of both events and determination ofmg̃ and
mb̃. The interested reader is directed to [103] to see how the authors handle choice-ambiguities
that arise from (a) the solution of simultaneous quartic andquadratic equations, and (b) lack of
knowledge of which of the two observed leptons isl1 and which of the two observedb-tagged
jets came fromb1.

The implementation of [103] proposes that one should do exactly as described above:
namely consider events in pairs.

3. MOTIVATIONS FOR BUILDING ON THE ABOVE

A natural reaction on seeing the original implementation isto ask:
5In practice, as in most of these analyses, the mass difference between the sbottom and the gluino is measured

more accurately than the absolute value of either of their masses.
6Strictly speaking these mass constraints apply only to thetruerather than themeasuredmomenta of the emitted

standard model particles. However, for the purposes of the “original implementation” this distinction did not need
to be drawn, and the measured momenta were used “as if” true. The resulting smearing of the answer was accepted
as a source of reconstruction error. There are differences between this method and that of my proposal.
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Since two events are better than one, why not consider even more?

The majority of the rest of this note tries to address the above question. The motivation for
building on the above is that every new event adds five more constraints but only four more un-
knowns. Put another way, for every additional event that is acquired, one can either answer one
new question, or else better constrain any answers that one already has. This note concentrates
on the last of these two possibilities.

4. PROPOSAL FOR A “NEW IMPLEMENTATION” OF A MASS RELATION MET HOD

4.1 General comments

The new proposal is to do nothing more than considerall the relevant events simultaneously.

In this note, we willnot address the important question of whether, in a real LHC ex-
periment, it would be possible to satisfy the preconditionsfor the success ofanymass relation
method, namely the requirements that it be possible to construct sufficiently puresamples of
the appropriate standard model samples from chains ofsufficiently similar or identicalparticle
content. This needs to be addressed in further papers, and has already been considered in part
by [103]. The intention of this note is only to look at what maybe achievedif such selection
were possible.

4.2 Detailed description of proposal

Ideally we would like to know the masses of the sparticles in our events. Realistically, we can
only expect to find the masses within some finite precision or error. Bearing correlations in
mind, the best we can expect to determine is the relative probability of any particular combina-
tion of the five massesm = (mχ̃0

1
, ml̃, mχ̃0

2
, mb̃, mg̃) given the data. In short, we would like to

plot p(m|data).

By Bayes’ theorem,p(m|data) ∝ p(data|m)p0(m). The first factor, the likelihood, will
be determined purely from the events considered and the massrelation method itself and is
thus the objective “result” of this experiment. The last factor, the prior, incorporates all exist-
ing knowledge gained from other experiments (if you should wish to include them) and any
subjective preferences you might have. Because we choose here to use a non-informative prior
(uniform in the hierarchical sparticle masses7) the reader may view the results at his or her dis-
cretion as either (a) simple plots of the objective likelihood distributionp(data|m), or else, (b)
indicative of the results which a single experiment would providep(m|data) in the absence of
data from other experiments.

The only thing remaining to be defined isp(data|m). As the data consists of many inde-
pendent events, we havep(data|m) = p(event1|m).p(event2|m). · · · .p(eventn|m), and we are
left needing to evaluatep(eventi|m) for a given eventi.

Evaluating the event-likelihoodp(eventi|m) properly and efficiently is the hard part. In
principle there is only one right answer, which you would obtain by taking the square of the
matrix element for the observed final state and integrating it over all the unknowns in the prob-
lem, namely the measurement errors and the momentum distribution of the unobserved chain
progenitor. The answer you obtain will thus depend on which model assumptions you wish to
make, e.g. whether you would choose to model the differing spins of the sparticles.

7Additionally, the cosmetic constraints30 GeV < mχ̃0

1
< 300 GeV andmg̃ < 1000 TeV are incorporated

into our prior in order to frame all plots nicely.
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In order to meet the time constraints imposed by the submission of this note, however, it
was necessary to implement the event-likelihood using an ad-hoc approximation.8 It is hoped
that the approximation to the event-likelihood described later is sufficiently similar to the full
form of p(eventi|m) that the basic features of the proposed technique can be demonstrated.

We construct the approximation to the event-likelihood used in this note as follows. For
a given chain momentum hypothesesH consistent with the given mass hypothesism, we can
define a “distance”δ(H) between the observed and the true momenta of the visible particles
produced in that chain by

δ(H) = ǫ2lH
1

/σ2
l + ǫ2lH

2

/σ2
l + ǫ2bH

1

/σ2
b + ǫ2bH

2

/σ2
b (3)

where (for example)ǫ2
lH
1

/σ2
l is square of the number of standard deviations by which the mea-

sured momentum ofl1 differs from a hypothesised true valuepHl1 .

We can then perform a least-squares minimisation ofδ(H) over all possible chain momen-
tum hypothesesH consistent with the given mass hypothesism. We now make the assumption
that this least-squared minimisation will have provided uswith the momenta which are most
consistent with the observation and the mass hypothesism. Finally, then, we can approximate
the event-likelihood by the simple process of evaluating the probability for the observed mo-
menta to deviate as far as their observed values, assuming that the “true” momenta are given by
the result of the fit. This approximation thus depends crucially on a good understanding of the
measurement errors associated with the observed standard model particles.

The key features of this approximation to the event-likelihood are that it will be large when
p(eventi|m) is large and small whenp(eventi|m) is small.9 This gives us confidence that the
maxima and minima of the event-likelihood will be well approximated. It will most probably
not be the case, however, that the widths of the resulting distributions or the finer shape details
(for a particular number of events) can be completely reliedupon. This, though undesirable, is
not too great a problem as the widths naturally scale with thenumber of events analysed. For
this reason, the approximation may be thought of as resulting in an uncertainty in how many
events are necessary to achieve a given reconstruction error, rather than an uncertainty in the
quality of the reconstruction itself.

5. RESULTS OF NEW PROPOSAL

In order to demonstrate the potential of the above technique, it is necessary to generate some
events for analysis. A toy montecarlo was used to generate these events only. For the reasons of
Section 4.1 it simulated only relativistic kinematics and decays were according to phase space
only. In effect all particles were treated as scalars. Furthermore, only the chain described in
Equation (1) was simulated. No extraneous particles were produced, and nor is there an “other
side of the event”.

8A more in-depth paper currently in preparation deals with the evaluation of the full form ofp(eventi|m).
9Unlikely events (for a givenm) are clearly those in which, no matter how hard you try, you find a huge

disagreementbetween the momenta of the particles you see in the event and the momenta you would expect to
have seen consideringall hypothesised chain momenta that would have been consistentwith the massesm. Put
another way, you will know you have a very unlikely event whenyou cannot hypothesise a set of chain momenta
in which the visible particles have momenta “close” to thoseobserved in the event. If then we discover thatδ(H)
is large, no matter what hypothesisH we choose consistent withm, then we know that that particular event is
unlikely given that particularm. Conversely, whenm is close to the right answer, the true chain momentaHtr

will lead to a small value forδ(Htr).
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Events were simulated events using the following arbitraryvalues for the sparticle masses:
mχ̃0

1
= 150 GeV,ml̃ = 200 GeV,mχ̃0

2
= 300 GeV,mb̃ = 500 GeV andmg̃ = 650 GeV.

Measurement errors were simulated by randomised rescalingof the four momenta of the
observed particles in a manner similar to that described in [104], but withoutη andφ depen-
dence in the resolutions. Lepton momenta were smeared by 1% and jet momenta by 5%. The
reconstruction part of the analysis was handed the two lepton momenta in a random order and
the twob-jet momenta in a random order so that it could not know which of them was which.

After generating 100 events of the form described above, theresults shown in Figures 1
were obtained. Here we choose to plotp(m|data) by sampling from it using a Metropolis
Markov-chain sampler [105], although this particular choice is unimportant.10

Figure 1 shows how the reconstructed mass distributions of the heavier sparticles correlate
with the reconstructed mass distribution of the lightest neutralino. The correlation show that at
this point the mass differences tend to be measured more accurately than the absolute masses.
The mass of the lightest neutralino is well reconstructed (input value150 GeV) with an error
of order approximately 17%.11 The reconstructed mass distributions of the remaining sparticles
are similar to that of the lightest neutralino as the mass differences are constrained better than
the masses themselves.

6. CONCLUSIONS

This note aims to convey the message thatshould it be possibleat the LHC to isolate clean
samples of the decay products of a hundred or so sparticle decay chains containing enough
sufficiently similar or identical particles, then by using amass relation method of the type
proposed, one should be able to reconstruct the masses of allthe sparticles in these decay chains
to precisions of at least some tens of percent, depending on the number of these events.

Further work is needed to establish that the necessary sample purity is achievable, and
to ascertain the effect that a better model for the event-likelihood would have on the widths of
the reconstructed distributions. If the identified collections of outgoing particles are sufficiently
pure and large, it does not seem unreasonable to believe thatone might expect a precision on
the reconstructed masses which is competitive with any other independent method found so far.

It seems likely that the usefulness of this method will be limited by the ability to produce
the necessary pure samples of decay-chain products.12
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Part XI

Study of non-pointing photons at the
CERN LHC
K. Kawagoe, M.M. Nojiri, G. Polesello and D. Prieur

Abstract
Measurement of non-pointing photons is a key issue to study the gauge
mediation models at the CERN LHC. In this article we study theθ
resolution of non-pointing photons with the ATLAS electromagnetic
calorimeter, and discuss the impacts to the study of the gauge media-
tion models.

1. GAUGE MEDIATION MODELS AND NON-POINTING PHOTONS

Origin of the SUSY breaking in the hidden sector and its mediation to the MSSM sector are
key features of SUSY models. When hidden sector SUSY breaking is expressed by the order
parameterF and the scale of the mediation to the MSSM sector byM , the mass scale of MSSM
sparticlesMSUSY is of the order ofλF/M , whereλ is the coupling of the hidden sector to the
MSSM sector. The SUSY breaking mediation may be due to renormalizable interactions, such
as the gauge interaction. This is called “gauge mediation” (GM) models. In the GM modelsM
andF are arbitrary and we expectM ≪Mpl.

WhenM ≪Mpl, the lightest SUSY particle (LSP) is the gravitino (G̃) in the GM models.
The next lightest SUSY particle (NLSP) is a particle in the MSSM sector which decays into a
gravitino. If the lightest neutralino (̃χ0

1) is the NLSP, the dominant decay mode isχ̃0
1 → γG̃.

The neutralino lifetimecτ is a function ofF0 andmχ̃0
1
, and the neutralino may be long-lived.

Therefore it is an important subject to study non-pointing photons at the CERN LHC.

In a paper [106], a procedure is proposed to solve the gravitino momentum and̃χ0
1 decay

position for the cascade decaỹℓ → χ̃0
1ℓ → G̃ℓγ using the ATLAS detector at the LHC. It

is shown that one can determine the mass and lifetime ofχ̃0
1. To this purpose, one need to

measure the photon momentum and arrival time very precisely. A toy simulation is made under
the following assumptions to the photon momentum resolution;

• A good angular resolution ofσθ = 60 mrad/
√
E is assumed, whereθ is the polar angle of

the photon momentum with respect to the beam axis andE is the photon energy measured
in GeV. This resolution is based on a simulation for pointingphotons.

• The azimuthal angle of the photon momentumφ is only poorly measured by the electro-
magnetic (EM) calorimeter. Theφ resolution is good only for the photons converted in
the transition radiation tracker (TRT) located in the EM calorimeter.

The analysis takes two steps. First, events with converted non-pointing photons are se-
lected. As the photon momentum is precisely measured, the events can be used to determine
the mass of̃χ0

1. In solving the kinematics, the direction of the gravitino momentum is sensi-
tive to the photon momentum. The mass resolution at GM point G1 with cτχ̃0

1
= 100cm is

∆mχ̃0
1

= 3.5 GeV for105 generated SUSY events, which corresponds to an integrated luminos-
ity of 13.9 fb−1.
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Once the mass is determined precisely, the goodφ resolution of the photon momentum
is not required to solve the decay kinematics. The decay kinematics can be solved for allℓγ
events with non-pointing photons, from theθ component of the photon momentum, the arrival
time and position at the ECAL, and the lepton momentum. Therefore, all ℓγ events with or
without photon conversion can be used to determine the lifetime. The lifetime resolution for the
GM point G1 is∆cτ/cτ = 0.045 for the105 generated SUSY events.

Although the result looks nice, some of the assumptions in the paper may be too opti-
mistic, and should be studied more realistically. Among them, theθ resolution obtained for
pointing photons are used to estimate that for non-pointingphotons. In this article we study the
θ resolution for non-pointing photons by a full simulation and discuss the impacts to the GM
study.

2. PARAMETRISATION OF ANGULAR RESOLUTION OF ATLAS BARREL EL EC-
TROMAGNETIC CALORIMETER

In this part we try to obtain a more refined parametrization ofthe angular resolution for non-
pointing photons with the ATLAS EM calorimeter. So far the resolution has been studied only
for nearly pointing photons, i.e. photons coming from the ATLAS interaction point, and it is
of the order of 60mrad/

√
E [107, 79]. In the following we will try to see which resolution is

achievable for non-pointing photons using a full simulation of the ATLAS detector.

The EM calorimeter [79] is a projective calorimeter with a good granularity to perform
precision measurements of the shower position. It is longitudinally divided into three compart-
ments: strip, middle and back compartment. The strip section is segmented alongη into very
thin cells of∆η = 0.003125, leading to a resolution onη position with pointing photons of
0.30 × 10−3. The middle compartment has a widerη granularity of∆η = 0.025 and it is de-
signed to contain most of the shower energy. It has a resolution onη position of0.83 × 10−3.
By combining the measurement of theη position in the first two compartments, it is possible to
determine the shower direction inη.

For this study, different samples of single photons have been generated. Each of these
samples consist of20000 photons ofpt = 60 GeV, randomly triggered withη from−1.4 to 1.4.
Pointing photons were generated at ATLAS origin with a spread on the position of the genera-
tion vertex of5.6 cm along Z axis and15 µm along radial axis, as it should be in ATLAS final
setup. For non-pointing photon samples, the generation vertex has been shifted along ATLAS
Z axis with values from10 cm to150 cm. No spread on the generation vertex position has been
applied for these dataset. Finally all of these events were fully simulated using Dice/Atlsim
(v3.2.1), the Geant3 ATLAS detector description [108].

Here we focus only on the barrel part of the EM calorimeter. The reconstruction of all events
has been done using ATLAS standard reconstruction software(Athena v6.5.0). No electronic
noise or pile-up have been added in the reconstruction. The noise will certainly contribute to
degrade the resolution, however this has not been studied yet.

With theη position, in each layer of the calorimeter (η1,η2) and using a parametrization of the
shower depth for each layers (R1(η1),R2(η2)) [107], we are able to reconstruct the shower axis
ηpointing using the following relation:

sinh(ηpointing) =
R2(η2) sinh(η2) − R1(η1) sinh(η1)

R2(η2) − R1(η1)
(1)
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The standard reconstruction uses a sliding window algorithm to find regions of interest in
the calorimeter, then3 × 3 (η × φ) clusters are made in order to compute theη barycenter of
the shower in each layer. This position is the average of cells η position weighted by energy in
each cell:

η =

∑
ηiEi

∑
Ei

(2)

The angular resolution achieved using the standard reconstruction is shown in Fig. 1 as a func-
tion of the position of the generation along ATLAS Z axis. Theresolution is significantly
degraded from 60 mrad forZvertex = 0 cm to about 800 mrad forZvertex = 100 cm. This is due
to several effects. First, the S-shape corrections, that were tuned for pointing photons, are no
longer valid and tend to degrade the resolution for large deviation from pointing. The S-shape
effect is a distortion of the reconstructedη position due to the finite cluster size. Then the3× 3
clusters are no longer sufficient to contain all the shower and some energy leakage outside the
cluster is possible. Another point is that Eq. (2) is no more true for non-pointing photons and
gives rise to a systematic shift in computingη position for each layer. Finally, the shower depth
parametrization, tuned from pointing photons, is also no more valid for large deviation from
pointing.

In order to improve the resolution, some changes have been made to the standard recon-
struction algorithm. First, the cluster size has been extended to5 × 3 and we do not apply
the S-shape corrections. For each layer the systematic shift observed in theη position recon-
struction has been parameterized as a function of the generation vertex position. Using this
last parametrization we have made an iterative algorithm which corrects theη position in each
layer. The convergence is obtained in about 3 iterations. Results of this correction on angular
resolution is show on Fig. 1. For small vertex shift (Z < 30 cm), the standard reconstruction
gives the best resolution. This is mainly due to the absence of S-shape corrections. For larger
vertex shift (Z > 30 cm), the reconstruction algorithm with iterative correction gives better
results than the standard one.

This study has shown that standard reconstruction algorithm is not well suited for non-
pointing photons and that a specific treatment is necessary.The next step to improve the resolu-
tion would be to try other clustering algorithms such as NearestNeighbor. Another possible way
would be to study the dissymmetric shower profile of non-pointing photons and try to extract
an alternative method for computingη barycenter from this information.

3. EFFECT ON THE GAUGE MEDIATION STUDY

First of all, theθ resolution affects the selection efficiency of non-pointing photons and back-
ground contamination from pointing photons. Second, the resolution of the decay kinematics
would be reduced if the photon angle resolution is reduced. We study this in terms of the angle
ψ defined as the opening angle of the gravitino direction and the photon direction. This can be
calculated by using the following formula

cosψ =
1 − ξ2

1 + ξ2
,

where ξ ≡ ctγ − L cosα

L sinα
, (3)

wheretγ is the photon arrival time at the barrel EM calorimeter,L is the distance between the
interaction point (O) and the point where the photon arrivesat the EM calorimeter (A) , and
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σθ(mrad) ×
√

E(GeV) 0 60 100 200 300 400 500
σψ(mrad) 36.5 38.2 40.6 46.9 52.6 56.6 60.2

RMSψ (mrad) 46.2 48.0 50.9 63.0 78.8 93.0 105.5

Table 1: Resolution of the angleψ for various asumptions ofθ resolution.

α is the angle between the photon momentum and the position vector
−→
OA. Changing theθ

resolution and keeping all the other resolutions same as those assumed in Ref. [106], we show
in Table 1 the resolution of the angleψ for point G1 withcτ = 100 cm and

∫
Ldt = 13.9 fb−1.

Here,σψ is obtained by Gaussian fit using center part of∆ψ(≡ ψ − ψtrue) distribution, while
RMSψ is obtained using the whole distribution. The errorσψ increases asσθ increases. This
affects the error of thẽχ0

1 mass determination.
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Part XII

Measuring Neutrino Mixing Angles At
LHC
W. Porod and P. Skands

Abstract
We study an MSSM model with bilinear R-parity violation which is
capable of explaining neutrino data while leading to testable predictions
for ratios of LSP decay rates. Further, we estimate the precision with
which such measurements could be carried out at the LHC.

1. INTRODUCTION

Recent neutrino experiments [109,110,111,112] clearly show that neutrinos are massive parti-
cles and that they mix. In supersymmetric models these findings can be explained by the usual
seesaw mechanism [113,114,115]. However, supersymmetry allows for an alternative which is
intrinsically supersymmetric, namely the breaking of R-parity. The simplest way to realize this
idea is to add bilinear terms to the superpotentialW :

W = WMSSM + ǫiL̂iĤu (1)

For consistency one has also to add the corresponding bilinear terms to soft SUSY breaking
which induce small vacuum expectation values (vevs) for thesneutrinos. These vevs in turn
induce a mixing between neutrinos and neutralinos, giving mass to one neutrino at tree level.
The second neutrino mass is induced by loop effects (see [116,117,118] and references therein).
The same parameters that induce neutrino masses and mixingsare also responsible for the decay
of the lightest supersymmetric particle (LSP). This implies that there are correlations between
neutrino physics and LSP decays [119,120,121,122].

In this note we investigate how well LHC can measure ratios ofLSP branching ratios
that are correlated to neutrino mixing angles in a scenario where the lightest neutralinõχ0

1 is the
LSP. In particular we focus on the semi-leptonic final statesliq

′q̄ (li = e, µ, τ ). There are several
more examples which are discussed in [120]. In the model specified by Eq. (1) the atmospheric
mixing angle at tree level is given by

tan θatm =
Λ2

Λ3
(2)

Λi = ǫivd + µvi (3)

wherevi are the sneutrino vevs andvd is the vev ofH0
d . It turns out that the dominant part of

theχ̃0
1-W-li couplingOL

i is given by

OL
i = Λif(M1,M2, µ, tanβ, vd, vu) (4)

where the exact form off can be found in Eq. (20) of ref. [120]. The important point is that
f only depends on MSSM parameters but not on the R-parity violating parameters. Putting
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everything together one finds:

tan2 θatm ≃
∣
∣
∣
∣

Λ2

Λ3

∣
∣
∣
∣

2

≃ BR(χ̃0
1 → µ±W∓)

BR(χ̃0
1 → τ±W∓)

≃ BR(χ̃0
1 → µ±q̄q′)

BR(χ̃0
1 → τ±q̄q′)

, (5)

where the last equality is only approximate due to possible (small) contributions from three
body decays of intermediate sleptons and squarks. The restriction to the hadronic final states of
theW is necessary for the identification of the lepton flavour. Note that Eq. (5) is a prediction
of the bilinear model independent of the R-parity conserving parameters.

2. NUMERICAL RESULTS

We take the SPS1a mSUGRA benchmark point [30] as a specific example, characterized by
m0 = 100GeV, m 1

2

= 250GeV, A0 = −100GeV, tan β = 10, andsign(µ) = 113. The low–
energy parameters were derived using SPHENO 2.2 [5] and passed to PYTHIA 6.3 [16] using
the recently defined SUSY Les Houches Accord [19]. The R-parity violating parameters (in
MeV) at the low scale are given by:ǫ1 = 43, ǫ2 = 100, ǫ3 = 10, v1 = −2.9, v2 = −6.7
andv3 = −0.5. For the neutrino sector we find∆m2

atm = 3.8 · 10−3 eV2, tan2 θatm = 0.91,
∆m2

sol = 2.9 · 10−5 eV2, tan2 θsol = 0.31. Moreover, we find that the following neutralino
branching ratios are larger than 1%:

BR(W±µ∓) = 2.2%, BR(W±τ∓) = 3.2%, BR(q̄q′µ∓) = 1.5%,
BR(q̄q′τ∓) = 2.1%, BR(qq̄νi) = 4.7%, BR(bb̄νi) = 15.6%,
BR(e±τ∓νi) = 5.9%, BR(µ±τ∓νi) = 30.3%, BR(τ+τ−νi) = 37.3%,

where we have summed over the neutrino final states as well as over the first two generations of
quarks. Moreover, there are 0.2% of neutralinos decaying invisibly into three neutrinos. In the
case that such events can be identified they can be used to distinguish this model from a model
with trilinear R-parity violating couplings because in thelatter case they are absent.

We now turn to the question to what extent the ratio, Eq. (5), could be measurable at an
LHC experiment. The intention here is merely to illustrate the phenomenology and to give a
rough idea of the possibilities. For simplicity, we employ anumber of shortcuts; e.g. detector
energy resolution effects are ignored and events are only generated at the parton level. Thus,
we label a final-state quark or gluon which hasp⊥ > 15GeV and which lies within the fiducial
volume of the calorimeter,|η| < 4.9, simply as ‘a jet’. Charged leptons are required to lie
within the inner detector coverage,|η| < 2.5, and to havep⊥ > 5GeV (electrons),p⊥ > 6GeV
(muons), orp⊥ > 20GeV (taus). The assumed efficiencies for such leptons are [79] 75% for
electrons, 95% for muons, and 85% for taus decaying in the 3–prong modes (we do not use the
1–prong decays), independent ofp⊥.

For SPS1a, the total SUSY cross section isσSUSY ∼ 41 pb. This consists mainly of gluino
and squark pair production followed by subsequent cascadesdown to the LSP, thẽχ0

1. With an
integrated luminosity of100 fb−1, approximately 8 millioñχ0

1 decays should thus have occurred
in the detector.

An important feature of the scenario considered here is thatthe χ̃0
1 width is sufficiently

small to result in a potentially observable displaced vertex. By comparing the decay length,
13Strictly speaking, the SPS points should be defined by their low-energy parameters as calculated with ISAJET

7.58.
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mode Ngen ǫrec Nrec(100 fb−1)

χ̃0
1 → µW → µqq̄′ 235000 0.10 12500
χ̃0

1 → τW → τ3−prongqq̄′ 51600 0.054 1400

Table 1: Statistical sample, estimated reconstruction efficiencies, and expected event numbers.

cτ = 0.5 mm, with an estimated vertex resolution of about 20 microns in the transverse plane
and 0.5 mm along the beam axis, it is apparent that the two neutralino decay vertices should
exhibit observable displacements in a fair fraction of events. Specifically, we require that both
neutralino decays should occur outside an ellipsoid definedby 5 times the resolution. For at
least one of the vertices (the ‘signal’ vertex), all three decay products (µqq̄′ or τqq̄′) must be
reconstructed, while we only require one reconstructed decay product (jet in the inner detector
or lepton in the inner detector whose track does not intersect the 5σ vertex resolution ellipsoid)
for the second vertex (the ‘tag’ vertex).

Naturally, since the decay occurs within the detector, the standard SUSY missingE⊥
triggers are ineffective. Avoiding a discussion of detailed trigger menus (cf. [123]), we have
approached the issue by requiring that each event contains either four jets, each withp⊥ >
100GeV, or two jets withp⊥ > 100GeV together with a lepton (here meaning muon or electron)
with p⊥ > 20GeV, or one jet withp⊥ > 100GeV together with two leptons withp⊥ > 20GeV.
Further, since the Standard Model background will presumably be dominated bytt̄ events, we
impose an additional parton–levelb jet veto.

To estimate the efficiency with which decays into each channel can be reconstructed, a
sample of 7.9 million SUSY events were generated with PYTHIA , and the above trigger and
reconstruction cuts were imposed. To be conservative, we only include the resonant decay
channels, where the quark pair at the signal vertex has the invariant mass of theW . The number
of generated decays into each channel, the fractions remaining after cuts, and the expected total
number of reconstructed events scaled to an integrated luminosity of100 fb−1 are given in ta-
ble 1. The comparatively small efficiencies owe mainly to therequirement thatbothneutralino
decays should pass the 5σ vertex resolution cut. Nonetheless, using these numbers asa first esti-
mate, the expected statistical accuracy of the ratio,R = BR(χ̃0

1 → µ±W∓)/BR(χ̃0
1 → τ±W∓),

appearing in Eq. (5) becomesσ(R)
R

≃ 0.028.

3. CONCLUSIONS

We have studied neutralino decays in a model where bilinear R-parity violating terms are added
to the usual MSSM Lagrangian. This model can successfully explain neutrino data and leads
at the same time topredictionsfor ratios of the LSP decay branching ratios. In particular
we have considered a scenario where the lightest neutralinois the LSP. In this case the ratio
BR(χ̃0

1 → µ±W∓)/BR(χ̃0
1 → τ±W∓) is directly related to the atmospheric neutrino mixing

angle. Provided R-parity violating SUSY is discovered, themeasurement of this ratio at col-
liders would thus constitute an important test of the hypothesis of a supersymmetric origin of
neutrino masses.

We have investigated the possibility of performing this measurement at a ‘generic’ LHC
experiment, using PYTHIA to generate LHC SUSY events at the parton level and imposing
semi-realistic acceptance and reconstruction cuts. Within this simplified framework, we find
that the LHC should be sensitive to a possible connection between R-parity violating LSP de-
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cays and the atmospheric mixing angle, at least for scenarios with a fairly light sparticle spec-
trum and where the neutralino decay length is sufficiently large to give observable displaced
vertices. Obviously, the numbers presented here representcrude estimates and should not be
taken too literally. A more refined experimental analysis would be necessary for more definitive
conclusions to be drawn.
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Part XIII

Resonant slepton production at the LHC
in models with an ultralight gravitino
B.C. Allanach, M. Guchait, K. Sridhar

Abstract
We examine resonant slepton production at the LHC with gravitinos in
the final state. We investigate two cases: (i) where the slepton undergoes
gauge decay into neutralino and a lepton, followed by the neutralino
decay into a photon and a gravitino, and (ii) direct decays ofa slepton
into a lepton and a gravitino. We show how to accurately reconstruct
both the slepton and neutralino masses in the first case, and the slepton
mass in the second case for 300 fb−1 of integrated luminosity at the
LHC.

1. INTRODUCTION

This letter is devoted to the study of the signals at the LargeHadron Collider (LHC) due to
a supersymmetric generalisation of the Standard Model (SM)which (a) violatesR-parity, and
(b) has an ultra-light gravitino in its spectrum. The anomalous events in the CDF experiment
in the production rate of lepton-photon-6ET in pp̄ collisions were explained [124, 125, 126] in
the framework of aR-parity violating supersymmetric model with dominantL-violating λ′211
coupling, and an ultra-light gravitino of mass∼ 10−3 eV.

The resonant production of a smuon via theR-violating coupling, its decay into neutralino
and a muon and, finally, the decay of the neutralino into a gravitino and a photon leads to the
µγ 6ET final state studied in the CDF experiment. The range of smuon and neutralino masses
rel¡evant to the explanation of these anomalous observations of the the CDF experiment is
such that most of this range will be explored at the Run II of the Tevatron. In the event that
this signal is not seen at Run II it will rule out the model at the lower end of the neutralino
and smuon masses. For heavier smuon and neutralino masses (above 250 GeV, roughly), the
aforementioned Run I signal would be a statistical fluke and will probably disappear in Run
II data. In that case, experiments at the LHC can be expected to discover and measure the
sparticles. Here, we perform a study of the ability of the LHCto perform these two tasks,
identifying the sensitive observables.

2. THE MODEL

We assume a single dominantR violating coupling,λ′211 for example. If theR-violating cou-
pling is small, the existence of an ultralight gravitino in the mass range of10−3 eV drastically
alters the decay mode of the slepton. The slepton overwhelmingly decays into a lepton and a
(bino-dominated) neutralino, with the latter decaying into a photon and a gravitino resulting in
a lγ 6ET final-state. The Feynman diagram for the process is shown in Fig. 1. We should also ex-
pect signals from sneutrino production. The background to theγ 6ET final-state that this would
give rise to depend crucially on cosmic ray events which are difficult to estimate. Therefore



70

q

q̄′

l

χ0

l̃
G̃

γ

Figure 1: Feynman diagram of resonant slepton production followed by neutralino decay.

we have not studied the signal from sneutrino production. All sparticles except the neutralino,
gravitino and slepton are set to be arbitrarily heavy in our analysis.

3. SIMULATION RESULTS

For our study of the process shown in Fig. 1 at the LHC (pp collisions at
√
s = 14 TeV), we have

chosen to work with the following default set of model parameters (unless indicated otherwise):

• Gravitino mass,mG̃ = 10−3 eV,
• R-violating couplingλ′ ≡ λ′211 = 0.01,
• tanβ = 10,
• sparticle masses(mχ0

1
, ml̃)=(120 GeV,200 GeV) or (200 GeV,500 GeV) GeV (“low mass”

and “high mass” scenarios) respectively.
The choice of usingλ′211 rather than some other flavour combination is arbitrary and can be
easily generalised to otherR-violating couplings. We have checked that the chosen valuefor
λ′211 is quite consistent with the existing bound [127, 128]. By selecting rather low values for
R-parity coupling and gravitino mass,we avoid significant rates for the possibleR-violating de-
cays ofχ0

1 → µjj orχ0
1 → νjj. χ−

1 → γG̃ is the dominant channel. We use theISASUSY [129]
to generate the SUSY spectrum, branching ratios and decays of the sparticles selecting a repre-
sentative pointtan β=10,At,τ,b = 0 along with large values ofµ and other flavour diagonal soft
supersymmetry breaking parameters.

The signals have been simulated usingHERWIG6.4 [130] and theWγ SM background
has been simulated usingPYTHIA [16]. In our simulations, both the signal and background, we
have used only selection cuts ofET , 6ET > 25 GeV on the transverse energies of the muon, the
photon and missing energy. We have used the following cuts onthe rapidity of the photon and
the muon:|ηγ,µ| < 3. There is an isolation cut between the photon and other hard objectso in
the event of

√

(ηγ − ηo)2 + (φγ − φo)2 > 0.7. Since the signal is hadronically quiet, we veto
events with jets reconstructed withET > 30 GeV andηj < 4. Initial and final state radiation
effects, as well as fragmentation effects are included in the background simulation.

The transverse mass distributions of final state particles along with 6ET show a clear dis-
tinction between signal and backgrounds. TheMT (µγ 6ET ) andMT (γ 6ET ) distributions are
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Figure 2: MT distributions of (a)µγ 6ET , (b) γ 6ET for slepton. 300 fb−1 integrated luminosity at the LHC is

assumed. The purple (lighter) histograms displayWγ SM background, the red (darker) histograms show signal

plus background for(mχ0

1
,ml̃)=(120 GeV,200 GeV), whereas the blue (dotted) histograms display the signal plus

background distributions for(mχ0

1
,ml̃)=(200 GeV,500 GeV). In (a), the dashed black line displays a log-linear fit

to the background distribution forMT = 150 − 400 GeV. In (b), the insert shows a linear scale magnification of

an area of the plot.

displayed in Figs. 2a,b for the simulated high and low mass points andWγ simulated SM back-
ground. In Fig. 2a, sharp peaks which are expected in theMT (µγ 6ET ) distributions are clearly
visible at values of the smuon mass and will be detected abovethe SMWγ background, leading
to the accurate measurement of the mas. Fig. 2b shows that thesignal peaks inMT (γ 6ET ) (pre-
dicted to be at the neutralino mass) should be able to providea measurement of the neutralino
mass.

In order to calculate the search reach, we use the signalS in the 4 highest peak bins (cov-
ering 20 GeV) of the signalMT (µγ 6ET ) peak. The background distribution in these four bins
is estimated by fitting a simple function B = 4 exp[aMT (µγ 6ET ) + b] to MT (γµ 6ET ) between
150-400 GeV in Fig. 2a. Using purely

√
B statistical errors, we obtain toa = −0.018± 0.001,

b = 9.25 ± 0.22. B is displayed in Fig. 2a as the dashed black line. We show the region of
parameter space corresponding to14 S/

√
B > 5 andS ≥ 10 for 300 fb−1 luminosity option, as

a function of smuon mass and R-parity conserving coupling inFig. 3a.

We now turn to the decaỹl → G̃l. We ignore sneutrino production in this case because
it would lead to an invisible final state. We have calculated the production matrix element
and the branching ratio and implemented in a parton-level Monte Carlo. We have used cuts
in our analysis on the muon and missing transverse energy identical to theγµ 6ET analysis,
i.e. 6ET , E

µ
T > 25 GeV and|ηµ| < 3. Fig. 4a displays theMT (µ 6ET ) distribution for theW

background plus signal in the casesmµ̃ = 1.2 and 1.5 TeV respectively and two different values
of theλ′. Forλ′ = 0.01 there are not enough signal events to be seen, but for higher values (eg
0.1), a clear mass peak should be seen in the tail of theMT distribution of theW . We define the
search reach by the criteria that forS signal andB background events,S/

√
B ≥ 5 andS ≥ 10

14The statistical uncertainties on fitteda andb parameters make a negligible difference to the final numerical
results.
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in the 5 GeV signal peak bin ofMT (µ 6ET ). It is displayed for 300 fb−1 of integrated luminosity
in Fig. 4b.

CONCLUSIONS

Resonant slepton production and its decays intolγG̃ or lG̃ can be discovered at the LHC for
slepton masses into the multi-TeV region, depending upon theRp violating coupling and pro-
vided that the gravitino is ultra-light (with a mass less than 0.1 eV). VariousMT distributions
will allow the accurate measurement of sparticle masses involved. For full details, the new
matrix element and additional results (for example including the case of a smuon NLSP), see
ref. [131].
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Part XIV

Radion Mixing Effects In The
Two-Higgs-Doublet Model
J.L. Hewett and T.G. Rizzo

Abstract
We begin an examination of the effects of mixing between the radion
of the Randall-Sundrum (RS) model and the Higgs fields of the Two-
Higgs-Doublet model as would be motivated by,e.g., supersymmetry.
Preliminary results for the shifts in various particle masses and cou-
plings are obtained.

1. INTRODUCTION

The RS model [132] provides an interesting solution to the hierarchy problem which can be
tested experimentally [133,134,135] at future colliders.One prediction of this model is the exis-
tence of a relatively light scalar radion which can mix with other scalars such as the Higgs boson
of the Standard Model (SM). Such mixing can lead to substantial modifications in the expected
properties of both the Higgs and the radion and has been extensively studied [136,137,138,139]
in the literature. Here we extend this study to the case of twoHiggs doublets as would be ex-
pected in a number of scenarios,e.g., supersymmetry (SUSY). Although not necessary for
solving the hierarchy problem within the RS scenario, SUSY may have other model build-
ing [140, 141] uses such as coupling constant unification or radius stabilisation [142]. The
expectation from previous analyses of the single doublet model is that the properties of the
mass eigenstate CP even neutral fields would substantially differ from those predicted in either
the SM or the Minimal Supersymmetric Standard Model (MSSM).The preliminary discussion
of our findings given here supports these expectations though further study is required to under-
stand the breath of the possible modifications.

2. ANALYSIS

With two Higgs doublets, mixing arises from the TeV brane action

Smix =

∫

TeV

d4x
√

det g R(g) (ξ1H
†
1H1 + ξ2H

†
2H2 + ξ12H

†
1H2 + h.c.) , (1)

whereg symbolises the induced metric on the TeV brane,R, the induced curvature arising from
g,Hi are the two Higgs doublets andξi are dimensionless, order one parameters which we take
to be real, thus assuming CP conservation for simplicity. The possible complexity ofξ12 may
lead to interesting phenomenology. (In what followsξ1 = ξ2 will be assumed since it is unlikely
that gravitational interactions distinguish between these two Higgs doublets. This assumption,
however, may be incorrect.) Thus, in the unitary gauge, the CP-odd field,A, as well as the
charged scalarsH± are not directly affected by modifications to the neutral CP even sector.
(Of course, their couplings to the CP-even fields will be modified.) Before mixing with the
radion,r0, we denote the usual two CP-even Higgs byh0, H0 which have been obtained from
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the weak interaction eigenstate fields via rotations by the anglesα, β as usual. Assumingr0
obtains a mass from the stabilisation procedure, the above action can be expanded to quadratic
order in the CP-even neutral fields from which one obtains thefollowing effective Lagrangian
generalising the notation of Csakietal. [137]:

L = −1

2
h0∂

2h0 −
1

2
m2
h0
h2

0 + (h0 → H0, r0)− 3σγ2r0∂
2r0 + 6γ(τhh0∂

2r0 + h0 → H0) , (2)

whereγ = v/
√

6Λπ ∼ 0.05 − 0.10, with v the SM vev, andΛπ, of order a few TeV or so,
being the ‘TeV scale’ of the RS model. The parametersσ, τh,H are functions of theξi and the
usual mixing anglesα, β. The kinetic mixing in the above Lagrangian can be removed bya set
of field redefinitions,i.e., h0, H0 → h′, H ′ + 6γτh,Hr

′/Z andr0 → r′/Z. To obtain the mass
eigenstate basis after the above redefinitions are employeda further orthogonal transformation,
(h′, H ′r′) = O(h,H, r), must be performed. The elements of the orthogonal matrix,O, as well
as the corresponding mass eigenvalues can then be determined analytically.

Figure 1: Constraints from the absence of ghosts/tachyons(left) and perturbative unitarity(right) for different values

of the ratioR in the range between -2 and +2. The allowed region lies between the curves.

The number of parameters in this model is unfortunately rather large making it difficult to
analyse in all generality. In order to show a specific examplewith somewhat fewer parameters
we assume that the spectra, couplings,etc., of the unmixed two-doublet-model Higgs sector to
be that given by SUSY, including the effects of radiative corrections [143], withtan β = 10,
MA = 500 GeV,At = Ab = −µ=1 TeV andM2

S = (M2
t1

+ M2
t2
)/2 = 1 TeV2 where theMti

are the stop masses. (The remaining parameters areξ1, mr0 , γ and the ratioR = ξ12/ξ1.) These
parameter choices yieldmh ≃ 125 GeV. The resulting parameter space can be further restricted
by noting that bothξ1 andR are of order unity,γ is anticipated to be near the range described
above andmr0 is expected to be of order the weak scale. Further numerical restrictions on
the parameter ranges can be obtained by demanding that,e.g., there are no ghosts or tachyons
in the spectrum arising from the diagonalisation process and thatW+

LW
−
L scattering satisfies

perturbative unitarity [144] up to the scaleΛπ; samples of such constraints can be seen in the
figure above where we have assumed that−2 ≤ R ≤ 2. Note that for small values ofγ the
constraints from unitarity are more restrictive than the requirement that no ghosts or tachyons
be present; for largerγ both constraints are found to be of comparable strength.
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3. PRELIMINARY RESULTS

We now turn to a brief sample of our results which survey only aSmall region of the allowed
parameter space. The first thing to examine is the effect of mixing on the masses of the physical
statesh,H, r as is shown in the next set of figures. (The curves are cut off atlarge values
of |ξ1| by the no ghost/tachyon requirement.) Here we see the typical result that the mass
‘levels’ of the three states repel each other due to mixing. In all of our examples,mH0

is the
largest mass parameter and thus the mass of theH is itself raised by mixing. Note that these
upward shifts can be enormous near the parameter space boundaries. Though made heavier,
H ’s couplings will be seen to grow as well. Whenmh0

< (>)mr0 we see that theh(r) mass is
pushed downward while that ofr(h) is pushed upward. These shifts are not as large as those
experienced by theH. Thus while we might expect the light Higgs to have a mass≤ 130 GeV
in the MSSM, mixing with the radion allows it to be larger provided the radion itself is less
massive.

Next we consider the shifts due to mixing in the squares of thecouplings of the various
fields to eitherbb̄ or tt̄(cc̄); it is important to note that the corresponding shifts for the couplings
to WW/ZZ are found to almost identical to those forbb̄ in almost all cases so we do not
present those results separately here. Note that we have scaled these couplings shown in the
figures either by their value in the MSSM using the input parameters above, as in the case of
h,H, or by their unmixed values, as in the case ofr. The range of coupling shifts, especially
for H andr, are truly impressive being orders of magnitude in some cases. Not only are large
enhancements seen for some parameter ranges, it is also important to note that there are regions
of the parameter space, not necessarily near the boundaries, where couplings can completely
vanish. For the light Higgs we see that while the mixing effects are not as large, for the cases
at hand they always lead to a reduction in the coupling strengths in comparison with MSSM
expectations.

For the light Higgs,h, it is particularly important to examine the variations in the cou-
plings to thegg andγγ final state since these control the dominant signal rate at the LHC; these
are shown in the next set of figures. While the couplings ofh to quarks and massive vector
bosons was generally reduced via mixing, we see here that theloop-induced processes can be
either enhanced or suppressed depending upon the region of parameter space we happen to be
sitting in. The shift in the couplings ofH, r to gg andγγ will be presented elsewhere.

4. CONCLUSIONS

We have begun a preliminary examination of the effects of mixing between the radion and
the two CP even Higgs fields present in the two-doublet-model. As a result of this mixing
the masses and couplings of all of these fields are found to be substantially modified from the
expectations of the MSSM. Further analysis into the detailsof these mixing effects and the
corresponding shifts in the various particle widths is on-going.



77

Figure 2: Typical shifts in light Higgs(top), heavy Higgs(middle) and radion(bottom) masses due to mixing for

different values of the model parameters. Figures in a givencolumn are case correlated.
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Figure 3: Typical shifts in light Higgs(top), heavy Higgs(middle) and radion(bottom) couplings tobb̄(left) and

tt̄(right) due to mixing for different values of the model parameters. Figures are correlated in a given column.
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Figure 4: Shifts ingg(top) andγγ(bottom) couplings of theh due to mixing. Figures in a given column are

correlated.
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Part XV

Search For The Radion Decayφ→ hh
With γγ+bb̄, ττ+bb̄ And bb̄+bb̄ Final
States In CMS
D. Dominici, G. Dewhirst, S. Gennai, L. Fanò, A. Nikitenko

1. INTRODUCTION

The Randall Sundrum model (RS) [132, 145] has recently received much attention because
it could provide a solution to the hierarchy problem, by means of an exponential factor in a
five dimensional non-factorizable metric. In the simplest version the RS model is based on
a five dimensional universe with two four dimensional hypersurfaces (branes), located at the
boundary of the fifth coordinatey. By placing all the Standard Model fields on the visible brane
at y = 1/2 all the mass terms, which are of the order of the Planck mass, are rescaled by the
exponential factor, to a scale of the order of a TeV. The fluctuations in the metric in the fifth
dimension are described in terms of a scalar field, the radionwhich in general mixes with the
Higgs. This scalar sector of the RS model is parametrized in terms of a dimensionless parameter
ξ, of the Higgs and radion massesmh, mφ and the vacuum expectation value of the radion
field Λφ. The phenomenology of the Higgs and radion at LHC has been theobject of several
studies [136, 146, 138, 139, 147, 148] concentrating mainlyon Higgs and radion production.
In general the Higgs and radion detection is not guaranteed in all the parameter space region.
The presence in the Higgs radion sector of trilinear terms opens up the important possibility
of φ → hh decay andh → φφ. For example formh = 120 GeV/c2, Λφ = 5 TeV and
mφ ∼ 250 − 350 GeV/c2 theBR(φ → hh) ∼ 0.2 − 0.3. In this paper we estimate the CMS
discovery potential for the radion (φ) in two Higgs decay mode (φ → hh) with γγ+bb̄, ττ+bb̄
andbb̄+bb̄ final states.

2. ANALYSIS

One point ofmφ=300 GeV/c2 andmh=125 GeV/c2 was taken and the observability in the (ξ,
Λφ) plane was evaluated. Signal events were simulated with thePYTHIA [149] MSSM gg →
H → hh process when values ofmH andmh were set to 300 and 125 GeV/c2. ΓH was set to∼
1 GeV/c2, thus the variation of the radion width in the (ξ, Λφ) plane was neglected. However,
the effect of changing of the radion width will be not visibledue to the fact thatΓφ is small in
comparison with the detector resolution when the radion mass is reconstructed.

2.1 γγbb̄ final state

Signal events were processed with the full detector simulation and reconstruction. Events were
required to pass the Level-1 and High Level Trigger (HLT) selections for the di-photon stream
[150, 151] with HLT thresholds on photons of 40 and 25 GeV/c. Photons were required to
be isolated with the tracker and the electromagnetic calorimeter. The two highestET jets of
ET > 30 GeV and|η| <2.4 were reconstructed with the calorimeter and were taken as b-jet
candidates fromh → bb̄ decay. At least one of these two jets has to be tagged as a b jet.The
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efficiency of single b tagging is 0.61 per event. Further selections require the di-jet mass,Mbj,
to be in the windowmh± 30 GeV/c2 (efficiency 65 %) and the di-photon mass,Mγγ , to be in the
windowmh± 2 GeV/c2 (efficiency 78 %). Finaly, theMγγbj mass should be in the window of
mφ± 50 GeV/c2 (efficiency 95 %). Figure 1 showsMbj andMγγbj distributions with arbitrary
normalization after selections. The signal efficiency of the whole selection chain is 3.7 %. For
Λφ = 1 TeV andξ = 0 the expected number of signal events with 30 fb−1 is 41 (withσ(gg → φ)
= 40.8 pb, Br(φ→ hh) = 0.33, Br(h → bb̄) = 0.61, Br(h → γγ) = 0.00225).
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Figure 1: Reconstructed b j (left) andγγbj mass for the signal.

Irreducible di-photon backgrounds were generated with CompHEP [14] for theγγjj (j=u,d,s,g)
process and with MadGraph [152, 153] for theγγcc̄ andγγbb̄ processes with the factorization
and the renormalization scales set toMZ and CTEQ5L PDF. The generator level preselections
arepγT,max (min) >35 (20) GeV/c, pj

T >20 GeV/c, |η| <2.5,∆Rγγ >0.3,∆Rγj >0.3,∆Rjj >0.3.
Cross sections are shown in Table 1. PYTHIA was used for the hadronization. Initial and final
state radiation in PYTHIA (ISR, FSR) were switched on. A fastdetector simulation with the
realistic resolution of the photon and jet energies and track momentum was used. The track
reconstruction efficiency of 0.9 was taken into account in the tracker isolation criteria. The
efficiency of b tagging, 0.5, for b jets and the mistagging probability of 0.01 (0.1) for u,d,s,g
(c) jets were used. These numbers correspond to what was obtained with the full detector
simulation [154] using the impact parameter tagging method. The efficiency of the selections
and the expected number of the background events with 30 fb−1 after all selections including b
tagging are shown in Table 1. Statistical errors on the expected number of events are also shown.
The number of background events was then multiplied by 0.92 and by 0.90 to take into account
of the Level-1 e/γ trigger and the calorimeter isolation efficiencies which were not taken into
account in the fast simulation. These efficiencies were obtained from a full simulation of the
signal events.
The CMS discovery reach was obtained in the (ξ, Λφ) plane. Figure 2 (left plot) shows the 5
σ discovery contour in the the (ξ, Λφ) plane when the irreducible background only (6.9 events
with 30 fb−1) was taken into account. Theoretically excluded regions are also shown in the
plot. Dashed line contours present the discovery reaches when the irreducible background cross
sections were calculated for the renormalization and factorization scales set to 0.5×µ0 and to
2×µ0, whereµ0 = MZ. The background cross section uncertainty due to the scale variation
found to be of≃ 40 % forγγbb̄. It was guessed that the cross section variation forγγcc̄ and
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Table 1: Background cross sections, efficiency, number of events with 30 fb−1 after all selections including b

tagging.
γγjj γγcc̄ γγbb̄

cross-section, fb 13310 778 76

selections efficiency
E
γ1,2

T > 40, 25 GeV,|η| < 2.5 0.446 0.466 0.487
tracker isolation in cone 0.3 0.328 0.345 0.379
two jetsET > 30 GeV,|η| <2.4 0.127 0.125 0.133
Mγγ window 4 GeV/c2 0.00278 0.00263 0.00410
Mjj window 60 GeV/c2 0.00086 0.00096 0.00144
Mγγjj window 100 GeV/c2 0.00045 0.00061 0.00123

N events after all selections including b tagging4.2± 0.8 2.0± 0.6 2.0± 0.6

γγjj production may be only slightly different, thus 40 % variation was applied to the cross
sections ofγγcc̄ andγγjj processes as well.
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Figure 2: 5σ discovery contours forφ → hh → γγ+bb̄ channel (mφ=300 GeV/c2, mh=125 GeV/c2); Left plot :

with the irreducible background only; Right plot : with the total background assuming the ratio of the reducible to

the total background of 0.4. Dashed line contours present the discovery reaches when the irreducible background

cross sections were calculated for the renormalization andfactorization scales set to 0.5×µ0 and to 2×µ0 where

µ0 = MZ.

Reducible backgrounds fromγ + three jets and four-jet processes still have to be evaluated. It is
expected from the inclusiveh → γγ studies that the reducible background will be about of 40 %
of the total background, thus the total background is expected to be of 11.5 events with 30 fb−1.
Figure 2 (right plot) shows the 5σ discovery contours in the the (ξ, Λφ) plane with the total
background taken into account. The experimental systematics uncertainty of the background
estimated as≃ 5 % hardly affects the discovery reach due to the signal to background ratio in
the 5σ region of the (ξ, Λφ) plane is bigger than two.
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2.2 ττbb final state

The signature when oneτ lepton decays leptonically and anotherτ lepton decays hadronically
(producing aτ jet) was considered. The highest signal cross section timesthe branching ratios
of 0.96 pb was obtained forξ = −0.35 andΛφ = 1 TeV. The background processes considered
in the analysis are shown in Table 2 with the NLO cross sections taken from [155, 156, 157].
Background Z+jets (W+jets) were generated withp̂T > 20 (80) GeV/c. Signal events were pro-

Table 2: Trigger and total efficiency for the signal and the backgrounds; expected number of events with 30 fb−1.

efficiency (%) number of
samples σ ×BR (pb) trigger trigger + off-line events
φ→ ττbb 0.96 6 ± 0.2 0.35±0.06 102
tt → l + ν + jets + bb 180 0.57± 0.02 (1.6±0.2)×10−3 111
tt → l + ν + τ jet + bb 15 3.1± 0.2 (7.7± 0.3)×10−3 66
Zbb → ττ + bb 5.4 1.4± 0.2 0.009±0.003 21
Z + jets → ττ + jets 306 0.35± 0.02 (3.3± 0.5)×10−4 36
W + jets → l + ν + jets 175 0.039± 0.002 0 0

cessed with the full detector simulation and reconstruction, while the background was processed
with the fast detector simulation package CMSJET [158]. Thecombined electron(muon)-plus-τ
jet trigger [151] was used in this analysis. The Level-1 trigger threshold is 21 GeV for electrons
and 45 GeV for theτ jet. The inclusive muon threshold is low enough (14 GeV/c) to allow
a good efficiency however, to increase the background rejection a τ jet with ET >35 GeV is
required at the Level-1 trigger. The trigger efficiency is shown in Table 2 for the signal and
background samples. Missing transverse momentum and b tagging were used to reconstructτ
leptons and to identifyb jets coming from the two Higgs bosons. In order to increase the signal
statistics it was necessary to tag at least one jet. The off-line selections are the following:

– ∆φ between lepton andτ jet direction>0.1;
– ET of theb-tagged jets>30 GeV, andET of the most energetic jet> 55 GeV;
– transverse mass of the lepton and missing momentum< 35 GeV/c2;
– 75< Mττ <165 GeV/c2, 100< Mbj <150 GeV/c2, 265< Mττbj < 350 GeV/c2.

Table 2 shows the signal and the background efficiencies for the off-line selections and the
number of the expected events with 30 fb−1. Figure 3 shows the reconstructedττbb mass after
all selections (left plot). The total number of the background events after all selections is 234
with 30 fb−1. The biggest background istt̄ (177 events) while theW + jets background is
negligible. Estimating also the contribution oftt̄ when both W bosons decay intoτ the total
number of background events increases up to 254. For the maximal signal cross section of
0.96 pb, (ξ= −0.35 andΛφ = 1 TeV) about 102 signal events are expected. Signal significance
(S/

√
B) at this point is 6.4. Figure 3 (right plot) shows a 5σ discovery contour in the (ξ,

Λφ) plane.The two contours correspond to the uncertainties ofthe background cross section
values at NLO due to the scale variation and different PDFs [155, 156, 157]. The experimental
systematics uncertainty of 3 % for the total background was taken into account.
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2.3 bb̄bb̄ final state

The signal cross section times branching ratios for thegg → φ → hh → bb̄bb̄ process is
10.3 pb forΛφ = 1 TeV andξ = − 0.35 The main QCD multi-jet background was generated by
PYTHIA in different p̂T bins. Other backgrounds considered arett̄, tt̄jj andZbb̄. In Table 3
cross sections and expected numbers of events with 30 fb−1 are summarized. A rejection factor

Table 3: Signal and background events with 30fb−1.
cross section events in 30 fb−1

Signal 10.3 pb 3.1 × 105

QCDp̂T(30−170) 0.2257 mb 6.79 × 1012

tt̄ 615 pb 1.8 × 107

tt̄jj 507 pb 1.5 × 107

Zbb̄ 349 pb 1.0 × 107

on background higher than106 is needed to reach a 5σ statistical evidence of the signal. A fast
detector simulation with the CMSJET package [158] was used for both signal and background
samples. Dedicated trigger selections were developed to keep the QCD multi-jet background
rate at the acceptable level whilst maintaining a high efficiency for the signal. At Level-1
multi-jet triggers were used with the thresholds taken fromTable 15-13 presented in [151] and
restricted in pseudorapidity,|η| <0.8. At the High Level Trigger at least 4 jets were required
within the restricted pseudorapidity range,|η| <0.8. Two jets must be b-tagged with the impact
parameter tagging method (2 associated tracks with significance on the transverse impact pa-
rameter> 2). The output QCD rate after these selections is∼ 5 Hz. In off-line selections all
possible di-jet invariant masses were calculated from the 4highestET jets. The two jet pairs
were chosen minimizing the value ofmi,j-mk,l, the same jets were then used to reconstruct the
radion mass. The mean values (andσfit) of the di-jet and four-jet effective masses reconstructed
in this way are: 120 (39) GeV/c2 and 313 (76) GeV/c2. A 1.5σ window in mass aroundmh and
mφ was used to select signal and background events. Efficiencies for the signal, background
and the expected number of events with 30 fb−1 are summarized in Table 4. The di-jet and
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Table 4: Trigger and total selection efficiency and expectednumber of events with 30 fb−1

ǫtrigger ǫtotal events

signal 0.038 0.031 9.57.103

QCD p̂T(80 − 120) 1.10−5 7.10−6 7.5.105

QCD p̂T(120 − 170) 1.10−4 6.6.10−5 1.1.106

tt̄ 0.015 0.010 1.84.105

tt̄jj 0.056 0.026 1.8.105

Zbb̄ → 4b 0.002 8.10−4 1.2.103

four-jet invariant mass for the background and the signal atΛφ = 1 TeV andξ = −0.35 point are
shown respectively in the left and the right plots of Figure 4. For this point it may be possible
to achieve a signal significance (S/

√
B) of 5.5 if the background shape of the four-jet mass

distribution is well understood (with∼ 0.1% uncertainty).
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Figure 4: Reconstructed di-jet (left) and four-jet mass (right) for signal and background.

3. CONCLUSION

We estimated the CMS discovery potential for the radion intotwo Higgs decay mode (φ→ hh)
with γγ+bb̄, ττ+bb̄ andbb̄+bb̄ final states. One point ofmφ=300 GeV/c2 andmh=125 GeV/c2

was taken and the observability in the (ξ, Λφ) plane was evaluated. It was found that theγγ+bb̄
topology provides the best discovery potential. Thebb̄+bb̄ final state requires the dedicated
High Level Trigger with the double b tagging and an excellentunderstanding of the background
shape.
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Part XVI

The Invisible Higgs Decay Width In The
ADD Model At The LHC
M. Battaglia, D. Dominici, J.F. Gunion and J.D. Wells

Abstract
Assuming flat universal extra dimensions, we demonstrate that for a
light Higgs boson the processpp→W ∗W ∗+X → Higgs, graviscalars+
X → invisible +X will be observable at the5 σ level at the LHC over
the portion of the Higgs-graviscalar mixing (ξ) and effective Planck
mass (MD) parameter space where channels relying on visible Higgs
decays fail to achieve a5 σ signal. Further, we show that even for very
modest values ofξ the invisible decay signal probes to higherMD than
does the (ξ-independent) jets/γ + missing energy signal from graviton
radiation. We also discuss various effects, such as Higgs decay to two
graviscalars, that could become important whenmh/MD is of order 1.

1. INTRODUCTION

In several extensions of the Standard Model (SM) there existmechanisms that modify the Higgs
production/decay rates in channels that are observable at the LHC. One example is the Randall
Sundrum model where the Higgs-radion mixing not only gives detectable reductions (or en-
hancements) in Higgs yields, but also allows the possibility of direct observation of radion
production and decay [139, 147]. It is also possible for the Higgs rate in visible channels to be
reduced as a result of a substantial invisible width. For example, this occurs in supersymmetric
models when the Higgs has a large branching ratio into the lightest gravitinos or neutralinos.
Invisible decay of the Higgs is also predicted in models withlarge extra dimensions felt by
gravity (ADD) [159, 160]. In ADD models the presence of an interaction between the Higgs
H and the Ricci scalar curvature of the induced 4-dimensionalmetricgind, generates, after the
usual shiftH = (v+h√

2
, 0), the following mixing term [136]

Lmix = ǫh
∑

~n>0

s~n (1)

with

ǫ = −2
√

2

MP
ξvm2

h

√

3(δ − 1)

δ + 2
. (2)

Above,MP = (8πGN)−1/2 is the Planck mass,δ is the number of extra dimensions,ξ is a
dimensionless parameter ands~n is a graviscalar KK excitation with massm2

~n = 4π2~n2/L2, L
being the size of each of the extra dimensions. (Note that with respect to [136] our normalization
is such that we have taken only the real part of theφ~nG fields, writingφ~nG = 1√

2
(s~n + ia~n) and

usingφ~nG = [φ−~n
G ]∗ to restrict sums to~n > 0, by which we mean that the first non-zero entry of

~n is positive.) After diagonalization of the full mass-squared matrix one finds that the physical
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eigenstate,h′, acquires admixtures of the graviscalar states and vice versa. DroppingO(ǫ2)
terms and higher,

h′ ∼
[

h−
∑

~m>0

ǫ

m2
h − imhΓh −m2

~m

s~m

]

, s′~m ∼
[

s~m +
ǫ

m2
h − imhΓh −m2

~m

h

]

. (3)

In computing a process such asWW → h′ +
∑

~m>0 s
′
~m → F , normalization and admixture

corrections of orderǫ2 that are present must be taken into account and the full coherent sum
over physical states must be performed. The result at the amplitude level is

A(WW → F )(p2) ∼ gWWhghF
p2 −m2

h + imhΓh + iG(p2) + F (p2)
(4)

whereF (p2) ≡ −ǫ2Re
[
∑

~m>0
1

p2−m2
~m

]

andG(p2) ≡ −ǫ2Im
[
∑

~m>0
1

p2−m2
~m

]

. Taking the am-

plitude squared and integrating overdp2 in the narrow width approximation gives the result

σ(WW → h′+
∑

~m>0

s′~m → F ) = σSM(WW → h→ F )

[
1

1 + F ′(m2
h ren)

] [
Γh

Γh + Γh→graviscalar

]

(5)
wherem2

h ren − m2
h + F (m2

h ren) = 0 and we have definedmhΓh→graviscalar ≡ G(m2
h ren). We

will argue that for a light Higgs boson both the wave functionrenormalization and the mass
renormalization effects will be small. In this case, the coherently summed amplitude gives the
Standard Model cross section suppressed by the ratio of the SM Higgs width to the sum of the
SM Higgs width and the Higgs width arising from mixing with the graviscalars.

2. INVISIBLE WIDTH

As described, there is a decay of the Higgs arising from the mixing (or oscillation) of the
Higgs itself into the closest KK graviscalar levels. These graviscalars are invisible since they
are weakly interacting and mainly reside in the extra dimensions whereas the Higgs resides
on the brane. The mixing widthΓh→graviscalar ∼ G(m2

h)/mh thus corresponds to an invisible
decay width. The equation forG(m2

h) below eq. (4) shows that it is calculated by extracting the
imaginary part of the mixing contribution to the Higgs self energy. The result is [136,161]

Γ(h→ graviscalar) ≡ Γ(h→
∑

~n>0

s~n) = 2πξ2v23(δ − 1)

δ + 2

m1+δ
h

M2+δ
D

Sδ−1

∼ (16 MeV)20δ−2ξ2Sδ−1
3(δ − 1)

δ + 2

( mh

150 GeV

)1+δ
(

3 TeV

MD

)2+δ

(6)

whereSδ−1 = 2πδ/2/Γ(δ/2) denotes the surface of a unit radius sphere inδ dimensions while
MD is related to theD dimensional reduced Planck constantMD by MD = (2π)δ/(2+δ)MD.
Our eqs. (6) are a factor of 2 larger than those presented in refs. [136,161].

2.1 The wave function renormalization factor and mass renormalization

A simple estimate of the quantityF ′(m2
h ren), appearing in the wave function renormalization

factor found in eq. (5), suggests that it is of orderξ2m
4
h

Λ4 , whereΛ is an unknown ultraviolet cutoff
energy presumably of orderΛ ∼ MD [162]. Assuming this to be the case,F ′ will provide a
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correction to coherently computed LHC production cross sections that is very probably quite
small for themh ≪ MD cases that we are about to explore. However, one must keep in
mind that a precise calculation ofF ′ is not possible. Similarly, the mass renormalization from
F (m2

h ren) should be of orderξ2m6
h/M

4
D and, therefore, small formh ≪ MD. There are other

incomputable sources ofv4/M4
D corrections lurking in the theory beyond these sources, andthe

results presented here are computed using the first, and perhaps only, calculable terms in the
perturbation series.

2.2 Contribution to the invisible width from direct two grav iscalar decay

In addition to decay by mixing, one expects also a contribution to the invisible width of the
Higgs from its decays into two graviscalars. This can be evaluated by using the transformation
of eq. (3) between the physical eigenstateh′ and the unmixedh to derive the relevant trilin-
earh′sksl vertices. These are used to compute the corresponding matrix element. The final
expression forΓ(h′ → graviscalar pairs) can be written as

Γ(h′ → graviscalar pairs) =
18

π

m3+2δ
h v2

M4+2δ
D

ξ4

(
δ − 1

δ + 2

)2 [
πδ/2

Γ(δ/2)

]2

I , (7)

whereI is an integral coming from the sum over all the possible kinematically allowedh′ →
sksl decays. The integralI decreases rapidly asδ increases. As a result,Γ(h′ → graviscalar pairs)
is only significant compared withΓ(h → graviscalar) if δ ≤ 4. The ratio of the two widths is
given by:

Γ(h′ → graviscalar pairs)

Γ(h→ graviscalar)
=

3(δ − 1)

2π2(δ + 2)
ξ2

(
mh

MD

)2+δ
πδ/2

Γ(δ/2)
I . (8)

From this result, we immediately see that even for smallδ the pair invisible width will be smaller
than the mixing invisible width unlessmh is comparable toMD.

To lowest order inξ2(mh/MD)2+δ, decays of other states nearly degenerate with theh′

can be neglected in the computation of a cross section obtained by coherently summing over
theh′ and the nearly degenerates′~m states. Thus, to this same order of approximation,Γ(h′ →
graviscalar pairs) should simply be added toΓ(h → graviscalar) in the expression for the
narrow-width cross section of eq. (5).

In Figure 1, we show an extreme case corresponding toδ = 2 andmh = 1000 GeV.
Depending on the values of the parametersξ andMD, the pair invisible width can be a signif-
icant correction to the invisible width from direct mixing.More generally, formh > MD the
graviscalar-pair invisible width can provide a 3% to 20% correction to the direct-graviscalar-
mixing invisible width. However, ifmh is substantially smaller thanMD, then the graviscalar
pair width is not important. For example, forδ = 2, mh = 120 GeV andMD = 500 GeV,
Γ(h′ → graviscalar pairs)/Γ(h → graviscalar) < 0.0015 for ξ < 2. Therefore, in the follow-
ing analysis, where we will assume a light Higgs, we can safely neglect the contribution to the
invisible width from the decay into two graviscalars and usethe expression given by eq. (6).

3. MEASUREMENTS AT THE LHC

For a Higgs boson withmh below theWW threshold, the invisible width causes a significant
suppression of the LHC Higgs rate in the standard visible channels. For example, forMD =
500 GeV andmh = 120 GeV, Γ(h→ graviscalar) is of order25 GeV already byξ ∼ 1, i.e. far
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Figure 1: In the left-hand plot, we display the total invisible width of a 1 TeV Higgs boson into one and two

graviscalars as a function ofMD for various values ofξ (ξ = 1 solid, ξ = 2 dashed,ξ = 3 dotted). For these

plots we have fixedδ = 2. The plot on the right shows the ratio of the two-graviscalars decay width to the

one-graviscalar decay width for the same choices of parameters.

larger than the SM prediction of3.6 MeV. Even whenmh is greater than theWW threshold,
Figure 1 shows that the partial width into invisible states can be substantial even forMD values
of several TeV; therefore, for any given value of the Higgs boson mass, there is a considerable
parameter space where the invisible decay width of the Higgsboson could be the first measured
phenomenological effect from extra dimensions.

Detailed studies of the Higgs boson signal significance, with inclusive production, have
been carried out by the ATLAS [79] and CMS [163] experiments.If 115 GeV< mh <
130 GeV, theh → γγ channel appears to be instrumental for obtaining a≥ 5σ signal at low
luminosity. Thett̄h, h → bb̄ andh → ZZ∗ → 4 ℓ channels also contribute, with lower statis-
tics but a more favorable signal-to-background ratio. Preliminary results indicate that Higgs
boson production in association with forward jets may also be considered as a discovery mode.
However, here the background reduction strongly relies on the detailed detector response.

In the ADD model, these results are modified by the appearanceof an invisible de-
cay width suppressing the Higgs signal in the standard visible channels. Here, we fixmh =
120 GeV and perform a full scan of the ADD parameter space by varyingMD andξ for differ-
ent values of the number of extra dimensionsδ and demonstrate that there are regions at high
ξ where the significance of the Higgs boson signal in the canonical channels drops below the
5 σ threshold. However, the LHC experiments will also be sensitive to an invisibly decaying
Higgs boson throughWW -fusion production, with tagged forward jets. A detailed CMS study
has shown that, with only 10 fb−1, an invisible channel rate ofΓinv/Γ=0.12-0.20 times the
SM WW →Higgs production rate gives a signal exceeding the 5σ significance for 120 GeV
< mh < 400 GeV [164, 163]. Given that the effective (from the sum over the h state and
nearby degenerate states)WWh coupling is of SM strength, this defines the region in the ADD
parameter space where the Higgs boson signal can be recovered through its invisible decay .

Figure 2 summarizes the results for specific choices of parameters. In the green (light
grey) region, the Higgs signal in standard channels drops below the 5σ threshold with 30 fb−1

of LHC data. But in the area above the bold blue line the LHC search for invisible decays in the
fusion channel yields a signal with an estimated significance exceeding 5σ. It is important to
observe that, whenever the Higgs boson sensitivity is lost due to the suppression of the canonical
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decay modes, the invisible rate is large enough to still ensure detection through a dedicated
analysis.

Figure 2: Invisible decay width effects in theξ - MD plane forMH = 120 GeV. The green (grey) regions indicate

where the Higgs signal at the LHC drops below the 5σ threshold for 30 fb−1 of data. The regions above the blue

(bold) line are the parts of the parameter space where the invisible Higgs signal in theWW -fusion channel exceeds

5 σ significance. The vertical lines show the upper limit onMD which can be probed by the analysis of jets/γ with

missing energy at the LHC. The plots are for different valuesof δ: 2 (upper left), 3 (upper right) 4 (lower left), 5

(lower right).

The analysis of jet/γ+ missing energy is also sensitive to the ADD model over a rangeof
theMD andδ parameters [165]. The invisible Higgs decay width appears to probe a parameter
space up to, and beyond, that accessible to these signatures(see Figure 2). Further, the sen-
sitivity of these channels decreases significantly faster with δ than that of the invisible Higgs
width if ξ ∼ 1. Finally, it is interesting that, in the region where both signatures can be probed
at the LHC, a combined analysis will provide a constraint on the fundamental theory param-
eters. A TeV-classe+e− linear collider will be able to further improve the determination of
the Higgs invisible width. Extracting the branching fraction into invisible final states from the
Higgsstrahlung cross section and the sum of visible decay modes affords an accuracy of order
0.2-0.03% for values of the invisible branching fraction inthe range 0.1-0.5. But the ultimate
accuracy can be obtained with a dedicated analysis looking for an invisible system recoiling
against aZ boson in thee+e− → hZ process. A dedicated analysis has shown that an accuracy
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0.04 < δBR/BR < 0.025 can be obtained for0.1 < BR < 0.5 [166]. This accuracy would
establish an independent constraint on theMD, ξ andδ parameters.
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Part XVII

Determining the extra-dimensional
location of the Higgs boson
A. Aranda, C. Baĺazs, J. L. D́ıaz-Cruz S. Gascon-Shotkin and O. Ravat

Abstract
In the context of a TeV−1 size extra dimensional model, we consider
the lightest Higgs boson as an admixture of brane and bulk scalar fields.
We find that at the Tevatron Run 2 or at the LC the Higgs signal is
suppressed. Meanwhile, at the LHC or at CLIC one might find highly
enhanced production rates. This will enable the latter experiments to
distinguish between the extra dimensional and the SM forMc up to
about 6 TeV and perhaps determine the extra-dimensional location of
the lightest Higgs boson.

1. INTRODUCTION

Extra dimensional models have been used recently to addressa wide class of problems in par-
ticle physics, such as the hierarchy, unification and flavor problems [159,160,167,168]. In this
work, we examine a TeV−1 size extra dimensional model, in which the lightest Higgs boson
emerges as an admixture of brane and bulk scalar fields. This model predicts a suppression
of the Higgs production cross section at LEP and the Tevatron, while it promises a significant
enhancement of the signal at the CERN Large Hadron Collider (LHC) and possibly at a multi
TeV linear collider (CLIC). We present results for the crosssection of the associated production
of Higgs with gauge bosons at the LC and LHC.

2. THE MODEL

In this section we present the general features of the extra dimensional model (for a detailed
description see [169]). We work with a five dimensional (5D) extension of the SM that contains
two Higgs doublets. The SM fermions and one Higgs doublet (Φu) live on a 4D boundary, the
brane, while the gauge bosons and the second Higgs doublet (Φd), are all allowed to propagate in
the bulk. The constraints from electroweak precision data [168] show that the compactification
scale can be ofO(TeV) (3-4 TeV at 95 % C.L.). The relevant terms of the 5DSU(2) × U(1)
gauge and Higgs Lagrangian are given by

L5 = −1

4
(F a

MN )2 − 1

4
(BMN)2 + |DMΦd|2 + |DµΦu|2δ(x5) , (1)

where the Lorentz indicesM andN run from0 to 4, andµ runs from0 to 3.

After spontaneous breaking of electroweak symmetry one obtains the following 4D La-
grangian:

L4 ⊃ gMZ

2cW
(h sin(β − α) +H cos(β − α))ZµZ

µ
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Figure 1: SM, THDM and XD cross sections fore+e− → Zh. Each plot corresponds to a different set of values

for α andβ all with mh = 120 GeV and with a compactification scaleMc = 4 TeV.

+
√

2
gMZ

cW
(h sin β cosα +H sin β sinα)

∞∑

n=1

Z(n)
µ Zµ

+ gMW (h sin(β − α) +H cos(β − α))W+
µ W

−µ

+
√

2gMW (h sin β cosα +H sin β sinα)
∞∑

n=1

(
W+
µ W

−(n)µ +W−
µ W

+(n)µ
)
. (2)

whereh andH are the CP-even Higgses (mh < mH), α is the mixing angle that appears in the
diagonalization of the CP-even mass matrix, andtanβ is the ratio of vevs.

3. HIGGS PRODUCTION AT FUTURE COLLIDERS

We present results for the associatedh + Z production cross section obtained from Eq.(2) at
linear colliders and at the LHC. Fig. 1 shows the results for thee+e− → hZ cross section.σSM
stands for the standard model cross section, THDM labels the(4D) two Higgs doublet model,
and the results from the extra dimensional model are denotedby XD. The three plots correspond
to three different choices of the parametersα andβ. It can be observed that the SM cross section
dominates in all cases up to

√
s ∼ 2 TeV. This is understood from the fact that the heavier KK

modes, through their propagators, interfere destructively with the SM amplitude thus reducing
the XD cross section. Moreover, as Fig. 1 shows, once the center of mass energy approaches
the threshold for the production of the first KK state, the cross section starts growing. For
instance, withMc = 4 TeV, σSM ≃ σXD for

√
s ≃ 2 TeV. However, one would need higher

energies in order to have a cross section larger than that of the SM, which may only be possible
at CLIC [170]. Based on this, we also conclude that at the Tevatron the luminosity required to
find a light Higgs boson is higher than in the SM case.

The Higgs discovery potential in this model is more promising at the LHC. We illustrate
this in Fig. 2, showing thepp→ hZ differential cross section as the function of thehZ invariant
massMhZ . The typical resonance structure displayed by Fig.1 is preserved by the hadronic
cross section. The resonance peak is well pronounced whenMhZ ∼ Mc. This leads to a
large enhancement over the SM (or THDM) cross section. The singularity atMc = MhZ is
regulated by the width of the KK mode, which is included in ourcalculation (cf. Ref. [169]).
Depending on the particular values ofα andβ the enhancement is more or less pronounced.
For an optimistic setα = 0 andβ = π/2, the XD production cross section is considerably
enhanced compared to the SM atMhZ = Mc. This enhancement may be detectable up to about
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Figure 2: Higgs production cross section in association with aZ boson at the LHC as a function of the compacti-

fication scale for selected values of the mixing parameters.

Mc = 6 TeV. We estimate that with 100 fb−1 for Mc = 6 TeV there are about 20hZ events in
the bins aroundMhZ ∼ Mc. As Fig. 2 shows, in the SM less than one event is expected in the
sameMhZ range. It is needless to say that similar results hold forpp → hW±, which further
enhances the discovery prospects.

Based on these results, we conclude that in the Bjorken process alone the reach of the
LHC may extend to aboutMc = 6 TeV, depending on the values ofα andβ. TheZh (orW±h)
production cross section determines only a specific combination of the mixing anglesα and
β. In order to determine the individual angles, one has to alsomeasure the production cross
sections of the heavier Higgs boson in association with aZ (or W±). Fortunately, these cross
sections are also enganced by the same amount as the ones for the lightest Higgs boson.

4. CONCLUSIONS

We presented Higgs production cross section calculations in the framework of an extra dimen-
sional model that releaves the tension between the low mass predictions for the SM Higgs and
the missing Higgs signal at LEP. We found a suppresson at the LC and at the Tevatron, but an
enhanced signal at the LHC or CLIC. The fact that the lightestHiggs boson is an admixture
of brane and bulk fields (that is it has a non-trivial bulk location) is the key ingredient in the
suppression-enhancement mechanism for the signal. This may enable the LHC and CLIC to
determine this location.
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Part XVIII

The sensitivity of the LHC for TeV scale
dimensions in dijet production
C. Baĺazs, M. Escalier, S. Ferrag, B. Laforge and G. Polesello

Abstract
In this work, we present results for dijet distributions at the LHC with
the assumption of a TeV size extra dimension. In our calculation, we
included the virtual effects of gluonic Kaluza-Klein stateexchanges,
as well as the modified running of the strong coupling constant (but
restricted our numerical study to the case of standardαS evolution).
Computing the transverse momentum distribution of dijets,we found
that the LHC is able to discover a single extra dimension up toMc ∼ 15
TeV.

1. Introduction

String theory is the most promising candidate for a unified framework of matter and interactions.
Among the predictions of string theory are extra, compact space dimensions (XDs) which,
depending on their sizesR, play a role in determining physics close to the weak scale. The
string arguments of Refs. [171,172] do not prevent the standard gauge bosons from penetrating
the bulk. If the compactification scaleMc = 1/R is higher thanO(TeV), phenomenology
and present experiments do not conflict with this scenario either [173, 174, 175, 176, 167, 177].
These new dimensions, on the other hand, may be probed at nearfuture particle accelerators, in
particular at the CERN Large Hadron Collider (LHC).

Since the LHC produces strongly interacting particles abundantly, if the gluons propagate
in XDs then dijet production at the LHC is a sensitive discovery channel for TeV scale XDs.
The main effect of these dimensions on the dijet production cross section is twofold. On the
one hand, the gluonic Kaluza-Klein (KK) excitations enhance the dijet distributions in the high
invariant mass (̂s) and transverse momentum (pT ) region [178]. On the other, the modified
evolution of the strong coupling (αS) further distorts these distributions [179]. These competing
effects are entangled and has to be taken into account simultaneously in order to predict the
discovery potential of the LHC.

In this work, we computed dijet distributions for the LHC including both of these ef-
fects. We assumed that the standard model (SM) gauge bosons,especially gluons, propagate
in a single TeV−1 size compact dimension. We implemented gluonic KK excitations and the
modified running ofαS in the Monte Carlo event generator PYTHIA [15], for dijets. Then, we
used PYTHIA to calculate dijetpT distributions, determined the enhancement at largepT , and
estimated the significance of a potential discovery.

2. Dijet production at the LHC

The formalism that we use is described in detail in Refs. [178] and [179]. When calculat-
ing the dijet production cross section, besides the SM ones,we include the tree-level diagrams
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shown in Fig. 1.15 In these diagramsg∗n signals that a KK tower of virtual gluons is exchanged.
This means that in the SM diagrams we replace the gluon propagators by

Deff (p) =

N∑

n=0

cnDn(p). (1)

Here

Dn(p) =
cn

p′2n + imnΓn
, (2)

is the propagator of thenth gluon KK resonance withp′2n = p2−m2
n, cn>0 = 2,mn = n/R,Γn =

2αsmn. The SM gluon is identified with the zero mode andc0 = 1.

When calculating the cross section, qiqi ! qiqi qiqj ! qiqj
g?nqi

qi
qi
qi g?nqi
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Figure 1: Feynman diagrams for dijet production involving

Kaluza-Klein excitations of the gluons. The indicesi andj

represent distinct (i 6= j) quark flavors.

it is necessary to evaluate amplitude squares
which will contain products of propaga-
tors of the form
1

2[D
⋆
eff (p)Deff (q) +Deff (p)D⋆

eff (q)] =

N∑

m,n=0

cmcn(p
′2
mq

′2
n +mmΓmmnΓn)

((p′2m)2 +m2
mΓ2

m)((q′2n )2 +m2
nΓ

2
n)

(3)

(We note that in Eq.(3), we corrected a
typo which is present in v.3 of hep-ph/0012259.)
As it was noted in Ref. [178] the sum in
Eq. (3) converges rapidly. We checked that
for the LHC (with

√

(S) = 14 TeV) and
for Mc > 1 TeV, choosingN = 50 (or
equivalently a cutoff scale ofMs > 50
TeV) leads to a satisfactory numerical pre-
cision. We implemented the effective prop-
agators given by Eq.(3) in PYTHIA, mod-
ifying the parton level processes represented
by Fig.(1). Finally, we checked the im-
plementation against the numerical results
given in Ref. [178] and found a good agree-
ment.

In our calculation, we also include the modified running ofαS, as described in Refs.
[167,177,179]. Above the compactification scale, we implemented the modified running ofαs
as given by

α−1
i (µ) = α−1

i (µ0) −
bi − b̃i

2π
ℓn
µ

µ0
− b̃i

4π

∫ rµ−2

0

rµ−2

dt

t

[

ϑ3

(
it

πR2

)]δ

, (4)

wherei = 1, 2, 3 labels the gauge groups of the SM. The coefficients of the usual one loop beta
functions

(b1, b2, b3) = (41/10,−19/6,−7) (5)
15We note that five-momentum conservation forbids internal gluonic KK excitations in any tree-level dijet dia-

grams involving external gluons, that is the KK excitationsdo not affect the processqq̄ → gg, for example.
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Figure 2: Left panel: number of dijet events vs. the dijetpT calculated in the SM and for various values ofMc.

Right panel: KK contribution to the cross section as the function of pTmin.

are supplemented by new contributions from the KK towers

(b̃1, b̃2, b̃3) = (3/5,−3,−6) + η (4, 4, 4) (6)

(where, for simplicity, we setη = 0). In the last term of Eq. (4),ϑ3 denotes the elliptic Jacobi
function and

r = π (Xδ)
−2/δ with Xδ =

2πδ/2

δΓ(δ/2)
. (7)

We note that in Refs. [167, 177] an approximate expression isused to calculate the running of
the couplings, but we implemented the exact formula (4) in PYTHIA.

3. Numerical results

Our goal is to quantify the sensitivity of the LHC to a TeV sizeXD. To this end, following
Ref. [178], we compute the dijet transverse momentum (pT ) distribution. As a first step, we
include 50 KK excitations of the gluons but keep the standardevolution ofαs. We use PYTHIA
version 6.210 with the modifications described in the previous section. On the final state, we
apply the following kinematic cuts:

pT > pTmin, |y| < 2.5, pTjet > 100 GeV (on each jet), (8)

wherey is the rapidity of the two jet system. In PYTHIA, we also turn the initial and final state
radiation (ISR and FSR) on.

The left panel of Fig. 2 shows the results as the number of dijet events against the dijetpT
assuming 100 fb−1 integrated luminosity. In this and in the subsequent computations we used
the CTEQ6L1 parton distribution function (PDF) with the dijet invariant mass as the factoriza-
tion scale. It is shown that there is a significant enhancement in the highpT for Mc = 8 TeV,
and there is still a detectable excess forMc = 15 TeV. The right panel of Fig. 2 shows the KK
contribution to the cross section

σKK = σtotal − σSM, (9)
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Figure 3: Statistical significance of the XD dijet signal in units ofσ.

as the function ofpTmin. Considering the difference in the PDF, slightly differentcuts and the
PYTHIA effects (ISR, FSR, etc.), our results still reasonably agree with Fig.3 of Ref. [178].

Finally, Fig. 3 shows the statistical significance

S = |NSM −NXD|/
√

NSM , (10)

of the XD dijet signal in units ofσ plotted against the dijetpT . HereNX is the number of events
predicted by modelX. This plots shows that by measuring the dijetpT distribution in the 1-3
TeV region the new dimension can be easily discovered even ifit is as small as 15 TeV−1.
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Part XIX

Z′ studies at the LHC: an update
M. Dittmar, A. Djouadi, A.-S. Nicollerat

1. INTRODUCTION

The LHC discovery potential for aZ ′ in the reactionpp → Z ′ → ℓ+ℓ− with ℓ = e, µ is well
known. As shown in previous studies, aZ ′ with a mass up to 5 TeV could be discovered at
the LHC with 100 fb−1. We make here a summary of the detailed work described in Ref.[180]
showing how, after aZ ′ signal has been detected at the LHC, one could identify it. Incontrast
to previous studies, where the models were either analyzed from a more theoretical point of
view or a particular model was analyzed within a certain experimental frame, we combine here
different experimental observables in order to investigate the realistic potential of the LHC
experiments to distinguish between models and determine their parameters. In this study, two
classes ofZ ′ models are considered:E6 models, parametrized withcos β and left–right (LR)
models, parametrized withαLR (see Ref. [181], that we will follow, for a theoretical account).

2. OBSERVABLES SENSITIVE TO Z ′ PROPERTIES

Future measurements ofZ ′ properties at the LHC can use the following observables:

The total decay width of theZ ′ which is obtained from a fit to the invariant mass dis-
tribution of the reconstructed dilepton system using a non–relativistic Breit–Wigner function:
a0/[(M

2
ℓℓ −M2

Z′)2 + a1] with a1 = Γ2
Z′M2

Z′.

TheZ ′ cross section times leptonic branching ratiowhich is calculated from the number
of reconstructed dilepton events lying within±3Γ around the observed peak.

The leptonic forward-backward asymmetryAℓFB, which is defined from the lepton angular
distribution with respect to the quark direction in the center of mass frame, as:

dσ

d cos θ∗
∝ 3

8
(1 + cos2 θ∗) + Aℓ

FB cos θ∗ (1)

AℓFB can be determined with an unbinned maximum likelihood fit to the cos θ∗ distribution.
Unfortunately, as the original quark direction in a proton-proton collider is not known,AℓFB
cannot be used directly. However, it can be extracted from the kinematics of the dilepton system,
as was shown in detail in [182]. The initial quark direction is assumed to be the boost direction
of the ℓℓ system with respect to the beam axis. The probability to assign the correct quark
direction increases for larger rapidities of the dilepton system. A purer, though smaller signal
sample, can thus be obtained by introducing a rapidity cut. For the following study we will
require|Yℓℓ| > 0.8.

TheZ ′ rapidity distribution: To complete theZ ′ analysis, one can obtain some informa-
tion about the fraction ofZ ′’s produced fromuū anddd̄ by analyzing theZ ′ rapidity distribution.
Assuming that theW± andZ rapidity distribution has been measured in detail, following the
ideas given in [183], relative parton distribution functions for u andd quarks as well as for
the corresponding sea quarks and antiquarks are well known.Thus, the rapidity spectra can be
calculated separately foruū anddd̄ as well as for sea quark anti-quark annihilation and for the
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mass region of interest to analyze theZ ′ rapidity distribution [184]. Using these distributions
a fit can be performed to theZ ′ rapidity distribution which allows to obtain the corresponding
fractions ofZ ′’s produced fromuū, dd̄ as well as for sea quark anti-quark annihilation. This
will thus reveal how theZ ′ couples to different quark flavors in a particular model.

3. DISTINCTION BETWEEN MODELS AND PARAMETER DETERMINATION

In the present analysis,PYTHIA events of the typepp→ γ, Z, Z ′ → ee, µµ were simulated at a
center of mass energy of 14 TeV, and for differentZ ′ models. These events were analyzed using
simple acceptance cuts following the design criteria ofATLAS andCMS. The SM background
relative to the signal cross section is found to be essentially negligible for the consideredZ ′

models. We thus reconfirm the knownZ ′ boson LHC discovery potential, to reach masses up
to about 5 TeV for a luminosity of 100 fb−1 [181].

Let us discuss how well one can distinguish experimentally the differentZ ′ models using
the observables as defined before:σ3Γ

ℓℓ × Γ, AℓFB as well asRuū as obtained from the rapidity
distribution. As a working hypothesis, a luminosity of 100 fb−1 and aZ ′ mass of 1.5 TeV will
be assumed in the following.

A precise knowledge of the cross section and the total width allows to make a first good
distinction between the different models as we will be discussed later. It is not obvious how
accurate cross sections can be measured and interpreted at the LHC. Following the procedure
outlined in [183], an accuracy of±1% could be assumed. It is however necessary to consider
the other observables.

Very distinct forward backward charge asymmetries are expected as a function of the
dilepton mass and for the differentZ ′ models, as shown in Figure 1a. One finds that additional
and complementary informations are also obtained fromAℓFB measured in the interference re-
gion. TheZ ′ rapidity distribution is also analyzed. Figure 1b shows theexpected rapidity
distribution for theZ ′

η model. A particularZ ′ rapidity distribution is fitted using a linear com-
bination of the three pure quark-antiquark rapidity distributions. The fit output gives theuū, dd̄
andsea quarks fraction in the sample. In order to demonstrate the analysis power of this method
we also show theZ ′

ψ rapidity distribution which has equal couplings touū anddd̄ quarks.

In a next step, assuming that a particular model has been selected, one would like to
know how well the parameter(s), likecosβ or αLR can be constrained. Figure 2 shows how
the previously defined observables vary as the model parameters are varied. In the case of the
E6 model for instance, one finds thatcosβ can not always be determined unambiguously. Very
similar results can be expected for different observables but using very different values forcosβ.
Obviously, the combination of the various measurements, helps to reduce some ambiguities.

If theZ ′ mass is increased, the number of events decreases drastically and the differences
between the models start to become covered within the statistical fluctuations. For the assumed
luminosity of 100 fb−1, one could still distinguish aZ ′

χ from aZ ′
LR over a large parameter range

and theAℓFB measurements provide some statistical significance up toMZ′ = 2 − 2.5 TeV. On
the contrary, aZ ′

η could be differentiated from aZ ′
ψ only up to aZ ′ mass of at most 2 TeV, as

in that case, the dependence ofAℓFB on theZ ′ mass is almost identical for the two models.

4. CONCLUSIONS

A realistic simulation of the study of the properties ofZ ′ bosons inE6 and LR models has been
performed for the LHC. We have shown that, in addition to theZ ′ production cross section times
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which determine the types ofqq̄ fractions. A simulation of the statistical errors, including random fluctuations of

theZ ′
η model and with errors corresponding to a luminosity of 100 fb−1 has been included in both plots.

total decay width, the measurement of the forward-backwardlepton charge asymmetry, both on
theZ ′ peak and in the interference region, provide complementaryinformation. We have also
shown that a fit of the rapidity distribution can provide a sensitivity to the Z ′ couplings to
up-type and down-type quarks. The combination of all these observables would allow us to
discriminate betweenZ ′ bosons of different models or classes of models for masses upto 2–2.5
TeV, if a luminosity of 100 fb−1 is collected.
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