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Abstract

The linearized Vlasov equation for longitudinal motion
of a bunched beam leads to a singular integral equation, the
singularity being associated with the tune spectrum of the
single–particle motion. A discretization for numerical so-
lution of the equation in this form is not well justified. A
simple change of the unknown function gives an equation
that can more readily be approximated by a matrix equa-
tion. In contrast to the usual approach (Oide–Yokoya ) the
equation for eigen–frequencies does not have a continuum
of solutions corresponding to single–particle frequencies,
but only a few solutions corresponding to coherent modes.

1 INTRODUCTION

The linearized Vlasov equation has long been consid-
ered the basic tool for determining the current threshold for
microwave instabilities. Here we treat longitudinal motion
only. A mode decomposition leads to an equivalent integral
equation, which can be completely analyzed in the case of
a coasting beam. For the bunched beam the modes are all
coupled, and there are still aspects of the problem that are
not very clear. Different forms of the integral equation have
been discussed, for instance by Sacherer [1], Wang and Pel-
legrini [2], and Oide and Yokoya [3].

The authors of Ref. [3] made an important advance when
they linearized the Vlasov equation about the proper equi-
librium distribution determined by Ha¨ıssinski’s equation.
They then transformed to action–angle coordinates of the
corresponding distorted potential well, and took Fourier
transforms in time and angle. The resulting integral equa-
tion is replaced by a finite–dimensional matrix equation,
by discretizing integrals on an action mesh, and truncat-
ing the azimuthal mode set. This scheme has been used to
find the current thresholds of instabilities by several authors
[4, 5, 6]. Some success in agreement of thresholds with
tracking studies has been reported, but some difficulties
have been noticed as well [4]. Convergence of the finite–
dimensional approximation is in doubt, and the presence of
incoherent mode frequencies, often degenerate with coher-
ent modes, confuses the physical interpretation of eigen-
vectors.

Our intention here is to improve the calculational strat-
egy by reformulating the Oide–Yokoya equation so as to
eliminate the continuous spectrum and also guarantee con-
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vergence under refinement of the action mesh and expan-
sion of the azimuthal mode set. We approached this prob-
lem from the viewpoint of functional analysis, after notic-
ing that the Oide–Yokoya integral equation is an integral
equation of the third kind, which does not admit direct ap-
proximation by a finite–dimensional problem. The usual
Fredholm equation of the second kind does admit a fi-
nite dimensional approximation, a property that stems from
compactness of the Fredholm integral operator [7].

One approach to approximation of a third–kind problem
is to transform it to a second–kind Fredholm problem. Such
a transformation was made by Bart and one of the authors
[8]. Recently we noticed a simpler approach, which is to
transform the equation so that the new integral operator is
compact, but not of standard Fredholm form. A compact
operator on a Banach space is one that takes any bounded
set into a relatively compact set. Roughly speaking, this
implies that it has a smoothing action on a set of functions
that are merely bounded, hence potentially noisy. We can-
not give mathematical details here, but it is easy to see the
value of our transformation in pedestrian terms: the dis-
cretized Oide–Yokoya operator has matrix elements that
become unbounded as the mesh is refined, whereas all ma-
trix elements from our transformed operator are bounded
under mesh refinement.

2 OIDE–YOKOYA INTEGRAL
EQUATION

The Vlasov equation for longitudinal motion in a linear
RF bucket is

∂f

∂θ
+ p

∂f

∂q
− (

q + F (q, f)
)∂f

∂p
= 0 . (1)

This governs the distributionf(q, p, θ) depending on the
normalized time and phase space variables

θ = ωst , q =
z

σz
, p = −E − E0

σE
,

ωsσz

c
=

ασE

E0
,

(2)
whereωs is the synchrotron frequency,z is the distance
from the synchronous particle (positive in front),σ z and
σE are rms spreads of a low–current bunch, andα is the
momentum compaction. The collective force is expressed
in terms of the wake functionW (positive for energy gain)
and a normalized current parameterI = e2N/(2πνsσE)
by

F (q, f) = I

∫
dq′W (q − q′)

∫
dpf(q′, p, θ) . (3)
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The bunch population isN and νs is the synchrotron
tune. When Fokker–Planck (FP) terms to account for syn-
chrotron radiation are added to the right side of (1), we get
an equation which has a unique equilibrium solution (un-
der restrictions on the current and properties of the wake),
which is also an equilibrium of the Vlasov equation. We
linearize (1) about that equilibrium, but do not include the
FP terms in the following analysis. The equilibrium has
the formf0(q, p) = exp(−p2/2)ρ0(q)/

√
2π whereρ0(q)

is the solution of the Ha¨ıssinski equation. The Hamiltonian
of the equilibrium motion, a functional off0, is

H0 =
1
2
(
p2 + q2

)
+ Hc(q, f0), (4)

whereHc is the collective part of the Hamiltonian,

Hc(q, f) = −
∫ ∞

q

F (q′, f)dq′ . (5)

Following [3], we perform a canonical transformation to
exact angle–action variables(φ, J) of the equilibrium mo-
tion. The transformation is written asq = Q(φ, J) , p =
P (φ, J). Defining the perturbationf1, we linearize (1)
aboutf0 as follows:

f(φ, J, θ) = f0(J) + f1(φ, J, θ) , (6)

∂f1

∂θ
+ Ω(J)

∂f1

∂φ
− f ′

0(J)
∂Hc(Q, f1)

∂φ
= 0 , (7)

Ω(J) = H ′
0(J) , (8)

f0(J) = Ae−H0(J) ∼ e−J , J → ∞ . (9)

We next perform a Laplace transform of (7) with respect to
θ, and a Fourier transform with respect toφ. The result is

(s + imΩ(J))f̂1(m, J, s) − f̌1(m, J, 0)

−f ′
0(J)

1
2π

∫ 2π

0

dφe−imφ ∂

∂φ
Hc(Q(φ, J), f1) = 0 ,

(10)

with f̂1 the double transform anďf1 the initial–value term,

f̂1(m, J, s) = 1
2π

∫ 2π

0
dφe−imφ

∫ ∞
0

dθe−sθf1(φ, J, θ) ,

f̌1(m, J, 0) = 1
2π

∫ 2π

0 e−imφdφf1(φ, J, 0).

The integral onφ is zero form = 0, from which it fol-
lows that the zero mode does not vary in time under the
linearized Vlasov dynamics. Consequently, there is no rea-
son to include a zero mode in studying growth of the per-
turbation. Hencefortĥf1(0, J, s) = 0 andm �= 0 in (10).

The forceF involves
∫

dq′dp′ · · ·, which we replace
by

∫
dφ′dJ ′ · · ·. In view of the symmetryQ(φ, J) =

Q(−φ, J) and the definitionQ1 = ∂Q/∂φ, Eq.(10) takes
the form (withm , m′ �= 0)

(ω − mΩ(J))f̂1(m, J, ω) − if̌(m, J, 0)

+
∑

m′

∫
dJ ′K(m, J, m′, J ′)f̂1(m′, J ′, ω) = 0 , (11)

K(m, J, m′, J ′) =

−If ′
0(J)
2π

∫
dφ sin mφ

∫
dφ′ cosm′φ′

·Q1(φ, J)W (Q(φ, J) − Q(φ′, J ′)) . (12)

For contact with Fourier analysis we have puts = −iω and
have writtenf̂1(·, ω) for the previousf̂1(·, s). The Laplace
transform is assumed to exist forRe s ≥ v0, hence for
Im ω ≥ v0. Eq.(11) is equivalent to the equation of Oide–
Yokoya , whenIm ω = 0. Unstable modes correspond to
poles off̂1 atω = u + iv , v > 0.

If ω is real and in the range ofmΩ(J), the equation is an
integral equation of the third kind [8], owing to a zero of the
factorω − mΩ(J). Such an equation may have solutions
in a space of generalized functions, with delta–function
and/or principal–value integral functionals concentrated at
the zero. The delta – PV functionals correspond to the van
Kampen modes [9]. In general the equation has no con-
tinuous solution. Thus, if we try a simple discretization
of the J–integration to create a matrix equation, we shall
be trying to represent a delta function numerically, which
is hardly a worthy ambition. One could takev positive to
get a regular integral equation, but at the smallv needed to
determine thresholds it would still have doubtful value for
numerical work because “near zeros” ofω−mΩ(J) would
still be felt.

3 REGULARIZED EQUATION

The transformation to regularize the equation is remark-
ably simple. We merely redefine the unknown function to
beg, with

g(m, J, ω) = eJ/2(ω − mΩ(J))f̂1(m, J, ω) . (13)

The exponential factor is inessential, being merely a conve-
nience to symmetrize the asymptotic behavior of the kernel
in J , J ′. Now the integral equation forg at realω is de-
fined in terms of the limit

g(m, J, u) − ieJ/2f̌(m, J, 0)

+ lim
v→0+

∑

m′

∫
dJ ′H(m, J, m′, J ′)g(m′, J ′, u)

u + iv − m′Ω(J ′)
= 0 ,

H(m, J, m′, J ′) = eJ/2K(m, J, m′, J ′)e−J′/2 . (14)

If H(m, J, m′, J ′)g(m′, J ′, u) has some minimal smooth-
ness as a function ofJ ′ (for instance, satisfies a H¨older
condition [10]), then the limit clearly exists ifΩ(J) has
locally linear behavior in a region near a pointJ∗ where
u − mΩ(J∗) = 0. By Plemelj’s theorem [10] (the usual
“ PV ± iπδ ” rule extended to functions that need not be
analytic) , the limit of the integral is then

P

∫
dJ ′H(m, J, m′, J ′)

g(m′, J ′, u)
u − m′Ω(J ′)

−πiH(m, J, m′, J∗)g(m′, J∗, u)
|m′|Ω′(J∗)

. (15)
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Figure 1: Wake function (V/pC) and distorted well

Now notice that (15) is smooth inJ , and falls off nicely
asm andJ go to infinity, given reasonable smoothness of
the wake function and minimal assumptions ong. This
is a point that we emphasize strongly, since it is the clue
to showing that the integral–sum operator of (14) is com-
pact on a suitable function space. It has an “improving” ef-
fect on the functions to which it is applied, regarding their
smoothness and asymptotic behavior.

4 NUMERICAL METHOD

For numerical computation we discretize the equation
for g(m, J, ω) on a mesh inJ , and truncate the sum on
m. We set up the discretization so that it is valid for
ω = u + iv , v ≥ 0. This gives a matrix1 + A applied to a
vector with componentsg(m, Ji, ω), theJi forming a mesh
corresponding to equally spaced values of

√
J i. Poles in

the upper halfω–plane, which may be arbitrarily close to
the real axis, are then found by looking for zeros of the
determinant of the linear system:

det(1 + A(ω, I)) = 0 . (16)

In contrast to the Oide–Yokoya method, we do not get a lin-
ear eigenvalue problem, but rather the nonlinear equation
(16) for finding coherent modes. Starting at low currentI
there will be no zero in the upper half–plane, and at a criti-
cal current a zero for the most unstable mode will cross the
real axis.

To discretize the integral in(14) we first change to
y =

√
J as the variable of integration, getting a Jacobian

that vanishes aty = 0. At ω/m′ such that the denominator
is never small, we apply Simpson’s rule. In the contrary
case we represent the numerator and denominator locally
as quadratic functions, obtained by interpolation of mesh
values, then carry out the local integral analytically. We
take care to keep the minimum of the denominator away
from the endpoints of the local integral, except for the inte-
gration neary = 0 in which case the small Jacobian cancels
the small divisor.

As an example we take Bane’s wakefield for the SLC
damping ring, and the corresponding distorted well, as
shown in Fig.(1). The single–particle frequencyΩ(J) is
shown for two currents in Fig.(2). The absolute value of
the determinant is plotted on a log scale in Fig.(3) as a
function ofu at v = 0.01, for a current ofI = 0.03 pC/V.
The downward fingers, representing incipient unstable co-
herent modes, ought to reach zero at various values ofI
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Figure 2:Ω at I=.03 (upper), I=.0828 (lower) pC/V
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Figure 3:| det(1 + A(u + iv, I)| vs. u

when we increaseI. It looks as though the frequency of
the quadrupole mode will be about1.82ωs, in agreement
with the value found in simulations and measurements. The
code is too new to allow confidence in the quantitative ac-
curacy of Fig.(3), but we anticipate that the qualitative pic-
ture will be similar after the code is refined and validated.
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