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An oscillator constrained to a plane that is transported along some surface will rotate by an angle
dependent only on the path and the surface, not on the speed at which it is transported. This is thus
an example of a geometric phase. We analyze this phase using the methods of parallel transport.
This concept plays a key role in General Relativity, but it can also be applied in classical mechanics.
The Foucault pendulum can be seen as an application of this analysis, where the surface is a sphere
and the curve is a line of constant latitude. In view of some considerable confusion and erroneous
treatments in the recent literature, we here present a rather simple way for visualizing the motion
of the Foucault pendulum using concepts that are based on Frenet’s formulae and the methods of

parallel displacement.

I. INTRODUCTION

Consider a surface such as a mountainous terrain on
the earth or moon. Suppose we drive a truck along this
terrain and on the back of that truck is some sort of oscil-
lator constrained to move in a plane. Suppose the truck
drives gently so that the oscillator is not jerked around
too much. Will there be a net effect on the oscillator as
the truck drives from point A to B? The answer is “yes”:
the oscillator will rotate by some angle dependent on the
surface and the path taken.

It is this angle which we derive in this paper. The
Foucault pendulum can be seen as an example of this
phenomenon. The bob of the pendulum is attached to
a base that is anchored to the earth. As the earth spins
around, the oscillating pendulum is transported along
a circle of constant latitude while the normal vector to
the plane rotates. The equivalent effect would occur if
the earth were perfectly spherical, not rotating, and we
were to drive the pendulum around the earth staying at
constant latitude.

By considering the classical Foucault pendulum from
this perspective of an oscillator being transported along
a surface, we geometrize it. That is, we separate the geo-
metrical properties from the dynamical properties. This
allows for visualization and makes the connection to the
concept of “parallel transport”. The confusion surround-
ing visualization of the pendulum’s motion is well ex-
pressed in Ref [1]. This reference also contains a geo-
metric model for the pendulum and an argument using
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differential geometry that the pendulum undergoes par-
allel transport. We want to follow a similar line, however
avoiding the use of the full technology of differential ge-
ometry with Christoffel symbols. Instead, we use the
more elementary and easilly visualizable concepts of cur-
vature and torsion of a curve by using the Frenet Formu-
lae. The advantage of our approach is that the rotation
of the Foucault pendulum, and the more general geomet-
ric phase of the transported oscillator can be related to
simple properties of the surface and curve. Our result is
that the rate of change of the rotation angle along the
curve df3/ds is given by ksin a where & is the curvature
of the curve and « is the angle between the normal vector
to the invariant plane and the vector normal to the curve
lying in the local “osculating plane”.

The argument given in this paper is motivated by arti-
cles in the American Journal of Physics [2] by M. Kugler,
and in Physical Review [3] by M. Kugler and S. Shtrik-
man. The authors derive an expression for the rotation
angle of the oscillator. They use equations which they re-
fer to as the “Frenet Formulae” involving torsion and cur-
vature. Allthough it may appear so, they do not actually
solve the problem we have set forth in this introduction.
Their result is that df/ds = 7. However, this is really a
dynamical result, not a geometrical one. 7 can be related
to the angular velocity of the plane in which the oscillator
lies (though this is not stated in their paper). That it is
not the torsion of a curve simply related to the transport
is easily seen. If either the curve of constant latitude on
the earth, or the curve traced out by the normal vector
to the plane are chosen, these curves have zero torsion
which incorrectly would imply no geometric phase. In
this paper, we correctly apply the Frenet Formulae to re-
late the geometric phase to the properties of the curve
and the surface. From this analysis, we give a simple way
of visualizing the rotation of the Foucault pendulum and
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the more general problem of the transported oscillator.

[6]

II. FRENET’S FORMULAE AND PARALLEL
TRANSPORT

To be more specific, let us consider a point particle
constrained to move in a two-dimensional plane. In this
plane, the particle moves under the influence of a cylin-
drically symmetric potential V' (r). Finally, let the plane
(plate) move on a different manifold, e.g., on a sphere
(see Fig. 1). This latter motion may be caused by an
external force.

X2

X1

FIG. 1: Dllustration of the plane S moving on a sphere along
a curve 7 touching at the point P. The dynamics of the Fou-
cault pendulum can be thought of as being that of a particle
constrained to this plane. r is the distance of the particle
from P.

The plate S touches the manifold at a point P and
traces out a curve . Associated with «y is an orthonormal
frame of unit vectors {t,n, b}, where t is tangent to the
curve, n is perpendicular to the curve, lying in the plane
that locally contains the curve, and b = t xn. This frame
satisfies the Frenet formulae of differential geometry [4]:

t = vkn
n = —vkt+urb, (1)
b = —vrn.

Here, x(t) corresponds to the curvature and 7(t) to the
torsion of the curve 7. v is the speed of the parametriza-
tion of the curve . The equations for a particle moving
on the plate, where the plate continuously changes its
orientation, are generally very complicated. Therefore it
will be our main goal, when dealing with the motion of
a particle, to introduce a local inertial frame; this will
greatly simplify our equations of motion. Incidentally,
in differential geometry one usually uses the arc length s
to parametrize the curve v and writes dis instead of %.
The relation between the two derivatives for our Frenet-

i r—dt _dtdt _ g1
vectors is, e.g., t' = = = o =t

If we want to describe motion in the plane S, the Frenet
frame{t, n, b} is not particularly convenient, because no
two unit vectors provide a basis for S. t lies in S, but
n and b do not. We thus define s to be a unit vector
perpendicular to S at P, and m = s x t. Then {t,m}
provides a basis for S. To better visualize our various
unit vectors we refer to Figures 2 and 3.

FIG. 3: Definition of angles a and § = a — 7.

A simple rotation about the t axis takes us from the
{t,m, s} system to the {t,n, b} system; see Fig. 4.

FIG. 4: Transformation of {m, s} system into {n, b} system.

The rotation of the basis vectors is simply given by

n

= cosan+sina b (2)

m = sinan-—cosa b.
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The inverse of this transformation reads

n = cosas+sinam (3)

b = sina s —cosa m.

These equations, together with (1), enable us to write for
the time derivatives:

t = (vk)sina m+ (vk)cosa s , (4)
m = —(vk)sina t+ (@ +ov7) s,
§ = —(vk)cosa t — (@+v7) m.

At this stage it is very convenient to introduce still an-
other transformation, namely from the {t,m;s} system
to a local inertial frame {u;, us;s}. Local inertial frames
are defined as frames where the basis vectors undergo
parallel transport. Parallel transport applied to an or-
thonormal set of vectors {u;, us} means that the change
in the vectors has no components along the direction of
the original vectors,

du; ..

ui-d—t]:O, i,j=1,2. (5)
It should be noted that the {t,m} vectors do not un-
dergo parallel transport. The basis vectors that do un-

dergo parallel transport differ from the {t, m} system by
a rotation around the s axis; see Fig. 5.

‘t
Bi
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FIG. 5: Transformation of {t,m} to local inertial frame
{u1, u>}. Definition of angle 3.

u; = cosft—sinfm, (6)
u, = sinft+cosfm.

Let us determine the angle 5. For this we need w;. These
can be easily calculated and we obtain:

u; = (vksin a—B)uz + [vkcos acos B —sin f(a+vT)]s,

uy; = (B —vksina)uy + [vkcos asin § + cos B(d& + vT)]s.
(7)

For u; -u; = u;-us = up iy = us-uy = 0 to be satisfied,
we have to choose

B = vk sin . (8)
Under this condition, equations (7) reduce to

[vkcos acos B—sin B(&+vT)|s = as

g
Uy = [vkcosasinf + cos (& + vT)]s = bs.

9)

Now, we calculate 8 for the Foucault pendulum. Since
v is obviously a circle, the curvature x at each point is
simply the inverse of the radius of the circle. Using R as
the Earth radius and 6 as the angle between s and the
polar axis z3, we have

. 1 1 o
r—RsmG,n—r = Rsinﬁ’a_2+0’
B:Unsin(g—ﬂ‘)) = vkcosf . (10)

Since 3 gets transformed into § when switching from ¢
to s, we find

1
! —
B'(s) = kcosh = 7

1
e cosf = I cot 6 . (11)

Letting 8(0) = 0, we obtain for the value of 8 at the end
of one revolution of the Earth:

27w Rsin 0 1
Bfinal = / B'(s)ds = 2w Rsin 0= cot #
0 R
or
Bfinal = 27 cos B, (12)

which is the expected formula for the Foucault pendulum.

We thus see that the general result (8) gives the correct
answer for the special case of the Foucault pendulum.
By changing from time to arclength for the independent
variable, we see that the general expression for 3 is given
by

B(s) = /OS k(s")sina(s") ds', (13)

from which it is clear that the result is independent of the
speed of parametrization. Thus, 3 is a true example of a
geometric phase or Hannay angle, the classical analogue
of the Berry phase [5].

III. EQUATIONS OF MOTION IN THE PLANE

In this section we want to find the equations of motion
in the plane S. These can be expressed either in terms of
the {t,m} basis vectors or, much more conveniently, in
the {u;,us} frame. If the particle is constrained to the
{t,m} plane, we have that r3 =73 =73 =0, 7¥-s = 0,

r1
with @ = | e

3
equations of motion mi; = 22 with || = \/r} + r}, we
then would have to compute t and rh. We have done the
calculation and found

and ¥ = rit + rom. To identify the

. ov

miy = ~ o +m{ },
. ov

mr2 = 5 +m{ },
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where the contents of the curly brackets are quite com-
plicated and besides teach us little.

The situation changes substantially when we now for-
mulate the equation of motion relative to the {u;,us}
system. In the two-dimensional S plane we have

7=piu +poun |7l =4/p] +p3.
A first time derivative yields

P = piug + prag + Paun + palia.
Here we make use of our result as stated in (9):

u = as,

u, = bs.
The second time derivative is then given by
F=(prag + 2101 + prity) + (fauz + 2p211s + poits)
with

i, = as+as,
iy = bs+bs,

so that 7 is given by

FPo= /g + 2p1as + pi(as + as)
+ ﬁQllQ + QprS + pQ(i)S + bS)

If we here drop the s dependence we are left with
F—)pl u +p1aé+i)'2 Uus +p2bé.

The time derivative s can be easily calculated with the
aid of (4) and the inverse of (6),

t

m

cos fuy + sin fus ,
—sin fu; + cos fus.

The desired expression for § is rather simple:
S= —au; —buy .

From here we obtain in the two-dimensional {ui,us}
plane:

7= (p1 — a’p1 — abpa)wy + (2 — b2po — abpi)us

Finally, we find in our local inertial frame the equations
of motion:

. ov

mpy = ~om + ma®p; + mabp; , (14)
. ov

mpy = _8—p2 + mb?ps + mabp; .

Note that velocity-dependent forces (Coriolis forces) no
longer appear relative to the inertial {u;,us} frame. But
this was the goal of our exercise in going from the {t, m}

system to the {u;, us} system. One also can say that the
Coriolis forces are automatically included in the rotation
of the inertial frame vector uy, us.

Finally we want to study the equations for the special
case a = const, i.e., & = 0 and 7 = 0, which is realized
for our simple Foucault pendulum. In this case we find

a® = (vk)?cos

b2
ab

Zacos? B,

(vk)? cos® asin® 3 ,

(vk)? cos® asin Bcos B ,
and the equations of motion (14) turn into

ov

mp1 = ~an + m(vk)? cos? a(cos® B p1 + sin Beos Bps),
ov
mpy = _8—p2 + m(vk)? cos? cz(sin2 B p2 + sin Beos Bp1).

(15)

These equations can be simplified further by introducing
a modified potential U = V + W, where W is given by

W = _%(vn)2 cos® apycos B + pasin B) vk = w
= —%wzrz COS2CK . (16)

In this way, equations (15) can be written in the simple
form

. oUu
mpL =g (17)
. oUu
mpa = _8—p2 .
For the special case o = 7 (tip of the North-Pole), we
obtain the relations
. ov
mpy = _8—p1 )
. ov
mpa = _a—pQ .

Related to this special situation (1 = 0, a = 7) is the

final angle 8 (8 = vk = w):

T
; 2
Binal = / dtf = wT = —;T =27, (18)
0

as is to be expected for the Foucault pendulum at the
North Pole.

By the way, this obvious result can directly be obtained
from equations (1) with a = % and 7 = 0. This simple
exercise is left to the reader. He/She will find that the
transformation of the {n,t} system to the inertial frame
{v1,va} with vi = cosp t—sinp n, vo = sinyp t+cos ¢ n,
still results in ¢ = vk = w, but now the change in the
unit vector is vi = vo = 0. @gna is of course given by

Pfinal = 2.
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IV. CONCLUSION

In this article we derived an expression for the geo-
metric phase of an oscillator constrained to a plane that
is transported along some surface. As an application
of this analysis, we considered the Foucault pendulum.
We described in great detail the motion of a particle in
a two-dimensional plane, which in turn is transported
along some curve on a manifold. As such we have cho-
sen a sphere for demonstrative purposes. If the path
taken by the plate follows a certain latitude, then as the
pendulum swings back and forth, its plane of oscillation
rotates clockwise in the Northern hemisphere. After the
Earth has completed one revolution, the plane of oscil-
lation of the pendulum will not have made a rotation of
27 until the Earth has advanced by an additional an-
gle of 27r(1 — cos#). This is exactly the solid angle of
the cap bounded by the curve,which the tip of s traces
on the unit sphere. We obtained this well-known result
by analyzing the particle’s motion on the plate with re-
spect to a local inertial frame. It was then fairly easy to
identify the above-mentioned deficit angle. We also pre-
sented the rather simple equations of motion with respect

to the basis that undergoes parallel displacement. In the
special case of the plate located at the tip of the North
Pole, we verified that the period of the plane of oscilla-
tion is identical to the period of the Earth’s rotation, the
deficit angle being zero in this case. In summary, using
the language of differential geometry, we “geometrized”
the Foucault pendulum and proved quite generally how
an observable, well-known dynamical result can also be
obtained from a purely geometrical point of view. Fi-
nally, it should be reemphasized that although we have
focussed on the special case of the Foucault pendulum
because of its general interest, our result for the geomet-
ric phase of a transported oscillator constrained to the
plane (df/ds = ksina) applies to an arbitrary surface
and curve.
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