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Abstract

We study the Standard Model prediction for the mass difference between the two neutral D

meson mass eigenstates, ∆m. We derive a dispersion relation based on heavy quark effective

theory that relates ∆m to an integral of the width difference of heavy mesons, ∆Γ, over varying

values of the heavy meson mass. Modeling the mD-dependence of certain D decay partial widths,

we investigate the effects of SU(3) breaking from phase space on the mass difference. We find that

∆m may be comparable in magnitude to ∆Γ in the Standard Model.
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I. INTRODUCTION

The mixing and decay of K, B, and D mesons are sensitive probes of physics beyond the

Standard Model. Among the many processes that one might study, flavor-changing neutral

current D decays and D0 −D0 mixing provide unique information, because in the Standard

Model (SM) they occur via loop diagrams involving intermediate down-type quarks. In par-

ticular, because of severe CKM and GIM suppressions, the mixing of D mesons is expected

to be quite slow, and thus the D system is one of the most intriguing probes of new physics

in low energy experiments [1].

We begin by recalling the formalism for heavy meson mixing. Using standard notation,

the expansion of the off-diagonal terms in the neutral D mass matrix to second order in

perturbation theory is given by(
M − i

2
Γ

)
12

=
1

2mD
〈D0|H∆C=2

w |D0〉 +
1

2mD

∑
n

〈D0|H∆C=1
w |n〉 〈n|H∆C=1

w |D0〉
mD − En + iε

. (1)

The first term represents the ∆C = 2 contributions that are local at the scale µ ∼ mD. It

contributes only to M12, and is expected to be very small unless it receives large enhancement

from new physics. The second term in Eq. (1) comes form double insertion of ∆C = 1

operators in the SM Lagrangian and it contributes to both M12 and Γ12. It is dominated

by the SM contributions even in the presence of new physics. Two physical parameters that

characterize the mixing are

x =
∆m

Γ
, y =

∆Γ

2Γ
, (2)

where ∆m and ∆Γ are the mass and width differences of the two neutral D meson mass

eigenstates and Γ is their average width. Because of the GIM mechanism the mixing am-

plitude is proportional to differences of terms suppressed by m2
d,s,b/m

2
W , and so D0 − D0

mixing is very slow in the SM [2]. The contribution of the b quark is further suppressed

by the small CKM elements |VubV
∗
cb|2/|VusV

∗
cs|2 = O(10−6), and can be neglected. Thus,

the D system essentially involves only the first two generations, and therefore CP violation

is absent both in the mixing amplitude and in the dominant tree-level decay amplitudes,

and will be neglected hereafter. Once the contribution of b quarks is neglected, the mixing

vanishes in the flavor SU(3) limit, and it only arises at second order in SU(3) breaking if

SU(3) breaking can be treated analytically [3]

x , y ∼ sin2 θC × [SU(3) breaking]2 , (3)
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where θC is the Cabibbo angle. Precise calculations of x and y in the SM are not possible

at present, because the charm mass is neither heavy enough to justify inclusive calculations,

nor is it light enough to allow a few exclusive channels to give a reliable estimate.

According to Eq. (3), computing x and y in the SM requires a calculation of SU(3)

violation in the decay rates. There are many sources of SU(3) violation, most of them

involving nonperturbative physics in an essential way. In Ref. [3], SU(3) breaking arising

from phase space differences was studied; computing them in two-, three-, and four-body D

decays, it was found that y could naturally be at the level of one percent. This result can

be traced to the fact that the SU(3) cancellation between the contributions of members of

the same multiplet can be badly broken when decays to the heaviest members of a multiplet

have small or vanishing phase space. This effect is manifestly not included in the OPE-based

calculations of D0 − D0 mixing, which cannot address threshold effects.

The purpose of the present paper is to address the following question: if the dominant

SU(3) breaking mechanism is indeed the one studied in Ref. [3], and it gives rise to y at the

percent level, then can x naturally be comparably large? This is particularly relevant because

the present experimental upper bounds on x and y are at the few times 10−2 level [4, 5] and

are expected to significantly improve (for a review of the experimental situation, see Ref. [6]).

To interpret the results from future measurements of x and y, and possibly establish the

presence of new physics, we need to know the allowed range in the SM. In particular, since

new physics can only contribute to x, an experimental observation of x � y would imply

a large new physics contribution to D0 − D0 mixing. Although y is determined by SM

processes, its value still affects the sensitivity to new physics [7].

In this paper we study the SM predictions for x/y due to SU(3) breaking from final

state phase space differences. In Sec. II we derive a dispersion relation using Heavy Quark

Effective Theory (HQET) that relates ∆m to ∆Γ. To compute ∆m, we need a calculation

of ∆Γ for varying heavy meson mass, so we review its calculation from Ref. [3] in Sec. III.

In Sec. IV, we calculate ∆m and present numerical results. We find that despite the fact

that SU(3) breaking in phase space affects x in a different way than it affects y, the final

estimates of x and y are comparable. We present our conclusions in Sec. V and discuss the

implications of our findings for experimental searches for new physics in D0 − D0 mixing.
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FIG. 1: The correlator in Eq. (6). The black boxes denote the weak Hamiltonian, the wavy lines

show external momenta inserted, and the gray area represents hadronic intermediate states.

II. DERIVATION OF THE DISPERSION RELATION

We start by reviewing the relevant formalism for D0 − D0 mixing. Equation (1) im-

plies that the mass eigenstates are linear combinations of the weak interaction eigenstates,

|D1,2〉 = p |D0〉 ± q |D0〉. Since we neglect the effects of intermediate states containing a b

quark, |D1,2〉 are also CP eigenstates, CP |D±〉 = ±|D±〉. Their mass and width differences

are

∆m ≡ mD+ − mD− = 2M12 , ∆Γ ≡ ΓD+ − ΓD− = 2Γ12 . (4)

Neglecting the small contribution from the local ∆C = 2 operators, Eq. (1) gives

∆m =
1

2mD
P

∑
n

〈D0|Hw|n〉〈n|Hw|D0〉 + 〈D0|Hw|n〉〈n|Hw|D0〉
mD − En

,

∆Γ =
1

2mD

∑
n

[
〈D0|Hw|n〉〈n|Hw|D0〉 + 〈D0|Hw|n〉〈n|Hw|D0〉

]
(2π)δ(mD − En) , (5)

where P denotes the principal value prescription, the sum is over all intermediate states, n,

and it implicitly includes (2π)3δ3(�pD − �pn).

To derive a dispersion relation between ∆m and ∆Γ, consider the following correlator

ΣpD
(q) = i

∫
d4z 〈D(pD)| T [Hw(z)Hw(0)] |D(pD)〉 ei(q−pD)·z . (6)

Here pD is a label given by the momentum of the on-shell D meson state (satisfying p2
D = m2

D)

and q−pD is an auxiliary four-vector that inserts external momentum to the weak interaction

(see Fig. 1). There is no simple physical interpretation of Σ except at q = pD, where ΣpD
(pD)

is related to physical properties of D mesons. Inserting a complete set of states in Eq. (6)

and comparing with Eq. (5), we find

− 1

2mD
ΣpD

(pD) =
(
∆m − i

2
∆Γ

)
. (7)

The correlator ΣpD
(q) is an analytic function of q (but not of pD) with a cut in the complex

q0 plane for q0 >
√
|�q |2 + 4m2

π for a fixed �q.
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To write the dispersion relation in terms of physical quantities, i.e., to give ΣpD
(q) for

q �= pD a physical interpretation, we need to eliminate the heavy quark mass dependence

from Eq. (6).1 The momentum of a heavy meson H containing a heavy quark Q can be

written as pµ
H = mHvµ, with v2 = 1. We can decompose Q as

Q(z) = e−imQv·zh(Q)
v (z) + e+imQv·zh̃(Q)

v (z) + . . . , (8)

where the HQET fields h(Q)
v and h̃(Q)

v respectively annihilate a heavy Q quark and create

a heavy Q̄ antiquark with four-velocity v. Here and in the rest of this section the ellipses

denote terms suppressed by a relative factor of ΛQCD/mc. The ∆C = 1 weak Hamiltonian

contributing to neutral D meson mixing is

Hw =
4GF√

2
Vcq1V

∗
uq2

∑
i

Ci Oi = Ĥw

[
e−imcv·z h(c)

v + eimcv·z h̃(c)
v

]
+ . . . , (9)

where q1,2 = d or s, and the four-quark operators, suppressing their Dirac structures, are of

the form

Oi ∼ q̄1q2ūc = e−imcv·z q̄1q2ūh(c)
v + eimcv·z q̄1q2ūh̃(c)

v + . . . . (10)

In Eq. (9) Ĥw contains the light quark fields, the Wilson coefficients, and summation over

operators. We also replace the QCD states |D〉 by HQET states |H(v)〉,

|D(p = mDv)〉 =
√

mD |H(v)〉+ . . . . (11)

The new states have a normalization that is independent of the heavy quark mass [9]. Then

Eq. (6) yields

ΣpD
(q) = i mD

∫
d4z 〈H(v)| T

{[
e−imcv·z Ĥwh(c)

v (z) + eimcv·z Ĥwh̃(c)
v (z)

]
×

[
Ĥwh(c)

v (0) + Ĥwh̃(c)
v (0)

]}
ei(q−pD)·z |H(v)〉 + . . . . (12)

The only nonzero contributions to this correlator involve a single h and h̃ field each,

ΣpD
(q) = i mD

∫
d4z 〈H(v)|

{
e−imcv·z T

[
Ĥwh(c)

v (z), Ĥwh̃(c)
v (0)

]
+ eimcv·z T

[
Ĥwh̃(c)

v (z), Ĥwh(c)
v (0)

]}
ei(q−pD)·z |H(v)〉+ . . . . (13)

The two terms in Eq. (13) behave differently in the HQET limit mc → ∞ with q fixed.

The term proportional to exp[i(q−pD−mcv) ·z] oscillates infinitely rapidly and is integrated

1 The method of using HQET to derive a dispersion relation in the heavy quark mass was developed first
in Ref. [8], where it was used to study the inclusive nonleptonic heavy meson decay rate.
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out at the heavy scale. It should be removed from the effective theory and replaced by a

local H∆C=2
w contribution that can be included as a matrix element of ∆C = 2 operators.

Such contributions are estimated to give rise to x and y at or below the 10−3 level [10–12],2

and since we are interested in the question whether x could be near the percent level, we

can neglect them.

By contrast, the term proportional to exp[i(q − pD + mcv) · z] becomes independent of

mc as mc → ∞. Recalling that pD = mDv, we have

ΣpD
(q) = i mD

∫
d4z 〈H(v)| T

[
Ĥwh̃(c)

v (z), Ĥwh(c)
v (0)

]
ei(q−Λ̄v)·z |H(v)〉 + . . . , (14)

where Λ̄ = mD − mc + O(Λ2
QCD/mc). It is convenient to define

Σv(q) = i
∫

d4z 〈H(v)| T
[
Ĥwh̃(Q)

v (z), Ĥwh(Q)
v (0)

]
ei(q−Λ̄v)·z |H(v)〉 , (15)

which is manifestly independent of the heavy quark mass. It follows that

ΣpD
(q) = mD Σv(q) + . . . , (16)

and Eq. (7) becomes to leading order in ΛQCD/mc

Σv(q) = −2 ∆m(E) + i ∆Γ(E) , (17)

where E ≡ √
q2, and ∆m(E) and ∆Γ(E) can be interpreted as the mass and the width

differences of neutral heavy mesons with mass E in HQET. Equation (17) shows that Σv(q)

only depends on q2. Choosing a frame in which �q = 0, we can use the analyticity of Σv(q)

to write a dispersion relation,

Σv(mD,�0) =
1

π

∫ ∞

2mπ

dE
Im Σv(E,�0)

E − mD + iε
. (18)

Using Eq. (17), we obtain

∆m = − 1

2π
P

∫ ∞

2mπ

dE

[
∆Γ(E)

E − mD

+ O
(

ΛQCD

E

)]
. (19)

Eq. (19) is the main result of this section. It expresses ∆mD in terms of a weighted

integral of the width difference of heavy mesons, ∆Γ(E), over varying heavy meson masses,

2 In the OPE-based calculations, because mc/ΛQCD is not very large and subleading terms in the ΛQCD/mc

expansion are enhanced by ΛχSB/ms [10], such terms dominate the short distance contribution [10–12].
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E. The heavy quark limit was essential in deriving this relation, since Σv(q) has a physical

interpretation for arbitrary q, while for q �= pD, ΣpD
(q) does not. The O(ΛQCD/E) error

in the integrand is a consequence of our reliance on this limit, and the resulting correction

is O(1) in the small E region. Dispersion relations for ∆mD were considered previously in

Ref. [13], where Im Σ(s) (with a different definition of Σ) was modeled, but it does not have

a physical interpretation for s �= m2
D.

To calculate x/y using the dispersion relation, we need to know ∆Γ as a function of the

heavy meson mass. Examining Eq. (19), we expect that values of E close to mD give the

largest contribution to x. In the next section we recall the calculation of ∆Γ(E) performed

in Ref. [3]. If ∆Γ(E) is a decreasing function of E at least as a positive power, 1/Ea with

a > 0, then the dispersion relation does not require subtraction in order to converge. In the

model we consider, ∆Γ(E) actually falls off as ∼ 1/E2, and we will argue that some kind of

decreasing behavior is likely to hold model independently.

III. CALCULATION OF THE LIFETIME DIFFERENCE

The computation of x using Eq. (19), requires us to know ∆Γ for a heavy meson of

varying mass. The calculation of ∆Γ cannot at present be done from first principles. In

Ref. [3] ∆Γ was computed using a simple model in which SU(3) breaking was taken into

account in calculable phase space differences, but neglected in the incalculable hadronic

matrix elements. This approach was motivated by the fact that phase space differences

alone can explain the experimental data in several cases; for example the ratio Γ(D∗
2 →

Dπ)/Γ(D∗
2 → D∗π) [14], the large SU(3) breaking in Γ(D → K∗�ν̄)/Γ(D → ρ�ν̄) [15], and

the lifetime ratio τDs/τD0 [16]. It certainly cannot explain all SU(3) violation, for example,

Γ(D → ππ)/Γ(D → KK). The generic conclusion of Ref. [3] was that if multi-body final

states close to the D threshold have significant branching ratios, then they can give rise to

sizable contributions to ∆Γ that are absent in the OPE-based calculations. Our purpose in

the next section will be to see whether the same mechanism can also give rise to x at or

near the percent level. Here we review the analysis of Ref. [3].

We denote a set of final states F belonging to a certain representation R of SU(3) by

FR. For example, for two pseudoscalar mesons in the octet, the possible representations for

F = PP are R = 8 and 27. In Ref. [3] it was shown that yFR
, the value which y would take

7



if elements of FR were the only channels open for D0 decay, can be expressed as

yFR
=

∑
n∈FR

〈D0|Hw|n〉〈n|Hw|D0〉∑
n∈FR

〈D0|Hw|n〉〈n|Hw|D0〉 =

∑
n∈FR

〈D0|Hw|n〉〈n|Hw|D0〉∑
n∈FR

Γ(D0 → n)
. (20)

The derivation of this relation assumes the absence of CP violation, so that 〈D0|Hw|n〉 is

related to 〈D0|Hw|n̄〉, and uses the fact that both |n〉 and |n̄〉 belong to the same SU(3)

multiplet. When the SU(3) breaking in the matrix elements is neglected, Eq. (20) gives a

calculable contribution to yFR
without any hadronic parameters. The numerator contains a

combination of Clebsch-Gordan and CKM coefficients that ensures that yFR
is proportional

to m2
s sin2 θC when the sum over all members of any given multiplet FR is performed, as

required by Eq. (3).

As an example, the contribution of the multiplet containing two pseudoscalar mesons in

an SU(3) octet is given by

y(PP )8 = sin2 θC

[
1

2
Φ(η, η) +

1

2
Φ(π0, π0) + Φ(π+, π−) + Φ(K+, K−)

+
1

3
Φ(η, π0) − 1

3
Φ(η, K0) − 2Φ(K+, π−) − Φ(K0, π0)

]
×

[
1

6
Φ(η, K0) + Φ(K−, π+) +

1

2
Φ(K0, π0)

]−1

+ O(sin4 θC) , (21)

where Φ(n) is the phase space factor for D → n decay. Then y can be computed as the sum

of the yFR
’s weighted with the D0 decay rate to each representation,

y =
1

Γ

∑
FR

yFR

[ ∑
n∈FR

Γ(D0 → n)
]
. (22)

The yFR
were computed for all PP , PV , and V V representations, and for the fully symmetric

3P and 4P final states [3]. The contribution of poles corresponding to nearby K resonances

was shown to be small [3, 17]. Assuming that the values of y(4P )R
for R = 8, 27, 27′ are

typical for all R, it was found that the 4P final states give a contribution to ∆Γ at the

percent level. The result is large because many of the decays in question are close to or

above threshold, so the SU(3) cancellation in these multiplets is largely ineffective, yielding

y(4P )R
= O(0.1) [3]. Moreover, the D0 branching ratio to four pseudoscalars is approximately

10%.

We shall now use this model of SU(3) breaking, together with some assumptions about

the energy dependences of the relevant decay rates, to compute x/y.
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IV. CALCULATION OF THE MASS DIFFERENCE

The crucial difference between the calculation of x and y is that once we assume that the

only source of SU(3) breaking is from the final state phase space differences, the hadronic

matrix elements cancel in y, but not in x. As determined by Eq. (19), x depends on ∆Γ(E),

and so the E-dependence of the hadronic matrix elements does affect x. Using Eq. (19), we

find for x/y,

rFR
≡ xFR

yFR

= −1

π
P

∫ ∞

2mπ

dE

E − mD

yFR
(E)

yFR
(mD)

ΓFR
(E)

ΓFR
(mD)

. (23)

We will quote our results in terms of rFR
. To proceed further we need to understand or make

some assumptions about the E-dependence of the decay rate to the final state F , ΓF (E).

We define the dimensionless function

gF (E) ∝ ΓF (E)

ΓF (mD)
, (24)

and we will study the E-dependence of this quantity. Note that the constant of proportion-

ality in Eq. (24) cancels in the ratio rFR
. Moreover, gF is expected to depend only on the

final state F , and not on the SU(3) representation R.

One can reconstruct x from xFR
using a relation analogous to Eq. (22). Below we calculate

rFR
for several final states and then estimate the total x. First we will study F = PP ,

because it is a simple case that is interesting to understand in detail. Then we will turn to

F = 4P , because it is the final state that can give y ∼ 1%.

A. Two-body D → P P decays

For decays to two pseudoscalar mesons, it is possible to develop a reasonable model

of gPP (E). When mH � ΛQCD, we may approximate the H → ππ amplitude with its

factorized form. Here A(H → ππ) ∼ GF VCKM m2
H fπFH→π, where fπ is the pion decay

constant and FH→π is the H → π form factor at q2 = m2
π. It has been shown that, as

mH → ∞, FH→π ∝ (Λ/mH)3/2+X [18], where X arises from summing Sudakov logarithms of

the form exp[Cαs(mH) ln2(mH/Λ)] ∼ (Λ/mH)X with X = −2πC/β0. Since Γ ∝ |A|2/mH ,

we conclude that

gPP (E � ΛQCD) ∝ E−2X . (25)

The existing calculations suggest that |X| � 1 [19], so we set X = 0 hereafter.

9
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FIG. 2: Predictions for r(PP )8 (solid curve) and r(PP )27 (dashed curve) as functions of m1.

In the E → 0 limit our calculation is necessarily unreliable, as the derivation of Eq. (19)

relied on HQET. Nevertheless, as a model we will take the behavior of the K → ππ amplitude

in chiral perturbation theory. At leading order, this transition is mediated by an operator

of the form Tr(∂µΣ† O ∂µΣ), where Σ = exp[2iM/f ] and M is the meson octet. Since this

term has two derivatives, it implies that the decay amplitude is proportional to m2
K . Since

this is the only dependence on mK in the amplitude, the E-dependence of the rate is

gPP (E → 0) ∝ E3. (26)

Based on these considerations, we employ the following simple model for gPP (E)

gPP (E) =


E3/(m2

1m2) for E < m1 ,

E/m2 for m1 < E < m2 ,

1 for E > m2 ,

(27)

where m1,2 are free parameters. The overall normalization cancels in the results. This model

allows for a “chiral” region, E < m1, an “intermediate” region, m1 < E < m2, and a “high

energy” region, E > m2. In our calculations m1 is allowed to vary in the range 0.2−1.0 GeV,

and m2 in the range 1.5−10 GeV. As we emphasized above, our derivation relies on HQET,

so any strong dependence on scales below ∼ 1 GeV would signal an irreducible lack of

reliability.

In Fig. 2 we plot r(PP )8 (solid) and r(PP )27 (dashed) as a function of m1, for m2 = 2 GeV.

In this case all members of the final state representations are kinematically allowed and have

large phase space, so we find that the result is dominated by cancellations below the scale

10



mD. Therefore rPP is sensitive to the shape of gPP (E) at low energies, i.e., the value of m1,

but changing m2 to 3 or 4 GeV has little effect on rPP . Because of the strong dependence

on m1, we should not trust this result. However, since y for these representations is very

small, y(PP )8 = −0.018% and y(PP )27 = −0.0034% [3], these final states do not give sizable

contributions to x in any case.

When we consider decays to the lightest pseudoscalar octet, the dependence of these

pseudo-Goldstone boson masses on ms is given by (for mu,d = 0)

m2
π = 0 , m2

K = µms , m2
η =

4

3
µms , (28)

where µ is a hadronic scale. We can then expand ∆Γ(E) for large E as

∆ΓPP (E) =
[
ΓPP (E)

∣∣∣
ms→0

]
×

(
c0 +

c1

E2
+

c2

E4
+ . . .

)
. (29)

Because SU(3) breaking in our approach comes from phase space differences, the coefficients

ci depend quadratically on the masses of the final state particles. Since in Eq. (28) ms is

always accompanied by µ and ∆Γ must be suppressed by m2
s, we conclude that c0 = c1 = 0.

The coefficient c2 can be proportional to µ2m2
s and is the leading nonvanishing term, implying

a 1/E4 suppression of ∆ΓPP (E) compared to ΓPP (E). However, the actual π, K, and η

masses do not exactly satisfy Eq. (28) in the mu,d = 0 limit, nor the Gell-Mann-Okubo

(GMO) relation, 3m2
η = 4m2

K − m2
π. Violating the GMO relation is equivalent to adding

a small term to m2
K or to m2

η of the form ε m2
s. This changes the asymptotic behavior

of ∆Γ(E), because now we can have c1 ∼ ε m2
s. Since the D → PP decay is far from

threshold, the SU(3) cancellation in this channel is very sensitive to the pseudoscalar meson

masses. This can be verified analytically by expanding Eq. (21). As shown in Fig. 3 (again

for m2 = 2 GeV), imposing the GMO relation on the π, K, and η masses decreases rPP

significantly, in such a manner that yPP increases by roughly the same factor, while |xPP |
is approximately stable at the (5− 8)× 10−4 level. As discussed in Ref. [3], our results have

little sensitivity to including or neglecting π − η − η′ mixing.

By contrast, for final states including vector mesons or heavier pseudoscalar represen-

tations, the masses of the mesons depend linearly on ms. Thus, for these final states,

∆ΓF (E)/ΓF (E) is simply proportional to m2
s/E

2 for large E, and there is no strong de-

pendence on the precise values of the hadron masses. This is the minimal suppression of

∆ΓF (E)/ΓF (E) consistent with group theory, i.e., Eq. (3), and our phase space model for
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FIG. 3: Predictions for r(PP )8 (solid curve) and r(PP )27 (dashed curve) as functions of m1, imposing

the GMO relation on the π, K, and η masses.

SU(3) violation indeed gives such an effect. These results imply that the dispersion relation

in Eq. (19) converges for any final state F , for which ΓF (E) does not increase as E2 or

faster. This is very likely to be true for all final states (recall that ΓPP (E) ∼ constant for

large E).

B. Four-body D → 4P decays

Now we turn to the 4P final state in the fully symmetric 8, 27, and 27′ representations

of SU(3). We know even less about g4P (E) than about gPP (E), so we use two models to

attempt to bracket roughly the uncertainties,

g4P (E) = gPP (E) and g′
4P (E) =


E/m1 for E < m1 ,

1 for m1 < E < m2 ,

m2/E for E > m2 .

(30)

The choice of g′
4P (E) allows for the possibility that Γ(H → 4P ) may start to fall for large

mH instead of remain constant. This alternative is motivated by the argument that because

the quasi-two-body picture holds only in a small part of phase space, in most of the phase

space the opening of many decay channels will reduce the rate.

The left plot in Fig. 4 shows r(4P )8 (solid curve), r(4P )27 (long dashed curve), and r(4P )27′

(short dashed curve), as functions of m2, using g4P (E) with m1 = 0.8 GeV. For m1 < 1 GeV

there is no dependence on m1. The dependence of the curves on m2 is negligible for m2
>∼

3 GeV. If we use g′
4P (E) instead, shown in the right plot in Fig. 4, then r(4P )R

changes
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FIG. 4: Predictions for r(4P )8 (solid curve), r(4P )27 (long dashed curve), and r(4P )27′ (short dashed

curve), as functions of m2 for the models g4P (E) (left figure) and g′4P (E) (right figure) in Eq. (30).

roughly by a factor of two. We have explored other forms of g4P (E) as well, and we find

that these two cases cover a reasonable range of predictions.

In contrast to D → PP decays, for the 4P final state there is no strong dependence on

the π, K and η masses. Because the decay is close to threshold, the dispersion integral is

dominated by E near mD, where some of the 4P final states are kinematically forbidden,

and so the sensitivity to the pseudoscalar meson masses is reduced. Imposing the GMO

relation makes only a small difference; for example, for the (4P )8 representation the value

r(4P )8 = −0.98 obtained with the g4P (E) model, m1 = 0.8 GeV, m2 = 3 GeV, and the

physical meson masses (corresponding to the solid curve in the left plot in Fig. 4), would

change to r(4P )8 = −0.87 if the GMO relation were imposed.

V. DISCUSSION AND CONCLUSIONS

It is likely that the dominant contributions to the mass and width differences in the D

system have a long distance origin in the SM. Therefore, naively one would expect x and y

to be of the same order of magnitude. We have derived a new dispersion relation (19) and

used it to study this question. Our dispersion relation has the useful property that it relates

the mass difference in the heavy neutral meson system at fixed heavy meson mass to the

physical width difference of heavy mesons with varying mass.

The advantage of using a dispersion relation that relates x to y is that we can use

existing models for y to calculate x. Our dispersion relation is likely to converge without
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any subtraction, because the SU(3) breaking required to yield nonzero mixing introduces

an m2
s/E

2 suppression in y(E). We have used a model in which SU(3) breaking arises from

phase space differences, which may give a reasonable approximation to y(E) only when E

is not very large. Since the derivation of the dispersion relation employed the heavy quark

limit, it is essential not to interpret our analysis as a precise calculation for x. Instead, we

used this model only to get a rough and qualitative prediction about the likely relation of x

to y.

To make numerical predictions we needed the heavy mass dependence of heavy meson

partial widths to certain final states, which introduces some additional model dependence

in our results. (For decays to two pseudoscalars, there are limits in which one can draw

firmer conclusions about the mass dependence, which we have incorporated into the model.)

We calculated the ratio x/y for PP and 4P final states. Our conclusion is that it is indeed

likely that in the Standard Model, x is not much smaller than y in the D system. In our

numerical study, we found that for the 4P final state, x/y varies roughly between −0.1 and

−1. We conclude that if y is in the ballpark of +1% as expected if the 4P final states

dominate y [3], then we should expect |x| between 10−3 and 10−2, and that x and y are of

opposite sign. This estimate has a large uncertainty, and we can trust it only at the order

of magnitude level. We have explored the sensitivity of this qualitative result to a number

of the assumptions we have made, and have found that changing the details of the model

does not significantly alter our conclusions. Furthermore, including some SU(3) breaking in

the matrix elements cancels to some extent in x/y and does not induce dramatic changes.

The significance of our result is clear only in the context of the experimental situation.

The current bounds on x and y are at the level of a few percent, and the central question is

whether their actual observation at or just below this level could be interpreted as a clear

signal of physics beyond the Standard Model. We would argue that our analysis has taught

us that, without further refinement, the answer is no. We have identified a real effect that

could plausibly give x and y at the percent level, albeit with very large uncertainties.

In general, an observation of x � y would be an indication for new physics, but this

could only be established if y were very small, at the 10−3 level. Such a situation could

arise if new physics enhanced x but not y. Yet since one cannot exclude the possibility of

cancellation between different SM contributions to y, even this outcome would not admit

an unambiguous interpretation.
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However, if x were indeed enhanced by new physics, such new physics may also introduce

a sizable new CP violating phase which may be observable. Thus, we would argue that in

D0 − D0 mixing, the only single measurement that could establish by itself the presence of

new physics would be the observation of CP violation, which is very small in the Standard

Model independent of hadronic effects.
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