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ABSTRACT

Abell 1689 is a galaxy cluster at z = 0.183 where previous measurements of its mass using various
techniques gave discrepant results. We present a new detailed measurement of the mass with the
data based on X-ray observations with the European Photon Imaging Camera aboard the XMM-
Newton Observatory, determined by using an unparameterized deprojection technique. Fitting the
total mass profile to a Navarro-Frenk-White model yields halo concentration c = 7.2+1.6

−2.4 and r200 =

1.13±0.21 h−1 Mpc, corresponding to a mass which is less than half of what is found from gravitational
lensing. Adding to the evidence of substructure from optical observations, X-ray analysis shows a
highly asymmetric temperature profile and a non-uniform redshift distribution implying large scale
relative motion of the gas. A lower than expected gas mass fraction fgas = 0.072 ± 0.008 (for a flat
ΛCDM cosmology) suggests a complex spatial and/or dynamical structure. We also find no signs of
any additional absorbing component previously reported on the basis of the Chandra data, confirming
the XMM low energy response using data from ROSAT.

Subject headings: dark matter — galaxies: clusters: individual (Abell 1689) — X-rays: galaxies:
clusters

1. INTRODUCTION

Galaxy clusters are the largest known gravitationally
bound systems in the Universe. The detailed analysis of
the mass distribution of clusters is thus important in the
process of understanding the large scale structure, and
the nature of dark matter. The three main methods of
measuring galaxy cluster masses: virial masses from ve-
locity dispersions of cluster galaxies, X-ray imaging and
spectroscopy of the intra-cluster medium (ICM) emis-
sion, and the gravitational lensing of background galax-
ies, have been found in recent years to be in disagreement
for some clusters. Generally, the X-ray estimates are in
good agreement with gravitational lensing for clusters
with a high concentration of central X-ray emission (the
so-called “cooling flow” clusters) but seemingly in dis-
agreement for other, less centrally peaked objects (Allen
1998). To obtain the estimate of the total mass (includ-
ing that due to dark matter) of a galaxy cluster from
its X-ray emission – commonly assumed to be from opti-
cally thin, hot plasma that subtends the space between
galaxies – it is necessary to make the assumption of hy-
drostatic equilibrium. This is appropriate of course only
for clusters that have had time to relax into equilibrium
and have not experienced any recent merger events. Gen-
erally, it is assumed that clusters with circular isophotes
meet this criterion.

Cold dark matter (CDM) hierarchal clustering is the
leading theory describing the formation of large scale
structure quite well. In particular, the numerical sim-
ulations such as Navarro, Frenk, & White (1997) (NFW)
successfully reproduce the observed dark matter halo
profiles, which appear be independent of the halo mass,
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initial power spectrum of fluctuations, and cosmologi-
cal model. However, observations often disagree with
the numerical models. For instance, one disagreement
regards the rotation curves of dwarf elliptical galaxies
which appear to be the result of a constant-density core
whereas numerical simulations predict cuspy dark mat-
ter halo profiles (Moore et al 1999a). In addition, obser-
vations show fewer Milky Way satellites than predicted
by the models (Kauffman, White, & Guiderdoni 1993;
Moore et al 1999a). Clearly, to understand the nature
of galaxy clusters and the dark matter they consist of, it
is important to measure the matter distribution in clus-
ters via all available means. Fortunately, there are two
superb X-ray observatories, Chandra and XMM-Newton,
featuring excellent angular resolution and exceptional ef-
fective area coupled with good spectral resolution, and
those are well suited for detailed analysis of the X-ray
emitting gas of galaxy clusters

Abell 1689 is a cluster showing a large discrepancy
among various mass determinations, and we chose it for a
detailed study. It is a rich cluster, R = 4, without a pro-
nounced cooling flow but with an approximately circular
surface brightness distribution suggesting a relatively re-
laxed structure. The large mass, ∼ 1015 M� (Tyson &
Fischer 1995), and apparent symmetric distribution of
Abell 1689 make it a suitable cluster for gravitational
lensing measurements as well as X-ray measurements.
However, the type of clusters that are believed to be the
most relaxed have a cool central component of enhanced
surface brightness. The absence of such a component in
Abell 1689 suggests that the cluster is not fully relaxed.
Also, the galaxy content of the cluster is unusually spi-
ral rich for a cluster with high spherical symmetry and
richness, with a galaxy type ratio E : S0 : Sp of approxi-
mately 22 : 22 : 28 plus 25 unidentified galaxies (Duc et
al. 2002). Teague, Carter, & Gray (1990) measure a ve-
locity dispersion of σ1D = 2355+238

−183 km s−1 for 66 cluster
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Fig. 1.— R magnitude image of Abell 1689 from the STScI Digitized Sky Survey with all magnitude R < 18 cluster members within
the central 2′ region plotted over logarithmic X-ray contours from XMM Mos. The bump toward northeast is due to a foreground point
source. Circle sizes are proportional to galaxy R magnitudes.

members, unusually high for a cluster of this tempera-
ture. Positions and redshifts from Duc et al. (2002) for all
cluster members with red magnitude R < 18 and within
2′ of the brightest central galaxy are shown in Fig. 1
together with logarithmic X-ray intensity contours from
XMM Mos 1.

The gravitational lensing estimate from 6000 blue arcs
and arclets calibrated by giant arcs at the Einstein ra-
dius of Abell 1689 gives a best fit power-law expo-
nent of n = −1.4 ± 0.2 for the projected density pro-
file from 200 h−1 kpc to 1 h−1 Mpc (Tyson & Fischer
1995). (Unless otherwise stated, we assume an Einstein-
deSitter (EdS) cosmology with ΩM = 1.0, ΩΛ = 0.0
and H0 = 100 h km s−1 Mpc−1.) This is steeper than
the profile of an isothermal sphere (n = −1). The
strong lensing analysis of two giant arcs directly gives
M2D(< 0.10 h−1 Mpc) = 1.8±0.1×1014 h−1 M� (Tyson
& Fischer 1995).

The mass profile derived from the deficit of lensed
red galaxies behind the cluster due to magnifica-
tion and deflection of background galaxies suggests
a projected mass profile of M2D(< R) ≈ 3.5 ×
1015(R / h−1Mpc)1.3 h−1 M� for R < 0.32 h−1 Mpc,
close to that of an isothermal sphere (M2D ∝ R). The

mass interior to 0.24 h−1 Mpc from this method is
M2D(< 0.24 h−1 Mpc) = 1.8±0.1×1014 h−1 M� (Taylor
et al. 1998). Measurement of the distortion of the lumi-
nosity function due to gravitational lens magnification
of background galaxies gives M2D(< 0.25 h−1 Mpc) =
0.48 ± 0.16 × 1015 h−1 M� (Dye et al. 2001). Finally,
the weak gravitational shear of galaxies in a ESO/MPG
Wide Field Imager 33′ × 33′ image gives a mass profile
with best fit NFW profile with r200 = 1.14 h−1 Mpc and
c = 4.7 or a best fit SIS with σ1D = 1028+35

−42 km s−1

(Clowe & Schneider 2001; King, Clowe, & Schneider
2002).

There is a good indication from the optical data that
the cluster consists of substructures. Miralda-Escudé &
Babul (1995) suggest a strong lensing model with two
clumps in order to reproduce the positions of the bright-
est arcs. A larger mass clump (σr = 1450 km s−1) is
centered on the brightest cluster galaxy while a smaller
clump (σr = 700 km s−1) is located 1′ northeast of the
main clump. They arrive at a mass a factor 2 - 2.5 lower
for their X-ray estimate compared to their gravitational
lensing model. Girardi et al. (1997) identify two dis-
tinct substructures centered on redshifts z = 0.175 and
z = 0.184 using positional and redshift data of cluster
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galaxies from Teague et al. (1990), providing further ev-
idence that the cluster is not relaxed. These clumps
are also aligned in the southwest – northeast direction
but the locations do not agree with the ones of Miralda-
Escudé & Babul (1995). Both structures are found to
have σr ∼ 300 − 400 km s−1 yielding virial masses sev-
eral times smaller than those derived from lensing and
X-ray estimates.

Can the X-ray observations provide any evidence for a
substructure in Abell 1689, and what are the implications
on the mass inferred from the X-ray data? In an attempt
to answer this, we analyze XMM-Newton EPIC pn and
EPIC Mos data to measure the mass profile of A1689
and to investigate the spatial structure of the cluster. §2
contains the details of the observations and data reduc-
tion with the XMM-Newton as well as with summary of
the ROSAT, Asca and Chandra data; §3 covers the meth-
ods of spectral fitting of the XMM data and presents the
analysis of cluster asymmetry; §4 derives the mass and
the slope of the mass distribution in the core; and §5
presents the inferences about the structure of the cluster
inferred from the spatial analysis. The paper concludes
with the summary in §6.

2. ABELL 1689 X-RAY OBSERVATIONS

2.1. XMM-Newton observation

Data preparation

Abell 1689 was observed with XMM-Newton for 40
ks on December 24th 2001 during revolution 374. For
imaging spectroscopy we use data from the European
Photon Imaging Camera (EPIC) detectors Mos1, Mos2
and pn. Both Mos cameras were operating in the Full
Frame mode whereas pn was using the Extended Full
Frame mode. The Extended Full Frame mode for pn
is appropriate for studying diffuse sources since it has
lower time resolution and so it is less sensitive to contam-
ination from photons being detected during readout of
the CCDs. These events (so called Out-Of-Time events)
show up as streaks across the X-ray image and are espe-
cially bothersome when the goal of an observation is spa-
tially resolved spectroscopy of diffuse sources. All cam-
eras used the Thin filter during the observation.

EPIC background is comprised mainly of three com-
ponents. The external particle background consists pri-
marily of soft protons (Ep < 100 keV) being funneled
through the mirrors and causing a time variable flaring
signal in the detector. The internal particle background
is mainly due to high energy particles interacting with
the detector material and causing a roughly flat spec-
trum with flourescent emission-lines characteristic to the
detector material. This component varies over the de-
tector surface. The third source of background is the
cosmic X-ray background (CXB) which is roughly con-
stant in time but varies over the sky.

For all data reduction we use the software and calibra-
tion data implemented in XMM Science Analysis Soft-
ware (SAS) 5.4.1. To exclude the events contaminated by
proton flares, we produce light curves in the 10− 15 keV
band where the true X-ray signal is low. We screen the
data using a constraint on the total count rate of less than
1.5 ct s−1 for Mos and 1.1 ct s−1 for pn in this band,
leaving an effective exposure time of 37 ks for Mos and
29 ks for pn. This screening corresponds to a limit on

the count rate of approximately 2σ above the quiescent
period in the 0.3− 10 keV band.

Vignetting correction

The effective mirror collecting area of XMM-Newton
is not constant across the field of view: it decreases with
increasing off-axis angle and this decrease is energy de-
pendent. This results in a position dependent decrease in
the fraction of detected events and when doing imaging
spectroscopy for extended sources, we need to account
for this effect. By generating an Ancillary Response File
(ARF) for each source spectrum region, using XMM SAS
5.4.1 command arfgen we calculate an average effective
area for each region considered by us (see below).

Background subtraction

In order to correctly account for particle-induced and
Cosmic X-ray Background, it would be optimal to extract
a background spectrum from the same detector region
collected at the same time as the source spectrum. This
is of course impossible, and the background can be taken
from a source-free region of the detector (other than the
target, but near it), or can be estimated using blank
sky data. We adopt the former method, noting that the
background is not entirely constant over the field of view;
however, it can be assumed to be approximately constant
with the exception of the fluorescent Cu line at 8 keV
in pn which is the strongest contaminant emission line.
Using this assumption, we can effectively subtract the
particle background by extracting a spectrum in a source
free region in the same exposure. For pn data in the
7.8− 8.2 keV range is excluded due to the strong spatial
dependence of the Cu internal emission.

Using an ARF generated for a source region on a back-
ground subtracted spectrum will not take into account
that the spectrum used as background was extracted
from a different region where the vignetting was higher,
due to the larger off-axis distance of the background re-
gion. This will have the effect that the CXB compo-
nent in our source spectrum will be under-subtracted
and the net spectrum will contain some remnant of the
CXB. The particle induced background however is not
vignetted and therefore should leave no remnant.

To estimate the CXB component in our exposure we
take the events outside of the field-of-view to be the par-
ticle background. Another spectrum is then extracted
from a large source free area, located away from the clus-
ter. The particle background is normalized and removed
from this spectrum. The resulting spectrum is fitted to a
broken power law model to determine the CXB flux. The
incorrect vignetting correction of the CXB is found to
cause an at most 2 % over-estimation of the flux which is
the case in the outermost annulus in our analysis (see be-
low). However since the vignetting is energy-dependent,
the incorrect vignetting may cause a small (∼ 0.3 keV)
shift in temperature for the outermost region. The over-
all uncertainty in the background is estimated to be at
most a few percent.

We compare our background subtraction method with
the method of using XMM standard blank sky data com-
piled by Lumb (2002); we find that both methods give
similar fit parameters. However, given the difficulty of
normalizing the CXB, the different high-energy leftovers
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from proton-flare subtraction and the different inter-
nal particle background which occurs when using back-
ground data from a different exposure, we chose to use
in-field (rather than blank-sky) background. We find this
is more robust in keeping the overall shape of the source
spectrum uncontaminated. In all our analysis we use a
background region of a circular annulus with inner and
outer radii of 6′ and 8′ respectively. In fact, recent work
by Lumb et al. (2003) suggests that the in-field back-
ground method is probably more accurate. The clus-
ters in the above paper, however, have smaller apparent
angular size which makes the background method more
reliable.

Spectral fitting

In analyzing the vignetting corrected, background sub-
tracted radial count-rate profile, we fit it to a conven-
tional beta model, S(r) ∝ (1 + r/rc)

−3β+0.5, where S(r)
is the source surface brightness at radius r. The fit
gives rc = 91.2 ± 0.7 h−1 kpc and β = 0.72 ± 0.01 with
χ2/dof. = 46 using data out to 700 h−1 kpc. Clearly this
model is not a very good fit; we show it here only for com-
pleteness and comparison with previous work, and note
that it is not used in the subsequent analysis. The bad
fit above results from the fact that the cluster emission is
more peaked in the core than the best fit beta model. To
obtain a general idea of the properties of the cluster and
compare this with previous results, we extracted spectra
for the central 3′ (356 h−1 kpc) region, centered on the
X-ray centroid at 13h11m29s.4 −01◦20′28′′. This radius
corresponds to 0.32 r200 or 3.9 rc. Background spectra
were extracted from source-free regions from the same
exposure. For XMM pn we use single and double pixel
events only whereas for XMM Mos we also use triple
and quadruple pixel events.

For spectral fitting we use the XSPEC (Arnaud 1996)
software package. We fit the data in the 0.3 − 10.0 keV
range using the MEKAL (Mewe, Gronenschild, & van
den Oord 1985; Mewe, Lemen, & van den Oord 1986;
Kaastra 1992; Liedahl, Osterheld, & Goldstein 1995)
model for the optically thin plasma and galactic absorp-
tion. With the absorption fixed at the Galactic value,
NH = 1.8 × 1020 cm−2 (Dickey & Lockman 1990), and
assuming a redshift z = 0.183 we arrive at a temperature
of 9.35± 0.17 keV and a metal abundance of 0.27± 0.03
Solar for both Mos cameras with χ2/dof. = 951/824.
From the pn camera we get 8.25±0.15 keV and 0.23±0.03
Solar with χ2/dof. = 1424/863. The best fit models with
residuals can be seen in Fig. 2 for Mos (Left) and pn
(Right). The pn temperature is in disagreement with
Mos data and the reason for this effect can be seen from
the residuals below 1 keV for pn (Fig. 2 (Right)). Fit-
ting the pn data above 1 keV we get 9.33 ± 0.20 keV
and 0.24 ± 0.03 Solar with χ2/dof. = 892/722, in bet-
ter agreement with Mos. The temperature from Mos
is in agreement with that found by Asca, 9.02+0.40

−0.30 keV
(Mushotzky & Scharf 1997). This observation does not
suffer from pile-up, nor is the low energy spectrum sensi-
tive to background subtraction. The background uncer-
tainties below 1 keV for this pn spectrum are less than
1 % whereas the pn soft excess is sometimes higher than
10 %. The excess is certainly not background related.
It is possible that the pn low-energy discrepancy can be

due to incorrect treatment of charge collection at lower
energies (S. Snowden, priv. comm.). To resolve the dis-
crepancy between Mos and pn we decided to compare
with Asca GIS/SIS, ROSAT PSPC and Chandra ACIS-I
data.

2.2. ROSAT, Asca and Chandra observations

Besides the discrepancy regarding the softest X-ray
band for the Abell 1689 data between the Mos and pn
detectors aboard XMM-Newton, the spectral fits to the
Chandra data presented by Xue & Wu (2002) imply a
higher absorbing column, 6.7± 1.5× 1020 cm−2 than the
Galactic value of 1.8 × 1020 cm−2 (Dickey & Lockman
1990). Since such excess absorption is not commonly de-
tected in X-ray data for clusters, this requires further
investigation. To determine if there is indeed any addi-
tional component of absorption beyond that attributable
to the Galactic column – and assess the reliability of
the softest energy band of the pn vs. Mos data – we
used the most sensitive soft (< 1 keV) X-ray data for
this cluster obtained prior to the XMM-Newton observa-
tions, collected by the ROSAT PSPC. The ROSAT ob-
servation conducted during July 18-24, 1992 (available
from HEASARC) yielded 13.5 ks of good data. We ex-
tracted the ROSAT PSPC counts from a region 3′ in
radius, centered on the nominal center of X-ray emis-
sion. For background, we selected a source-free region of
the same PSPC image. Using these data over the nomi-
nal energy range 0.15 - 2.1 keV with the standard PSPC
response matrix applicable to the observation epoch, we
performed a spectral fit to a simple, single-temperature
MEKAL model with soft X-ray absorption due to gas
with Solar abundances, using the XSPEC package as
above. In the fit we use metal abundances of 0.27 So-
lar obtained in the XMM Mos fit above. While the
limited bandpass of ROSAT PSPC precludes an accu-
rate determination of the temperature (the best fit value
is kT = 4.3+1.2

−0.8 keV, 90% confidence regions quoted),
the PSPC data provide a good measure of the absorbing
column: the best value is 1.9 ± 0.3 × 1020 cm−2, cer-
tainly consistent with the Galactic value. We note that
the difference between the temperature inferred from the
PSPC fit and that obtained from the XMM-Newton data
as above is a result of the limited bandpass of the PSPC,
located much below the peak of the energy distribution
of the cluster photons. The measurement of the absorb-
ing column, however, clearly indicates that the column
inferred from the Chandra observation by Xue & Wu
(2002) is not correct, and might be due to instrumen-
tal effects. We conclude that the absorbing column is
consistent with the Galactic value.

To obtain further constraints on the absorbing column,
we also used the Asca GIS and SIS data together with the
PSPC data for an independent constraint on the contin-
uum radiation in the fitting process. We performed stan-
dard extraction of data from all Asca detectors, also from
a region from a region 3′ in radius for the source, and a
source-free region of the same image for background. We
performed a spectral fit simultaneously to data from the
PSPC and four Asca detectors. To account for possi-
ble flux calibration differences, we let the normalization
among all the different detectors run free. We used the
energy range of 0.7 − 9.0 keV and 0.5 − 8.5 keV for the
Asca GIS and SIS cameras respectively. Since Asca de-
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Fig. 2.— Best fit MEKAL models for the XMM Mos (Left) and pn (Right) data from the central 3′ region of Abell 1689. The absorbing
column was fixed at the galactic value (Dickey & Lockman 1990).

Fig. 3.— The ratio of the XMM Mos (Left) and pn (Right) spectra of Abell 1689 to the best fit model determined from the ROSAT and
Asca analysis.

tectors (and in particular, the SISs) often return spectral
fits with excess intrinsic absorption (Iwasawa, Fabian, &
Nandra 1999) we also let the absorbing column be fit-
ted independently for the GIS, SIS and PSPC detectors.
Temperature and metal abundances were tied together
for all datasets in the fit. The optical redshift z = 0.183
was used. The joint fit of ROSAT and Asca data gives us
the best fit temperature of 9.1±0.5 keV and abundances
of 0.25±0.06 Solar, in agreement with the values quoted
by Mushotzky & Scharf (1997), and the absorption (for
the PSPC data) 1.75 ± 0.08 × 1020 cm−2, in agreement
with the Galactic HI 21 cm data. We shall use this value
for the absorption in the subsequent analysis.

This best fit ROSAT/Asca model was compared with
the data from the same region in the XMM-Newton cam-
eras giving an unfitted reduced χ2 of 1.39 for pn and
1.06 for both Mos cameras combined. The ratio of these
spectra to the ROSAT/Asca model can be seen in Fig.
3. From this result we conclude that Mos low energy
response is more consistent with previous data and sub-
sequently, we choose to ignore all pn data below 1.1 keV.
Re-fitting the XMM data from the above region using
0.3 − 10.0 keV for Mos data and 1.1 − 10.0 keV for
pn leaving the absorbing column as a free parameter
yields nH = 1.08 ± 0.16 × 1020 cm−2, a temperature of
9.43+0.16

−0.15 keV and metallicity of 0.26±0.02 Solar. While
this fitted value of absorption is formally inconsistent

with the Galactic and ROSAT-inferred values, this is a
relatively small difference, which might be due to the
slightly imperfect calibration of the Mos detectors or
the assumption of isothermality made by us for this fit
(since T and nH are correlated in the fitting procedure).
We note that using the ROSAT value for absorption will
give us a somewhat lower measure on the temperature
(see below).

Finally, we reduced the Chandra data for Abell 1689
using the most recent release of data reduction software;
specifically, due to the degradation of the Chandra ACIS-
I low-energy response correction for the charge transfer
inefficiency (CTI) is necessary, and we applied this to
the Chandra data. As of Chandra data analysis software
package CIAO ver. 2.3 this correction can be applied
in the standard event processing. It is also necessary to
account for the ACIS excess low-energy absorption due
to hydrocarbon contamination. We used the acisabs

code for the correction to the auxiliary response func-
tion. The event grades used in the ACIS analysis were
GRADE=0,2,3,4 and 6.

The cluster was observed with the Chandra ACIS-I de-
tector array at two separate occasions for 10 ks each on
2000-04-15 and 2001-01-07. Spectra were extracted for
the central 3′ region centered on the X-ray centroid at
13h11m29s.4 −01◦20′28′′ following the CIAO 2.3 Science
Threads for extended sources. Fig. 4 shows the ratio
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Fig. 4.— The ratio of the Chandra ACIS-I spectra of Abell 1689 to the best fit model determined from the ROSAT and Asca analysis,
before (Left) and after (Right) the acisabs correction. Data used for the spectrum include events with ACIS grades 0, 2, 3, 4, and 6.

of the combined Chandra data to the best fit model de-
termined from ROSAT and Asca above. The left spec-
trum is before and the right after the acisabs correction.
Fitting the corrected spectrum to an absorbed MEKAL
model in the energy range 0.3 - 7.0 keV yields absorp-
tion of 1.7±0.6×1020 cm−2, a temperature of 12.4±1.1
keV and abundances of 0.34 ± 0.10 Solar using the op-
tical redshift z=0.183. The discrepant absorption found
by Xue & Wu (2002) (using data 0.7 - 9.0 keV) is ap-
parently corrected for by acisabs and the value is in
agreement galactic absorption. However there is still a
large discrepancy in temperature, which also can be seen
from the high energy ends of Fig. 4. Part of this effect
can possibly be attributed to the high energy particle
background but more likely to uncorrected instrumental
effects. Repeating all above steps for single pixel events
only (GRADE=0) in order to achieve higher spectral ac-
curacy gives us a best fit temperature of 7.2±0.4 keV. We
cannot account for the differences between the two Chan-
dra data sets (using GRADE=0 vs. GRADE=0,2,3,4
and 6 events) nor between the results of the Chandra
and XMM spectral fits. We note here that the photon
statistics resulting from the XMM observation is supe-
rior to that in the Chandra data, and since our analysis
does not require the superior angular resolution of the
Chandra mirror, we limit the analysis below to the XMM
data.

3. SPECTRAL ANALYSIS

3.1. Temperature and metallicity distribution for a
spherically symmetric model

To obtain a radial profile of cluster gas temperature,
abundance, and density, we first make the assumption
that the cluster is spherical and that above properties
are only functions of radius. For this, we divide the im-
age of the cluster into 11 concentric annuli out to 5′50′′

(693 h−1 kpc) centered on the X-ray centroid. For each
annulus, we extract spectra from all EPIC cameras, and
we set the inner and outer radii of each region by re-
quiring that each annulus contains at least 9000 counts
per each Mos camera and 13000 for pn. This allows us
to derive a reliable estimate of temperature in each re-
gion. Point sources with intensities greater than 3σ over
the average are excluded. The outer radii of the annuli

are as follows: 15′′, 25′′, 35′′, 47.5′′, 60′′, 75′′, 95′′, 125′′,
165′′, 230′′ and 350′′.

Average cluster properties were determined using all
annular spectra simultaneously out to 693 h−1 kpc
(0.61 r200, 7.6 rc) using the same spectral fitting pro-
cedures as in Section 2.1.0. We use the optical redshift
of z = 0.183 (Teague et al. 1990) and the line of sight
absorption of NH = 1.75× 1020 cm−2 as measured from
ROSAT data, and also consistent with the Galactic col-
umn density (Section 2.2). The mean temperature of
the cluster is found to be kT = 9.00+0.13

−0.12 keV and the
mean abundance 0.25 ± 0.02 Solar. We note that leav-
ing the redshift as a free parameter gives a best fit red-
shift z = 0.173 ± 0.003 (90% confidence range) which
is considerably less than measured via optical observa-
tions. Considering Mos and pn data separately gives
z = 0.171± 0.002 and z = 0.178± 0.003 respectively.

In order to take into account the three-dimensional na-
ture of the cluster we consider the spectrum from each
of the 11 annuli to be a superposition of spectra from a
number of concentric spherical shells intersected by the
same annulus. The spherical shells have the same spher-
ical radii as the projected radii of the annuli. We assume
that each shell has a constant temperature, gas density
and abundance. The volume for each annulus/shell inter-
section is calculated to determine how large a fraction of
emission from each shell should be attributed to each an-
nulus. Assigning a spectral model to each spherical shell
we can simultaneously fit the properties of all spherical
shells.

In practice we use the method of Arabadjis, Bautz,
& Garmire (2002) where we have a matrix of 11 × 11
MEKAL models with absorption in XSPEC. In the pro-
cess of fitting the data in XSPEC, each datagroup (con-
sisting of three data files: pn, Mos1 and Mos2 spectra
for each annulus) is fitted using the same set of mod-
els. For the central annulus (the one with zero inner
radius so it’s actually a circle), which will intersect all 11
spherical shells, we will need to apply 11 MEKAL mod-
els to represent these. This means that we have to apply
11 MEKAL models to each datagroup (annulus) with
absorption where each model represents the properties
of one spherical shell. The normalization of each shell
model is set to be the ratio of the volume that shell occu-
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Fig. 5.— The radial metallicity distribution of Abell 1689 as
derived from the spectral deprojection fitting.

pies in the cylinder that is the annulus/shell intersection
to the volume it occupies in the central annulus. Abun-
dance and temperature are tied together for the models
representing the same spherical shell. Of course not all
annuli intersect every shell, and for those shells not inter-
sected by the annulus to which they are attributed, the
model normalization will be zero. The matrix of MEKAL
models is thus triangular and can be fitted directly to
the spectra we have extracted from annular regions in
the data. This approach allows for all data to be fitted
simultaneously, and we do not have the problem with
error propagation which occurs when starting to fit the
outermost annulus and propagating inward subtracting
contributions from each previous shell.

The metallicity profile (Fig. 5) from the deprojection
shows signs of increasing abundance toward the center of
the cluster. In temperature (Fig. 6) we find an apparent
decrease for large radii (kT < 8 keV), an effect that has
been seen in analysis of other clusters with XMM (see
e.g. Pratt & Arnaud (2002)). Gas dynamic simulations
of the formation of galaxy clusters also show a decline
of temperature at large radii (Evrard & Metzler 1996).
We do not find a significant cooling in the cluster core
with the highest temperature (kT ∼ 9.5 keV) near the
core radius: in fact, we will show in section 3.2 that the
temperature profile is not symmetric around the cluster
center. We note that for completeness, we also performed
the above analysis with the best-fit value of the redshift
inferred from the X-ray data alone, and while the ex-
act values of temperature and elemental abundances are
slightly different, about 0.2 keV lower for temperature,
the general trends in the radial runs of the parameters
are the same.

The limited point spread function (PSF) of the XMM
mirrors is a potential problem especially for the annuli
located close to the center since those are not much larger
than the PSF FWHM of ∼ 6′′. Some of the flux incident
on the central (circular) region will be distributed over
the outer annuli and vice versa. This flux redistribu-
tion will have the effect of smoothing out the measured
temperature profile since all annuli will have some flux
that originally belong in other annuli. This effect has
been studied in detail by e.g. Pratt & Arnaud (2002)
who find that correcting for the PSF redistribution gives
a profile that is consistent with an uncorrected profile.

Fig. 6.— The radial temperature distribution of Abell 1689 as
derived from the spectral deprojection fitting.

Abell 1689 has a temperature profile without large tem-
perature variations and no large central flux concentra-
tion. We conclude that the effect of flux redistribution in
our case will be small and we do not attempt to correct
for this. The PSF is also weakly energy dependent, and
to quantify its possible effect on the observed tempera-
ture profile, we calculate the energy dependent flux loss
from the central annulus and the effect on the central
temperature. The difference in flux loss between various
energy bands (ranging from 1.5 to 7.5 keV) for the on-
axis PSF is ∼ 3%. We find that for a cluster with an
assumed temperature of 9 keV, this could give an error
of the central temperature by at the most 0.5 keV. We
note that this is a maximum difference since in practice,
the flux gained from outer annuli could somewhat reduce
this effect by working in the opposite manner.

The luminosity of the cluster in the 0.5 − 10.0 keV
band, calculated from the best fit model above (with
z = 0.183) gives LX (EdS) = 1.02× 1045 h−2 ergs s−1 for
an EdS (ΩM = 1.0, ΩΛ = 0.0) Universe or LX (CDM) =

1.21×1045 h−2 erg s−1 for a CDM (ΩM = 0.3, ΩΛ = 0.7)
Universe. This corresponds to a bolometric luminosity
of Lbol (EdS) = 1.63× 1045 h−2 erg s−1 or Lbol (CDM) =

1.94× 1045 h−2 erg s−1. All above values should include
10% as the absolute calibration error of XMM. From
Chandra analysis, Xue & Wu (2002) find Lbol(EdS) =

1.66 ± 0.64 × 1045 h−2 ergs s−1 whereas Mushotzky &
Scharf (1997) find Lbol(EdS) = 1.77 × 1045 h−2 ergs s−1

from Asca data, both in agreement with our results.
This does not provide any new information regarding the
location of Abell 1689 in the Luminosity-Temperature
(Mushotzky & Scharf 1997) relation and it is still in a
close agreement with the trend suggested by other clus-
ters.

3.2. Asymmetry analysis

With the good quality XMM data, it is possible to
verify the result of Xue & Wu (2002) that there is no
discrepancy between the optical and X-ray centers of the
cluster. We determine the center of X-ray emission for
Abell 1689 using XIMAGE command centroid. We also
include a measurement of the lensing center from Duc
et al. (2002) and the X-ray measurement from ROSAT
by Allen (1998) (Table 1). We find that all values agree
within 3′′ except the ROSAT estimate, the offset of which
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Fig. 7.— Spatial distribution of spectral fit temperatures (6-10 keV) with superimposed logarithmic X-ray contours for A1689. 6 keV is
marked as black, 10 keV is white, and intermediate temperatures are various shades of gray.

Table 1. Comparison of the position of the cluster center of Abell
1689 from member galaxies, gravitational lensing and X-ray data

Method Center Ref.
R.A. (J2000.) Dec. (J2000.)

X-ray (ROSAT) 13h11m29s.1 −01◦20′40′′ 1
X-ray (Chandra) 13h11m29s.45 −01◦20′28′′.06 2
Lensing 13h11m29s.6 −01◦20′29′′ 1
Optical 13h11m29s.44 −01◦20′29′′.4 3
X-ray (XMM) 13h11m29s.4 −01◦20′28′′ 4

References. — (1) Allen (1998) ; (2) Xue & Wu (2002); (3) Duc et
al. (2002); (4) This study.

we attribute to uncertainties in ROSAT HRI astrometry.
This apparently perfect agreement among X-ray, lens-
ing, and optical centers leads us to conclude that the
ICM density peak and the central dominant galaxy is
probably located at the bottom of the dark matter po-
tential well. Still, the apparent non-uniformity of the
ICM radial temperature distribution as well as the offset
of optical and X-ray redshifts prompted us to analyze
the spatial structure of the cluster. In Fig. 7 we show

the spatial temperature distribution. Spectra were ex-
tracted in rectangular regions and fitted using the same
method as in Section 2.1.0. The temperature in the fig-
ure scales linearly from 6 keV (black) to 10 keV (white).
The errors on the temperature of the inner 16 regions
are ∼ 0.5 keV, while the errors on the outer 8 regions are
∼ 1.0 keV. We clearly see an asymmetry in the temper-
ature around the cluster center with an overall increase
toward the northeast.

To check the consistency of these results and to in-
crease our accuracy, we re-group the data in larger spa-
tial regions and perform a fit using the same above pro-
cedure. We first fit the data keeping the redshift frozen
at the optical value. Temperatures derived from this fit
are shown in Fig. 8 (Left). Thereafter, we leave the red-
shift as a free parameter and re-fit the data. The fitted
redshifts for these regions are shown in Fig. 8 (Right).
All errors in Fig. 8 are 90% confidence limits. In the
temperature map, we see a clear discrepancy between the
northern and southern part of the cluster with a hint of a
temperature gradient in the southwest – northeast direc-
tion. The redshift map reveals a high redshift structure
to the east at z = 0.185± 0.006 separated from the rest
of the cluster at z ∼ 0.17. Analyzing the Mos and pn
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Fig. 8.— The spatial distribution of temperature (left) and redshift (Right) in the central region of Abell 1689 with 90% confidence
intervals.

data separately for this high redshift region gives a broad
minimum in χ2 at z = 0.187±0.008 for Mos whereas pn
shows several minima in the z = 0.165− 0.200 range.

This region may indicate a subcluster falling inward
away from the observer. This is further supported by the
optical data, indicating that there are also high-redshift
giant elliptical galaxies in this region (Fig. 1): it is in-
teresting to speculate if this is actually the remains of a
cluster core? Especially intriguing is the apparent coin-
cidence between the smaller subcluster as suggested by
strong lensing (Miralda-Escudé & Babul 1995) and our
high redshift gas region approximately 1′ northeast of the
main cluster. Another possibility is that the redshift vari-
ation is due to large bulk motions of the intra-cluster gas.
It has been shown in gas dynamic simulations that clus-
ters with apparently relaxed X-ray profiles can have com-
plex gas-velocity fields and be far from relaxed (Evrard
& Metzler 1996). This kind of motion could give rise to
non-thermal emission from shocks etc. In our analysis we
cannot distinguish between the two possibilities of bulk
motion and subclustering.

This measurement of non-uniform redshift distribution
of the X-ray emitting gas is important, and to verify if it
could be due to instrumental effects, we investigated this
in more detail. The data in the regions above are from
different CCD chips in the pn data whereas for Mos all
data are from the same chip. Since the pn camera pro-
vides about half of the data, we want to verify that there
are no gain shifts between the CCDs, which, if present,
could easily cause such an effect. Most of the cluster
emission is on the CCD chips 4 and 7. To test for any
possible gain offset, we extracted the data from each of
the chips individually to verify the position of the inter-
nal fluorescent CuKα line, with the dominant component
at 8.0478 keV. The spectra in the range 7.8 − 8.2 keV
are fitted to a Gaussian profile: both datasets yield es-
sentially the same peak position of 8.051 ± 0.001 keV.
This corresponds to a possible artificial redshift offset of
maximum ∆z = 0.0005. To explain the difference in the

offset measured by us as an instrumental effect, we would
have to have an offset (say at the Fe K line at 6.7 keV) of
62 eV, and not on the order of 1 eV, as inferred from the
Cu K instrumental line. Hence we conclude that there
is no gain shift that could alter our redshift measure-
ments between pn CCDs 4 and 7. According to XMM
calibration documentation (Kirsch 2003) the magnitude
of calibration errors for pn & Mos should be no larger
than 10 eV.

4. MASS PROFILE

4.1. Mass calculation

If we assume that the cluster is spherical with a smooth
static gravitational potential and that the intra-cluster
medium is a pressure-supported plasma, we can employ
the hydrostatic equilibrium equation. The circular X-ray
isophotes (Fig. 1) generally indicate that a cluster is in
dynamical equilibrium. The hydrostatic equation can be
written as (Sarazin 1988) :

M(r) = −kTg(r) r

Gmpµ

(

d ln Tg(r)

d ln r
+

d ln ρg(r)

d ln r

)

(1)

where M(r) is the enclosed total gravitating mass en-
closed within a sphere of a radius r, Tg(r) and ρg(r)
are temperature and density of the ICM at r, µ is the
mean particle weight and mp is the proton mass. Using
the temperature and normalizations from the spectral de-
projection fitting we calculate the total gravitating mass.
Errors are treated by error propagation.

The mass distribution is fitted to a singular isothermal
sphere (SIS)

M(r) =
2σ2

rr

G
(2)

where σr is the 1-dimensional velocity dispersion, which
is used here for a comparison with previous mass esti-
mates.

The predicted density profile from CDM hierarchal
clustering according to Navarro et al. (1997) for dark
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matter halos is

ρ(r)

ρcrit(z)
=

δc

(r/rs)(1 + r/rs)2
(3)

where ρcrit(z) is the critical energy density at halo red-
shift z and δc is characteristic density defined by

δc =
200

3

c3

[ln(1 + c) − c/(1 + c)]
(4)

where c = r200/rs is the concentration of the halo defined
as the ratio of the virial radius r200 to rs, which in turn
is a characteristic radius in the NFW model. The critical
density at redshift z for a flat (Ω0 = 1) Universe is

ρcrit(z) =
3H2

0

8πG
[ΩM (1 + z)3 + ΩΛ] (5)

where H0 is the Hubble constant, ΩM and ΩΛ are the
current contributions of matter and vacuum energy re-
spectively to the energy density of the Universe.

More recent numerical studies suggest a steeper core
slope and a sharper turn-over from small to large radii
(Moore et al 1999). Both models can be generalized as

ρ(r) =
ρ0

(r/rs)γ [1 + (r/rs)α](β−γ)/α
(6)

(Zhao 1996), where γ and β characterize the density slope
at small and large radii respectively whereas α deter-
mines the sharpness in the turn-over. Most studies agree
on β = 3 but the value of γ is still being debated. The
NFW and Moore profiles fit into the parameter space
(α, β, γ) as (1, 3, 1) and (1.5, 3, 1.5) respectively.

We choose to fit our data to the NFW model (Eq. 3)
which, when integrated over r, yields

M(r) = M0 × [ln(1 + r/rs) + (1 + r/rs)
−1 − 1] (7)

where M0 = 4πρcδcr
3
s . We find that the data give the

best fit for the NFW model with c = 7.2+1.6
−2.4 and r200 =

1.13±0.21 h−1 Mpc whereas the SIS fit gives σr = 918±
27 km s−1. The total mass data and models are shown
in Fig. 9 together with the mass of the X-ray emitting
gas Mgas. Model parameters are summarized in Table
2. For a cosmology with ΩM = 0.3 and ΩΛ = 0.7, the
best fit NFW model changes to c = 7.7+1.7

−2.6 and r200 =

1.31± 0.25 h−1 Mpc.
Another cosmologically important quantity for clus-

ters is the fraction of the total mass that is in the X-
ray emitting gas, fgas = Mgas/MTOT . Allen et al.
(2003) analyze data from the Chandra Observatory for
10 dynamically relaxed clusters between z = 0.09 and
z = 0.46 and measure an average redshift independent
fgas = 0.108± 0.014 at the r2500 radius (where the total
mass density is 2500 times the critical density at the red-
shift of the cluster). The cosmology where this is valid is
a flat ΛCDM cosmology with ΩM = 0.291+0.040

−0.036 assum-

ing Ωb h2 = 0.0205 ± 0.0018 and h = 0.72 ± 0.08. The
error on fgas above is the rms dispersion of the Allen et
al. (2003) sample which is comparable to the individ-
ual errors on fgas. With our best fit NFW model in the
above cosmology we find fgas = 0.072 ± 0.008 for Abell
1689 at the r2500 radius. This is lower than all the clus-
ters in the Allen et al. (2003) sample and significantly
lower than the mean. We find that in our estimate fgas

Fig. 9.— Spherical mass profile of Abell 1689 (pluses) with best
fit NFW model (solid line) and singular isothermal sphere model
(dot-dashed). The singular isothermal sphere is clearly not a very
good fit to the data (see also Table 2). For comparison, the mass
of the intra-cluster gas is included (asterisks).

has not converged to a constant and this might help ex-
plain part of the discrepancy. However, it may be the
case that for many clusters fgas does not converge until
well beyond r2500.

Comparing the mass and temperature at r2500 of Abell
1689 to the M-T relation derived for a set of relaxed
clusters (Allen & Fabian 2001) shows a low mass for
the temperature of Abell 1689. The M-T relation pre-
dicts H(z)/H0 × M2500 = 4.5 × 1014M�(±10%) for a
9 keV cluster where H(z) is the Hubble constant at
the redshift of the cluster. For Abell 1689 we find
H(z)/H0 × M2500 = 2.4 × 1014M�(±15%), significantly
lower. The above values were derived assuming a flat
ΛCDM cosmology with ΩM = 0.3, ΩΛ = 0.7 and h = 0.7.
The unusually low mass may be due to the fact that the
mass of Abell 1689 seems to increase steadily beyond
r2500. However, we note that a lower mass (than would
be predicted by the M-T relation) is not an uncommon
feature for unrelaxed clusters (cf. Smith et al. (2003)).

For completeness, we note that the calculated total
mass includes the ICM and galaxy mass contributions as
well as the dark matter. The proper way of fitting the
NFW model would be to subtract these contributions
prior to performing the fit. The NFW model for the
actual dark matter halo is not used in this paper; we
only calculate the total mass profile.

4.2. Core slope

The mass data were fitted to a simple power law
(M(< r) ∝ rγ) in the ranges 20 − 90 h−1 kpc and
200 − 500 h−1 kpc. We find the best fit of the slope
of the matter profile to to be 1.73± 0.34 and 0.72± 0.32
for small and large radii, respectively. This corresponds
to total mass density slopes (ρ ∝ rα) of α = −1.27±0.34
and α = −2.28 ± 0.32, in good agreement with what
is expected from numerical simulations of CDM hierar-
chal clustering. We note here that Bautz & Arabadjis
(2002) have measured the density profile of Abell 1689
for r < 100 h−1 kpc using Chandra data and found
α ∼ −1.3.

We do not observe a flattening of the core density
profile but find a slope close to the core to be some-
where in between the preferred Moore and NFW profiles.
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Table 2. Best fit models for the total mass profile of Abell 1689

Model Range [h−1kpc] Parameters χ2 (dof.)

NFWEdS
a 20 − 500 c = 7.2 r200 = 1.13 h−1 Mpc 7.64 (8)

NFWCDM
b 20 − 500 c = 7.7 r200 = 1.31 h−1 Mpc 7.64 (8)

SIS 20 − 500 σ = 918 km s−1 61.4 (9)
POW 20 − 90 γ = 1.73 ± 0.34 *

POW 200 − 500 γ = 0.72 ± 0.32 *

Note. — The singular isothermal sphere (SIS) and powerlaw (POW) models are not quoted for different cosmologies since they are independent
of cosmological parameters.
aEdS refers to a flat cosmology with ΩM = 1 and ΩΛ = 0
bCDM refers to a flat cosmology with ΩM = 0.3 and ΩΛ = 0.7
*These fits are with one degree of freedom only and hence we do not state χ2 for these.

Thus we do not claim to be able to detect nor dismiss
any kind of modification to standard cold dark matter.
Nonetheless, the X-ray data imply an upper limit on the
self-interaction of dark matter; see, e.g., the discussion
in Arabadjis et al. (2002). Such comparisons are more
meaningful for cooling-flow clusters which are presum-
ably more relaxed objects.

5. DISCUSSION

5.1. Comparison with Lensing

To compare our results with those obtained from grav-
itational lensing, we reprojected our derived mass distri-
bution into a two dimensional distribution by summing
up the contributions from each shell along the line-of-
sight. Of course this method assumes that the outermost
shell is the absolute limit of the cluster, and we recognize
that this will not be entirely accurate. Therefore we also
include our projected best-fit NFW model which has an
analytic expression. Reprojected mass and NFW model
are shown in Fig. 10 where pluses with error bars are
the reprojected mass, the solid line is our NFW model,
the triangle is the strong lensing result (Tyson & Fis-
cher 1995), the asterisks are lensing magnification results
measured by the distortion of the background galaxy lu-
minosity function (Dye et al. 2001), the dot-dashed lines
are lensing magnification results measured by the deficit
of red background galaxies (Taylor et al. 1998), and the
dashed line is the best fit NFW model from weak gravi-
tational shear analysis (Clowe & Schneider 2001; King et
al. 2002). The comparison of our results with measure-
ments from gravitational lensing is summarized in Table
3.

The X-ray mass appears to be in good agreement with
that derived from weak gravitational shear but cannot
be reconciled with the strong lensing data nor with the
data from gravitational lens magnification. This discrep-
ancy in lensing was noted earlier by Clowe & Schneider
(2001) as well as King et al. (2002) who cannot find an
agreement using any realistic corrections. The high ve-
locity dispersion measured by Teague et al. (1990) and
the apparent grouping of galaxies along the line of sight
(Girardi et al. 1997) may indicate that this cluster is not
as regular as we expect from its smooth circular surface
intensity. The two component model of Miralda-Escudé
& Babul (1995) also strongly suggests non-uniformity.
This might explain the discrepancies between mass es-
timates from gravitational lensing and from X-rays. A

Fig. 10.— Unparameterized projected mass distribution, assum-
ing that our the outermost shell is the limit of the cluster mass
(pluses with errorbars), plotted with reprojected best fit NFW model
(solid line). Also shown are gravitational lensing results from
strong lensing (triangle), distortion of background galaxy luminos-
ity function (asterisks), deficit in number counts of red background
galaxies (dot-dashed lines) and projected best fit NFW model from
weak gravitational shear (dashed line).

possibility could be that this is a cluster undergoing a
major merger, where a sub-clump close to or along the
line-of-sight is being stripped from gas or just has very
low X-ray luminosity.

5.2. Large scale configuration

To illustrate the possible explanation that a merger
might be taking place in this cluster and motivate why
the X-ray derived mass should be lower than expected
we employ a simple model. We assume that we have
two perfectly spherical clusters aligned exactly along the
line of sight having identical mass (M1) and gas density
(n1). Since the thermal bremsstrahlung emissivity scales
as n2 we will measure a surface intensity S(r) ∝ n2(r)
and from this infer a gas density n(r). In this example
however we have S(r) = 2S1(r) ∝ 2n2

1(r) and hence we

will conclude that n(r) =
√

2 n1(r). This means that we
underestimate the total mass of the X-ray emitting gas
by a factor

√
2.

From the hydrostatic equation (Eq. 1) we can write
M(r) ∝ d(ln n)/d(ln r) ∝ n−1 dn/dr. From the gradient
of the measured surface brightness dS/dr ∝ n(r) dn/dr
we infer a gradient on the gas density. In our sce-
nario it is true that dS/dr = 2 dS1/dr which yields
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Table 3. Comparison of previous mass estimates from gravitational
lensing to our X-ray estimate of Abell 1689

M2D [1015 h−1 M�] Radius [h−1 Mpc] Ref. Type of Measurement

0.18 ± 0.01 < 0.10 1 Strong lensing
0.082 ± 0.013 < 0.10 4 X-ray
0.50 ± 0.09 < 0.24 2 Weak lensing magnification
0.48 ± 0.16 < 0.25 3 Weak lensing magnification
0.20 ± 0.03 < 0.25 4 X-ray

References. — (1) Tyson & Fischer (1995) ; (2) Taylor et al. (1998); (3) Dye et al. (2001); (4) This study.

dn/dr =
√

2 dn1/dr. For the total mass we will measure
M(r) ∝ n−1 dn/dr = n−1

1 dn1/dr. The actual mass of
the cluster pair is of course 2 M1 which is twice what
we measure. We have underestimated the total gravitat-
ing mass by a factor 2. This is in agreement what we
find in our comparison with gravitational lensing derived
masses which would be able to measure the total mass
accurately in this example.

While this exact scenario is not very probable it shows
that a close configuration of clusters will underestimate
the X-ray mass, maybe by a factor as large as 2. In
the above example the gas mass fraction would actu-
ally be overestimated which is the opposite of what we
find. However if a merger was in fact taking place the
hydrostatic equation would probably be quite inaccurate
estimation of the mass. There would be other sources of
pressure and probably the cluster would not be in equi-
librium: examples here might be magnetic fields, or addi-
tional pressure support from non-thermal particles, likely
to be accelerated in shocks that arise during a merger.
Also since we do not detect two separate peaks in the
surface intensity map, it is much more likely we have a
lower density companion cluster or one merging irregular
system.

5.3. The dynamical state of Abell 1689

There is a good evidence suggesting that Abell 1689 is
undergoing a merger. We find that the X-ray measure-
ment yields the value of mass that is low in comparison
to gravitational lensing and the M-T relation for relaxed
clusters, both by about a factor 2. We have shown that
this may be the result of grouping or elongation along
the line of sight. The cluster has a low gas mass frac-
tion compared to other clusters, which is perhaps the
result of large scale gas motion. The velocity dispersion
of the member galaxies is very high and there are hints of
subgroupings in the redshift space. The high number of
spiral galaxies is unusual for a rich cluster and suggests a
lower density region, where the spiral fraction would be
higher, perhaps in front of or behind the main cluster.
A state of complex dynamics is supported by the non-
uniform temperature distribution and maybe most im-
portantly by the variation in redshift of the X-ray emit-
ting gas across the cluster. Finally, recent measurements
of the Sunyaev-Zeldovich effect by Benson et al. (2004)
indicate that the inferred optical depth of the Comp-
tonizing gas might actually be higher than one would
infer from the simple spherically symmetric model obey-
ing hydrostatic equilibrium, and a clumpy or elongated
structure (aligned along the line of sight) would alleviate

the discrepancy.
Clearly, this cluster deserves further detailed studies;

it is a very interesting potential target for the Astro-
E2 mission, where the X-ray calorimeter will provide an
unprecedented spectral resolution, capable of clearly con-
firming the complex redshift structure of the intra-cluster
gas, hinted by the XMM data. If the cluster is indeed
undergoing a merger, this might provide an environment
where at least some fraction of the gas is accelerated (for
instance, via shocks) to form a non-thermal distribution
of particles, which might produce radiation detectable
in radio (via synchrotron emission), in hard X-rays (by
Comptonizing the Cosmic Microwave Background), and
in gamma rays, potentially detectable by the future mis-
sion GLAST.

6. SUMMARY

The superior effective area of the XMM-Newton tele-
scope has allowed us to perform a detailed analysis of
Abell 1689. Comparing with the data from ROSAT,
Asca and Chandra we verified that the data are consis-
tent with earlier observations. Importantly, there is no
indication of any additional absorbing component in the
XMM data, attributing the low-energy excess absorption
found by Xue & Wu (2002) in the Chandra data to uncor-
rected instrumental effects. The now available acisabs

code successfully corrects for these effects. We confirm
earlier findings that there is a large discrepancy, of a fac-
tor 2 or more, between mass estimates from gravitational
lensing and X-ray derived mass using an unparameter-
ized deprojection technique. Our analysis indicates that
this discrepancy is true for the central part of the cluster,
but also might be the case for the entire observable clus-
ter; our finding is in contrast to Xue & Wu (2002), who
conclude that at large radii, there is no disagreement
between the X-ray and lensing masses. Although the
X-ray determined mass appears to be discrepant from
the values determined from most lensing techniques, it
seems to be in good agreement with that derived from
weak gravitational shear. We compare the gas mass of
the cluster with the total mass, and find that for Abell
1689, fgas = Mgas/MTOT is 0.072 ± 0.008, significantly
less than 0.108± 0.014, the value derived by Allen et al.
(2003) for 10 dynamically relaxed clusters. Our calcula-
tion of the asymmetric temperature distribution of the
cluster provides further evidence that this cluster is not
in a relaxed state: the lower than expected gas mass frac-
tion is yet another piece of evidence. We also present the
first measurement of asymmetries in redshift for different
regions of the ICM in the cluster determined from the X-
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ray data alone. A similar analysis was done by Dupke
& Bregman (2001) who claim a 3-σ detection of bulk
motion from Asca observations of the Centaurus cluster.
We argue that the redshift variation detected here might
be either due to line-of-sight clustering or possibly due to
large bulk motions of the gas. Even though this cluster
is clearly not as relaxed as might be expected from its
apparent spherical form, we find the slope of the total
mass in the central region to be in good agreement with
what is expected from numerical simulations of structure
formation. The density slope for r < 90 h−1 kpc is −1.3.
While our current understanding of the structure and dy-
namics of galaxy clusters is insufficient to put limits on
the self-interaction of dark matter, better data and more
accurate simulations appear promising for the future.
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