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Abstract

This paper presents a case study of solving very
large sparse linear systems in end-to-end accel-
erator structure simulations. Both direct solvers
and iterative solvers are investigated. A parallel
multilevel preconditioner based on hierarchical
finite element basis functions is considered and
has been implemented to accelerate the conver-
gence of iterative solvers. A linear system with
matrix size 93,147,736 and with 3,964,961,944
non-zeros from 3D electromagnetic finite element
discretization has been solved in less than 8 min-
utes with 1024 CPUs on the NERSC IBM SP. The
resource utilization as well as the application per-
formance for these solvers is discussed.

1 Introduction

Parallel computing has dramatically advanced
the role of computer modeling in the design
of high-energy particle accelerators, especially
in the research and development of accelerating
structures. New numerical tools have been shown
to be capable of modeling realistic accelerator
components to an unprecedented level of com-
plexity, speed, and accuracy (orders of magnitude
beyond what was previously possible). There are
parallel electromagnetic system simulation(ESS)

codes, Omega3P, S3P, and T3P, under devel-
opment at Stanford Linear Accelerator Center
(SLAC) as part of the United States Department
of Energy SciDAC project “Advanced Computing
for 21st Century Accelerator Science and Tech-
nology”.

The suite of parallel three-dimensional ESS
codes consists of Omega3P, an eigensolver for
computing resonant modes in accelerator cavities,
S3P, a scattering matrix solver for open struc-
tures, and T3P, a time-domain solver for wave
propagation and beam excitation. All three codes
require an efficient linear solver for solving the
very large sparse linear systems resulting from
three-dimensional finite element discretization of
complex accelerator structures. State-of-the-art
parallel direct solver packages such as WSMP [8],
SuperLU [11], MUMPS [2], and SPOOLES [4]
have demonstrated that a high level of perfor-
mance can be achieved in solving sparse linear
systems on parallel computers.

On the other hand, iterative linear solvers usu-
ally require less memory so they are preferred
choices for very large sparse linear systems that
cannot fit into memory using direct solvers. Due
to the fact that linear systems from our applica-
tions are highly indefinite, the Conjugate Gradi-
ent (CG) method with incomplete factorization-
based preconditioners fails to converge. CG has
a very slow convergence rate with symmetric
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Gauss-Seidel preconditioners. In this paper, we
describe a multilevel preconditioner that leads to
significant improvement in the convergence rate
of iterative solvers. In Particular, a case study is
presented on the utilization of both direct solvers
and iterative solvers in large scale electromag-
netic simulations, with special emphasis on mem-
ory utilization and parallel performance when ap-
plied to extremely large linear systems derived
from realistic modeling of accelerating structures.

2 Electromagnetic Modeling

2.1 Eigenmode Analysis

In designing accelerating cavities, evaluating
cavity resonances is extremely important. In a
perfectly conducting cavity Ω, Maxwell’s equa-
tions in the frequency domain can be combined to
give the curl-curl equation in volume Ω with an
electric boundary condition on Γ1 and a magnetic
boundary condition on Γ2.

∇× (
1

µ
∇×

⇀

E) − ω2ε
⇀

E = 0 in Ω (1)

⇀
n ×

⇀

E = 0 on Γ1 (2)
⇀
n ×(∇×

⇀

E) = 0 on Γ2 (3)

where
⇀

E is the electric field, ε is electric permit-
tivity, µ is magnetic permeability,

⇀
n is the normal

vector to a boundary surface, and ω is the eigen-
frequency to be determined. With finite element

discretization, the electric field
⇀

E is expanded as:

⇀

E=
∑

ei

⇀

Ni (4)

where
⇀

Ni is the vector finite element basis func-
tion. Equation 1 becomes a generalized eigen-
value problem:

Kx =
ω2

c2
Mx (5)

Ki,j =
∫

1

µ
(∇×

⇀

Ni) · (∇×
⇀

Nj)dΩ (6)

Mi,j =
∫

ε
⇀

Ni ·
⇀

Nj dΩ (7)

where K and M are the stiffness and mass matri-
ces with c being the speed of light.

Note that K is symmetric while M is sym-
metric positive definite. In end-to-end accelera-
tor system simulations, the size of theses matri-
ces can be huge, reaching hundreds of millions
of degrees of freedom. In such cases, they are
too large to be solved with direct solvers due to
memory constraints and must be solved with it-
erative solvers. We have developed a parallel
eigensolver, Omega3P [16, 15], which has been
shown successful in solving large, complex accel-
erating cavity design problems. Omega3P uses
the shift-and-invert Lanczos algorithm whereby
in each Lanczos iteration, we solve a severely ill-
conditioned shifted linear system (K − σM)x =
b with σ being the shift. The choice of an effi-
cient linear solver is critical to the performance of
the eigensolver.

2.2 Scattering Matrix Calculation

While acceleration of particles is carried out
by resonance (standing wave) cavities, the trans-
port of wave power is provided by open (travel-
ing wave) structures. For these electromagnetic
structures, the transmission properties are of in-
terest and they are characterized by the scatter-
ing matrix (or S-parameters). The elements of the
scattering matrix are the transmission or reflection
coefficients of a particular wave mode at a struc-
ture opening or port due to coupling to an external
waveguide. The finite element formulation of the
scattering matrix problem closely follows that of
the eigenvalue problem in Section 2.1. The dif-
ference here is there is an additional driving term
which is provided by a known excitation at a spe-
cific port with a given frequency.

To compute the scattering matrix at a given op-
erating frequency ω, we solve a series of linear
systems with different right hand sides:
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K −
ω2

c2
Mx = b (8)

where stiffness matrix K and mass matrix M cor-
respond to those in eigenmode calculation of the
system without ports. Each right hand side b rep-
resents the driving term due to the excitation at
the ports. S3P is a parallel finite element code
that contains a set of linear solvers that are specif-
ically optimized to solve Equation 8 for finding
the scattering matrix of very large and complex
traveling wave structures.

2.3 Time-domain Simulation

Electromagnetic analysis can be performed in
the frequency domain via eigenmode and scat-
tering matrix calculations, or it can be carried
out in the time domain through direct simula-
tion. For accelerator applications, electromag-
netic time-domain simulation will find the re-
sponse of a structure to driven fields at waveg-
uide ports, to an antenna-generated pulse inside
it, or to a transient beam through the structure.
The wakefields generated by beam excitations are
of particular interest. These wakefields are chal-
lenging to calculate in the frequency domain be-
cause impedance spectrum of the structures spans
a wide frequency range when the wakefields are
excited by a very small beam. For this case,
time-domain simulation following the transient
response of the structure to the beam is more suit-
able because the wakefields are obtained directly
and the impedance spectrum can then be found
simply via a Fourier transform.

The time domain formulation of Maxwell’s
equations for an electric field leads to a second
order vector wave equation that becomes a set of
ordinary differential equations (ODE) when dis-
cretized with finite element basis functions. Here
are the ODEs:

M
d2

u

dt2
+ T

du

dt
+ Ku = f (9)

where K is the stiffness matrix, M is the mass
matrix as those in the above eigenmode analysis.
T is a time-independent damping matrix due to
loss. The right hand side, f , is a loading vector.

Using an implicit time stepping scheme, Equa-
tion 9 results in a linear system that has to be
solved at every time-step for the excitation given
by the right hand side. For wakefield calcu-
lations involving a small beam, the simulation
time is very long so as to adequately resolve the
impedance spectrum, thus requiring millions of
time steps. T3P is a parallel time-domain solver
under development based on the formulation as
described here to compliment the frequency do-
main solvers Omega3P and S3P. These three
solvers form a complete tool set for analyzing ac-
celerator structures. It is evident that efficient lin-
ear solvers play an important role in the perfor-
mance of these application codes.

3 Linear Solvers

The computational time spent in the linear
solvers dominates the run-time for all three of
the electromagnetic codes Omega3P, S3P and
T3P. Improving the performance of the linear
solver will not only reduce the computational time
in simulating realistic accelerator structures, but
may enable the modeling of larger, more compli-
cated structures at a much higher accuracy than
what was previously possible. Next, we will dis-
cuss the use of direct and iterative solvers in large-
scale electromagnetic simulations.

3.1 Direct Solvers

Given sufficient memory and reasonable per-
formance, direct solvers would be the method of
choice for solving sparse linear systems of equa-
tions. A typical direct solver comprises order-
ing for reducing fill-in, symbolic factorization,
numerical factorization, a triangular solver, and
iterative refinement. An efficient direct solver
greatly helps the performance of applications be-
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cause the linear systems with same matrix and dif-
ferent right hand sides need to be solved up to a
million times as is the case in many accelerator
applications. With a direct solver, a matrix needs
to be ordered and factorized only once. After that,
triangular solvers along with optional iterative re-
finement can be invoked multiple times for dif-
ferent right hand sides. State-of-the-art parallel
direct solver packages such as SuperLU, WSMP,
SPOOLES, and MUMPS have demonstrated that
a high level of performance can be achieved on
parallel computers. We use WSMP in our appli-
cations because we found it to be the most effi-
cient among the solver packages.

3.2 Iterative Methods

Krylov subspace iterative linear solvers such
as Conjugate Gradient (CG) require less mem-
ory than direct solvers do. They are preferred
for very large sparse linear systems that cannot fit
into memory using direct solvers. The linear sys-
tems resulting from finite element discretization
in accelerator applications are ill-conditioned and
good preconditioners are needed in order for the
iterative solver to converge. As a result, a mul-
tilevel preconditioner based on hierarchical finite
element basis functions has been implemented to
significantly improve the convergence rate of CG
solvers.

3.3 Multilevel Preconditioner

Finite element basis functions are hierarchical
when the basis functions of a given order are a
subset of the basis functions for a higher order.
We used the hierarchical vector bases presented
in [14]. Since each matrix row and column in-
dex in stiffness matrix K and mass matrix M cor-
responds to one particular basis function (or de-
gree of freedom) as defined in Equation 4, we
can order degrees of freedom (DOF) for lower
order basis functions before those for higher or-
der basis functions. For simplicity, assume that

quadratic hierarchical finite element basis func-
tions are used in applications. It is straightforward
to apply the following discussion to higher order
basis functions. We order DOFs such that matrix
K and M have a 2-by-2 block structure:

K =

(

K11 K12

K21 K22

)

M =

(

M11 M12

M21 M22

)

Let us denote A = K − σM. Thus, the linear
system (K − σM)x = b can be written in the
same 2-by-2 block form:

(

A11 A12

A21 A22

)(

x1

x2

)

=

(

b1

b2

)

(10)

A good preconditioner for the above linear sys-
tem has to be a good approximation of the matrix
A. In addition, the preconditioner system must be
solvable in much less time than the original lin-
ear system. Multilevel preconditioners [6, 14, 3]
based on hierarchical basis functions use the so-
lution from the matrices that correspond to lower
order basis functions to approximate the original
linear system. For example, a block Jacobi sta-
tionary method can be used as follows:

x1 = A
−1

11 b1 (11)

x2 = A
−1

22 b2 (12)

where sub-matrix A11, which corresponds to the
lower order finite element basis function, is fac-
torized using parallel sparse direct solvers. Thus,
Equation 11 is solved using triangular solvers
with factorized matrices. In contrast, Equation 12
is solved approximately using diagonal scaling or
Symmetric Gauss-Seidel iterations.

In the above block Jacobi method, the un-
knowns for higher order basis functions are not
coupled with those of lower order basis functions.
The preconditioning scheme can be improved by
coupling the unknowns through the block sym-
metric Gauss-Seidel stationary method,
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y1 = A
−1

11 b1 (13)

x2 = A
−1

22 (b2 − A21y1) (14)

x1 = A
−1

11 (b1 − A12x2) (15)

By directly factorizing A11, Equation 13 and 15
are solved using triangular solvers with factorized
matrices, whereas diagonal scaling or Symmetric
Gauss-Seidel is used to approximate Equation 14.

3.4 Linear Solver Framework

We have implemented a linear solver frame-
work in which either the direct solver from the
Watson Sparse Matrix Package (WSMP) [7] or
Krylov subspace methods from the Iterative Tem-
plate Library (ITL) [10] can be used for solving
large sparse linear systems.

WSMP is a general purpose library for the di-
rect factorization of large sparse matrices of linear
equations. For symmetric linear systems, WSMP
provides a highly scalable multi-frontal algo-
rithm [9] for sparse Cholesky (or LDLT ) factor-
ization, a moderately scalable parallel sparse tri-
angular solver, and a nested dissection algorithm
for computing fill-in reduction ordering. WSMP
uses both Message Passing Interface (MPI) and
multi-threading programming models. MPI is
used for cross network communication while the
Pthreads library is used to exploit more effi-
cient parallelism within multiprocessor comput-
ing nodes.

The Iterative Template Library (ITL) is a
generic iterative linear solver library written in
C++ with emphasis on both reusability and effi-
ciency. Algorithms in ITL are written to be inde-
pendent of matrix, vector, or preconditioner data
structures. As long as a specific data structure
conforms to a set of minimal requirements de-
fined by each concept [5], ITL algorithms can
be used with that data structure. ITL includes a
set of generic Krylov subspace iterative methods,
a set of preconditioners, and a set of interfaces
to use different linear algebra packages including

the Matrix Template Library [13], Blitz++ [17],
A++/P++ [12], and Fortran BLAS. It has been
demonstrated that scientific applications with ITL
can achieve high performance on parallel comput-
ers [10]. We implemented the multilevel precon-
ditioner using the same generic design so that we
used it with the Conjugate Gradient algorithm and
the parallel linear algebra interface in ITL to have
a new parallel hybrid sparse linear solver.

4 Results and Discussions

All computations were performed on NERSC’s
IBM SP computer, a distributed memory machine
with 6,080 Power3 375MHz processors. The pro-
cessors, each with a peak performance of 1.5
gigaflops, are distributed among 380 computing
nodes, each comprise of 16 processors. Each
node has between 16 and 64 gigabytes of mem-
ory.

The target application is the scattering ma-
trix calculation for an entire accelerating section
shown in Figure 1. Under consideration as the
base line design for the Next Linear Collider, this
55-cell tapered structure, named H60VG3, has
varying dimensions from cell-to-cell to provide
detuning for higher-order modes and consists of
two dual-feed couplers for power input and out-
put respectively. Scattering parameters are evalu-
ated at the input/output ports by solving the linear
system described by Equation 8 in Section 2.2.

4.1 Direct and Iterative Solver Comparison

The sample calculation is for a frequency of
31.44 GHz to find the reflections and transmis-
sions of a set of higher order modes. Table 1
compares the execution time and memory usage
between the Conjugate Gradient with Symmet-
ric Gauss-Seidel (SGS) preconditioner and the di-
rect solver WSMP. Both solvers used 64 CPUs on
linear systems consisting of 1.3 million degrees
of freedom. The result shows that in terms of
speed, WSMP was more than two orders of mag-
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Figure 1. Model of the detuned structure, H60VG3, which is the baseline design of Next Linear
Collider [1]. It consists of 53 cells and two couplers. Each cell has different dimensions.

nitude faster than Conjugate Gradient with 4 it-
erations of SGS. WSMP, however, required six
times as much memory. The comparison indi-
cates that given sufficient physical memory, di-
rect solver WSMP can deliver much higher per-
formance than iterative solvers do and should be
the method of choice in our applications.

Table 1. Execution time and memory us-
age comparison between Conjugate Gradi-
ent with Symmetric Gauss-Seidel (SGS) pre-
conditioner and WSMP in simulating H60VG3
structure with 1.3 million degrees of freedom.
The execution time is for solving 16 right hand
sides. 64 CPUs were used.

CD with SGS(4) WSMP
Time (s) 14582.1 82.6
Memory (GB) 2.9 19

4.2 Scalability Studies for WSMP

We examined the scalability of execution time
and memory usage of WSMP direct solver by
performing computations first with a fixed num-
ber of DOFs, which was set at 3.1 million. Fig-
ure 2(a) shows execution time versus number of
processors with the results broken down into time
spent in four steps: ordering, symbolic factoriza-
tion, numerical factorization, and triangular so-
lution. The ordering and symbolic factorization
steps show little or no speedup while the numer-
ical factorization and triangular solver scale very
well with increase in processors. Figure 2(b) plots

the aggregate memory used which shows a slow
increase with increase in CPUs.

From these results, one can make the follow-
ing observation. For a given problem size with
multiple right hand sides, WSMP requires a fairly
constant computation overhead due to ordering
and symbolic factorization even as the number of
CPUs is increased. However, numerical factor-
ization and triangular solution (which have good
scalability) are executed multiple times as long
as the non-zero structure of the matrix does not
change. As the overhead becomes a smaller frac-
tion of the total computation when the number of
right hand sides becomes large, WSMP presents
a very scalable linear solver that is very attractive
for our applications.

Next we fix the number of CPUs but increase
the problem size or the number of DOFs by gen-
erating meshes of decreasing mesh size for the
same physical model. Figures 3(a) and 3(b)
show the execution time and memory usage ver-
sus DOFs using 16 CPUs, respectively. In both
plots we use line fitting to find the complexity. In
Figure 3(a) the dependence of ordering plus fac-
torization and triangular solve are O(N 1.44) and
O(N1.20). Figure 3(b) shows an almost linear in-
crease in memory usage, O(N 1.14), which is very
promising since a faster increase would severely
hamper WSMP’s use in solving much larger sys-
tems due to memory limitations.

4.3 Multilevel Preconditioner Performance

We have implemented the newly-developed
multilevel preconditioner (as described in Sec-
tion 3.3) for the Conjugate Gradient algorithm
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from ITL and applied it successfully to a linear
system with a matrix size of 93,147,736. We used
block Jacobi stationary method in multilevel pre-
conditioner. The first level given by Equation 11
is solved with WSMP while the next level given
by Equation 12 is solved approximately using 2
Symmetric Gauss-Seidel iterations. The multi-
level preconditioner is found to be very efficient
in reducing the iteration count in the CG solver.
In solving 14 different right hand sides, the aver-
age number of CG iterations is around 50.

Table 2 lists the computing resources used in
solving the 93 million DOF linear system with
CG and the Multilevel Preconditioner. The amor-
tized solving time per right hand side for that 93
million DOF linear system is less than 8 minutes.
As a comparison, the requirements for WSMP to
solve a 30 million DOF system are also shown. It
would not have been possible for WSMP to solve
the larger system of 90 million plus DOFs due to
memory limitation. The memory usage would be
over 1.5 Terabytes based on the near linear scaling
derived above. CG with the Multilevel Precondi-
tioner shows superior performance both in terms
of memory requirement and execution time. This
new powerful solver enables large, complex struc-
tures to be modeled with much higher resolution
than any existing codes.

4.4 Wakefields in the H60VG3 Structure

End-to-end modeling of the H60VG3 structure
has been carried out using Omega3P to calculate
the eigenmodes in the lowest dipole band. This
system-scale study has been made possible by the
integration of the Multilevel Preconditioner into
Omega3P. As seen in Figure 4(a) the mode spec-
trum is tightly clustered so that a very large num-
ber of DOFs is needed to resolve the small mode
separation of 0.1%. We have compared the wake-
fields shown in Figure 4(b) obtained by summing
the eigenmodes in the spectrum with the results
from time domain simulations and found remark-
able agreement. This represents the first ever suc-

cessful effort in modeling an entire accelerating
structure with actual dimensions.

5 Summary

In this paper, a case study of solving large
sparse linear systems derived from accelerator
structure simulations is presented. Both direct
solvers and iterative solvers are investigated. A
parallel multilevel preconditioner based on hierar-
chical finite element basis functions is discussed
and has been implemented to accelerate the con-
vergence of iterative solvers. The application per-
formance and memory requirements are evaluated
for our solvers on NERSC IBM SP parallel com-
puters. With the capability of solving linear sys-
tem with over 90 millions of DOFs, we have been
able to perform end-to-end simulation of a real-
istic accelerator structure like the H60VG3 at a
much higher accuracy than what was previously
possible.
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