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Abstract
We consider string theory in a smooth time-dependent orbifold of

Minkowski space, which is known as the ‘null-brane’, and whose limit
reproduces a spacetime with a null singularity – the parabolic orbifold.
We show that adding particles of small enough energy to the geometry
does not cause a gravitational collapse. The null-brane is a well-behaved
background of string theory where it is possible to compute string scat-
tering amplitudes using perturbation theory. We also mention another
way of making the parabolic orbifold smooth – besides considering the
null-brane.

1. INTRODUCTION
Formulating string theory in general time-dependent backgrounds is

definitely a very difficult problem. For this reason it seems natural to
study time-dependent backgrounds which might be relatively easy to
understand, such as orbifolds of flat Minkowski space by a discrete sub-
group of the Poincaré group. Many such orbifolds contain closed timelike
curves, which raise unpleasant issues. Better in this regard is the model
studied by Liu, Moore and Seiberg [1] which is an orbifold by ZZ gen-
erated by a parabolic element of SO(1, 2) and belongs to the class of
models described by Horowitz and Steif [2]. The orbifold has a light-like
singularity and contains closed light-like curves. It has a null Killing
vector, which allows one to use light-cone quantization.

In this essay, I will briefly review part of a work done with John
McGreevy [3]. (For partially overlapping work see [5, 6].) The main
focus will be on a very closely related orbifold – the null-brane [4]. The
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generator of the orbifold group is a parabolic element of SO(1, 2) com-
bined with a constant shift in a fourth direction. Its main virtue is that
the orbifold group has no fixed points, and therefore the quotient space
contains no singularities at all. This smooth orbifold provides a time-
dependent string background which has a free world-sheet description,
and in which the backreaction is under control. In the limit where the
shift goes to zero we recover precisely the orbifold of [1].

2. CLASSICAL GEOMETRY
The null-brane geometry we will study is a ZZ orbifold of flat Minkowski

space IR1,3 (times IR6, if we want to consider superstring theory). In
terms of coordinates x± = (x0 ± x1)/

√
2, x = x2, and χ = x3, the

metric is
ds2 = −2x+x− + dx2 + dχ2 (1.1)

We will write the generator of the orbifold group ΓL as

gL = exp (ivJ) exp (iLpχ) , J ≡ 1√
2
Jx0x +

1√
2
Jx1x (1.2)

This corresponds to a composition of a null Lorentz transformation of
the (x+, x, x−) subspace and a translation by L in the χ-direction. In
terms of the spacetime coordinates, gL acts as




x+

x
x−
χ


 →




x+

x + vx+

x− + vx + 1
2v2x+

χ + L


 (1.3)

For L = 0 the orbifold becomes the parabolic orbifold studied by Liu,
Moore and Seiberg [1], which is singular at x+ = 0. For non-zero L the
orbifold is completely smooth and does not have any closed time-like or
light-like curves.

The IR1,3/ΓL orbifold in general preserves the subgroup of the four-
dimensional Poincaré symmetry group generated by pχ, J , and p+ =
−p−. For non-zero L, the topology of the spacetime is simply IR3 × S1.

3. BACKREACTION ON THE GEOMETRY
One of the most obvious questions that arise when one considers time-

dependent orbifolds is whether the presence of a single particle does
not cause the spacetime to gravitationally collapse. Placing one such
particle of rest mass m (say m �= 0) in the orbifold corresponds to
adding to the universal covering space an infinite number of particles
(the original one plus its images) which are boosted with respect to each
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other. Since the boost of distant particles goes to infinity, one might
worry that the mass of a finite number of them might be larger than
the corresponding Schwarzschild radius (which would be a clear sign of
a large backreaction).

We will see that if L �= 0 this does not happen here, provided m is not
too large. Suppose we work in an inertial frame in which the ‘original
particle’ is at rest. At any time x0 the distance to its n-th image will be
no smaller than nL, i.e. it grows at least linearly with n. The velocity
of the n-th image is

vn =
nv

4 + n2v2

√
8 + n2v2, (1.4)

and corresponds to energy

En = mγn =
m√

1 − v2
n

= m

(
1 +

1
4
n2v2

)
∼ 1

4
mn2v2. (1.5)

As a result, the total energy of the first 2n images grows like n3. This
energy is not the center-of-mass frame energy of the first 2n images, but
even if it was, the corresponding Schwarzschild radius would not grow
faster than (n3)1/10−3 = n3/7 since we work in 10d.1 This is still a slower
growth than the one of the smallest size nL of the region containing the
first 2n images, provided L �= 0. We see that adding a particle of small
enough energy to the null-brane does not cause a gravitational collapse,
unlike in the case of the parabolic orbifold. Moreover, a similar kind of
reasoning leads to the conclusion that the null-brane admits scattering
processes which can be studied perturbatively.

4. STRING THEORY IN THE NULL-BRANE
Thanks to a free worldsheet theory, strings in the null-brane geometry

can be easily quantized [5, 3]. Here we just point out a few facts, leaving
the details to [5, 3].

• Both the bosonic and fermionic parts of the torus partition function
are finite.

• It is possible to construct a basis of states for which the tree lever
scattering amplitudes are finite (up to slightly enhanced infrared diver-
gencies).

• In the singular limit L → 0 certain tree level amplitudes diverge.

1Actually, the center-of-mass frame energy grows like n2, leading to gravitational radius of
order n2/7, as discussed in detail in [6].
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Figure 1.1 (a) A schematic picture of the parabolic orbifold, showing only coordi-
nates x+ and x−. Close to the singularity, images of any particle become infinitely
dense. (b) If one cuts off the spacetime at some finite x+

c < 0 and replaces it with an
orbifold of a plane wave where the circle expands again, the images never come too
close to each other, and the resulting spacetime is stable. The part of the geometry
with x+ > x+

c , not shown in this figure, has a non-zero curvature.

5. SMOOTHING OUT THE PARABOLIC
ORBIFOLD

Constructing the null-brane is not the only way to make a smooth
manifold whose limit is the parabolic orbifold. Another possibility is to
cut off the parabolic orbifold at some x+

c < 0 and replace it with an
orbifold of a plane wave (see figure 1.1). The spacetime constructed in
this way is well-behaved, and in particular, it is stable, as opposed to
the parabolic orbifold itself. The details of this construction, and a brief
discussion of its stability will be left to the references [3, 7].
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