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There have been proposals that primordial black hole remnants (BHRs) are the dark matter,
but the idea is somewhat vague. Recently we argued that the generalized uncertainty principle
(GUP) may prevent black holes from evaporating completely, in a similar way that the standard
uncertainty principle prevents the hydrogen atom from collapsing. We further noted that the hybrid
inflation model provides a plausible mechanism for production of large numbers of small black holes.
Combining these we suggested that the dark matter might be composed of Planck-size BHRs. In
this paper we briefly review these arguments, and discuss the reheating temperature as a result of
black hole evaporation.

I. INTRODUCTION

It is by now widely accepted that dark matter (DM) constitutes a substantial fraction of the present critical energy
density in the universe. However, the nature of DM remains an open problem. There exist many DM candidates,
among which a contending category is weakly interacting massive particles, or WIMPs. It has been suggested that
primordial black holes (PBHs) [1,2] are a natural candidate for WIMPs [3]. More recent studies [4] based on the PBH
production from the “blue spectrum” of inflation demand that the spectral index n ∼ 1.3, but this possibility may be
ruled out by the recent WMAP experiment [5].

In the standard view of black hole thermodynamics, based on the entropy expression of Bekenstein [6] and the
temperature expression of Hawking [7], a small black hole should emit blackbody radiation, thereby becoming lighter
and hotter, leading to an explosive end when the mass approaches zero. However Hawking’s calculation assumes a
classical background metric and ignores the radiation reaction, assumptions which must break down as the black hole
becomes very small and light. Thus it does not provide an answer as to whether a small black hole should evaporate
entirely, or leave something else behind, which we refer to as a black hole remnant (BHR).

Numerous calculations of black hole radiation properties have been made from different points of view [8], and
some hint at the existence of remnants, but none appears to give a definitive answer. A cogent argument against the
existence of BHRs can be made [9]: since there is no evident symmetry or quantum number preventing it, a black
hole should radiate entirely away to photons and other ordinary stable particles and vacuum, just like any unstable
quantum system.

In a series of recent papers [10,11], a generalized uncertainty principle (GUP) [12–14] was invoked to argue the
contrary, that the total collapse of a black hole may be prevented by dynamics and not by symmetry, just like the
prevention of hydrogen atom from collapse by the uncertainty principle [15]. These arguments then lead to a modified
black hole entropy and temperature, and as a consequence the existence of a BHR at around the Planck mass. This
notion was then combined with hybrid inflation model [16–19] and it was shown that primordial BHRs might in
principle be the primary source for dark matte [11]. In this paper we briefly reproduce these arguments, and include
additional discussion on the reheating temperature as a result of black hole evaporation.

II. GENERALIZED UNCERTAINTY PRINCIPLE

As a result of string theory [12] or general considerations of quantum mechanics and gravity [13,14], the GUP gives
the position uncertainty as

∆x ≥
h̄

∆p
+ l2p

∆p

h̄
, (1)

where lp = (Gh̄/c3)1/2 ≈ 1.6×10−33cm is the Planck length. A heuristic derivation may also be made on dimensional
grounds. We think of a particle such as an electron being observed by means of a photon with momentum p. The usual
Heisenberg argument leads to an electron position uncertainty given by the first term in Eq.(1). But we should add to
this a term due to the gravitational interaction of the electron with the photon, and that term must be proportional
to G times the photon energy, or Gpc. Since the electron momentum uncertainty ∆p will be of order of p, we see that
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on dimensional grounds the extra term must be of order G∆p/c3, as given in Eq.(1). Note that there is no h̄ in the
extra term when expressed in this way. The position uncertainty has a minimum value of ∆x = 2lp, so the Planck
distance, lp, plays the role of a fundamental length.

III. BLACK HOLE REMNANT

The characteristic energy E of the emitted photons may be estimated from the uncertainty principle. In the vicinity
of the black hole surface there is an intrinsic uncertainty in the position of any particle of about the Schwarzschild
radius, ∆x ≈ rs, due to the behavior of its field lines [20] - as well as on dimensional grounds. This leads to a
momentum uncertainty

∆p ≈
h̄

∆x
=

h̄

rs
=

h̄c2

2GMBH

, (2)

and hence to an energy uncertainty of ∆pc ≈ h̄c3/2GMBH. We identify this as the characteristic energy of the emitted
photon, and thus as a characteristic temperature; it agrees with the Hawking temperature up to a factor 4π, which
we will henceforth include as a “calibration factor” and write (with kB = 1),

TH ≈
h̄c3

8πGMBH

=
M2

p c
2

8πMBH

, (3)

where Mp = (h̄c/G)1/2 ≈ 1.2 × 1019GeV is the Planck mass.
The blackbody energy output rate of BH is given by

ẋ =
1

tch(x3
i − 3t/tch)2/3

, (4)

where x = MBH/Mp and xi refers to the initial mass of the hole. tch = 60(16)2πtp ≈ 4.8 × 104tp is a characteristic
time for BH evaporation, and tp = (h̄G/c5)1/2 ≈ 0.54 × 10−43sec is the Planck time. The black hole thus evaporates
to zero mass in a time given by t/tch = x3

i /3, and the rate of radiation has an infinite spike at the end of the process.
The momentum uncertainty according to the GUP is

∆p

h̄
≈

∆x

2l2p

[

1 ∓
√

1 − 4l2p/(∆x)
2

]

. (5)

Therefore the modified black hole temperature becomes

TGUP =
Mpc

2

4π
x
[

1 ∓
√

1 − 1/x2

]

. (6)

This agrees with the Hawking result for large mass if the negative sign is chosen, whereas the positive sign has no
evident physical meaning. Note that the temperature becomes complex and unphysical for mass less than the Planck
mass and Schwarzschild radius less than 2lp. At the Planck mass the slope is infinite, which corresponds to zero heat
capacity of the black hole, and the evaporation comes to a stop.

If there are g species of relativistic particles, then the BH evaporation rate is

ẋ = −
16g

tch
x6

[

1 −
√

1 − 1/x2

]4

. (7)

Thus the hole with an initial mass xi evaporates to a Planck mass remnant in a time given by

τ =
tch

16g

[8

3
x3

i − 8xi −
1

xi
+

8

3
(x2

i − 1)3/2 − 4
√

x2
i − 1 + 4 cos−1

1

xi
+

19

3

]

≈
x3

i

3g
tch, xi � 1 . (8)

The energy output given by Eq.(7) is finite at the end point where x = 1, i.e., dx/dt|x=1 = −16g/tch, whereas for
the Hawking case it is infinite at the endpoint where x = 0. The present result thus appears to be more physically
reasonable. The evaporation time in the xi � 1 limit agrees with the standard Hawking picture.
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IV. HYBRID INFLATION AND BLACK HOLE PRODUCTION

The hybrid inflation, first proposed by A. Linde [16], can naturally induce large number of small PBHs [21]. In the
hybrid inflation model two inflaton fields, (φ, ψ), are invoked. Governed by the inflation potential, φ first executes a
“slow-roll” down the potential, and is responsible for the more than 60 e-folds expansion while ψ remains zero. When
φ eventually reduces to a critical value, it triggers a phase transition that results in a “rapid-fall” of the energy density
of the ψ field, which lasts only for a few e-folds, that ends the inflation.

The evolution of the ψ field during the second stage inflation, measured backward from the end, is

ψ(N [t]) = ψe exp(−sN [t]) , (9)

where N(t) = H∗(te − t) is the number of e-folds from t to te, H∗ is the Hubble parameter during inflation, and s is
a numerical factor of the order unity.

Quantum fluctuations of ψ induce variations of the starting time of the second stage inflation, i.e., δt = δψ/ψ̇.
This translates into perturbations on the number of e-folds, δN = H∗δψ/ψ̇, and therefore the curvature contrasts,
δρ/ρ ≡ δ. With an initial density contrast δ(m) ≡ δρ/ρ|m, the probability that a region of mass m becomes a PBH
is [23]

P (m) ∼ δ(m)e−w2/2δ2

. (10)

Let us assume that the universe had inflated eNc times during the second stage of inflation. It can be shown [21]
that

eNc ∼
(2Mp

sH∗

)1/s

, (11)

and the curvature perturbations reentered the horizon at time

t ∼ th = H−1

∗
e3Nc . (12)

At this time if the density contrast was δ ∼ 1, then BHs with size rs ∼ H−1
∗
e3Nc would form with an initial mass

MBHi '
M2

p

H∗

e3Nc . (13)

Following the numerical example given in Ref.21, we let H∗ ∼ 5 × 1013 GeV and s ∼ 3. Then the density contrast
can be shown to be δ ∼ 1/7, and the fraction of matter in the BH is thus P (m) ∼ 10−2. From Eq.(11), eNc ∼ 54. So
the total number of e-folds is Nc ∼ 4. The black holes were produced at the moment th ∼ 2 × 10−33 sec, and had a
typical mass MBHi ∼ 4 × 1010Mp. Let g ∼ 100. Then the time it took for the BHs to reduce to remnants, according
to Eq.(8), is

τ ∼
x3

i

3g
tch ∼ 5 × 10−10sec . (14)

The “black hole epoch” thus ended in time for baryogenesis and other subsequent epochs in the standard cosmology.
As suggested in Ref.21, such a post-inflation PBH evaporation provides an interesting mechanism for reheating.

V. BLACK HOLE REMNANTS AS DARK MATTER

This process also provides a natural way to create cold dark matter. Although in our example P (m) ∼ 10−2, PBHs
would soon dominate the energy density by the time t ∼ P (m)−2th ∼ 2 × 10−29s, because the original relativistic
particles would be diluted much faster than non-relativistic PBHs. By the time t ∼ τ , all the initial BH mass (xi) had
turned into radiation except one unit of Mp preserved by each BHR. As BH evaporation rate rises sharply towards
the end, the universe at t ∼ τ was dominated by the BH evaporated radiation.

Roughly, ΩBHR,τ ∼ 1/xi and Ωγ,τ ∼ 1 at t ∼ τ , and since the universe resumed its standard evolution after the
black hole epoch (t > τ), we find the density parameter for the BHR at present to be
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ΩBHR,0 ∼
( teq

τ

)1/2( t0
teq

)2/3 1

xi
Ωγ,0 , (15)

where t0 ∼ 4×1017s is the present time, and teq is the time when the density contributions from radiation and matter
were equal. It is clear from our construction that (teq/τ)

1/2 ∼ xi. So teq ∼ 1012 sec, which is close to what the
standard cosmology assumes, and Eq.(15) is reduced to a simple and interesting relationship:

ΩBHR,0 ∼
( t0
teq

)2/3

Ωγ,0 ∼ 104Ωγ,0 . (16)

In the present epoch, Ωγ,0 ∼ 10−4. So we find ΩBHR,0 ∼ O(1), about the right amount for dark matter!

VI. BLACK HOLE EPOCH AND REHEATING TEMPERATURE

As discussed above, shortly after PBHs were produced the density of the universe was dominated by the BHs.
Eventually the universe was reheated through their continuous evaporation. To simplify the discussion we ignore BH
accretions of the radiation as well as BH mergers. Then under Hubble expansion the effective reheating temperature
at the end of the black hole epoch, or t ∼ τ , can be expressed as

Tr(τ [xi]) =
1

xi − 1

∫ xi

1

dxTGUP(x)
a(t[x])

a(τ [xi])
, (17)

where a(t) is the scale factor. Since xi � 1, the evaporation only became effective near the late times during this black
hole epoch, when the energy density was dominated by the BH radiation. As a further approximation we assume
radiation dominance throughout the BH epoch so that a(t) ∝ t1/2. Expressing t in terms of x using Eq.(7), we find

Tr(τ [xi]) ≈
Mpc

2

16π(xi − 1)

[

2 log(2xi) − 1
]

+ O
( 1

x3
i

)

. (18)

In our model xi ∼ 4 × 1010. So Tr(τ [xi]) ∼ 1.3 × 108 GeV, which is sufficiently lower than the Planck and the GUT
scales, but higher than the baryogenesis scale.
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