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ABSTRACT

We discuss a framework to analyze the transmission of supersymmetry breaking in models
of intersecting D-branes. Generically, different intersections preserve different fractions of
an extended bulk supersymmetry, thus breaking supersymmetry completely but in a non-
local way. We analyze this mechanism in a 5D toy model where two brane intersections,
which are separated in the fifth dimension, break different halves of an extended N = 2
supersymmetry. The sector of the theory on one brane intersection feels the breakdown of
the residual N = 1 supersymmetry only through two-loop interactions involving a coupling
to fields from the other intersection. We compute the diagrams that contribute to scalar
masses on one intersection and find that the masses are proportional to the compactification
scale up to logarithmic corrections. We also compute the three-loop diagrams relevant to
the Casimir energy between the two intersections and find a repulsive Casimir force.
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1 Introduction

Supersymmetry breaking in brane-world models has several very attractive features. The
possibility of breaking supersymmetry on a distant brane offers a geometric realization of
the idea of hidden sectors. Supersymmetry can be completely broken in a non-local way by
partially breaking supersymmetry on different branes in such a way that each brane preserves
a different fraction of the extended bulk supersymmetry, e.g., [1, 2, 3, 4]. This mechanism
is naturally realized in many realistic D-brane models of string theory.

There are two approaches to embed the Standard Model of particle physics in string
theory. The traditional way to achieve a phenomenologically viable model is to compactify
the heterotic string on an orbifold or a Calabi-Yau manifold. In the strong coupling limit this
amounts to compactifying M-theory on an orbifold or a G2 manifold. Since the discovery of
D-branes, it has become clear that type I and II string theory also provide a very promising
framework for string model building. Gauge and matter fields are localized to the world-
volume of the D-branes, giving rise to a nice geometrical picture of the Standard Model
embedding.

Our aim is to understand the mechanism of supersymmetry breaking in D-brane models
where different stacks of D-branes break different fractions of the extended bulk supersym-
metry. It is crucial to realize that a D-brane breaks half of the bulk supersymmetry by its
mere presence. The fields of the effective world-volume theory only fill multiplets of the
smaller supersymmetry algebra. Supersymmetry can be completely broken either by adding
anti-D-branes, which break the half of supersymmetry that is preserved by the D-branes, or
by considering configurations of intersecting D-branes where different intersections preserve
different fractions of the bulk supersymmetry. Such a scenario has been called pseudo-
supersymmetry [5].

In this brief review, we are interested in the radiatively generated mass-splittings for the
scalar matter fields of the following 5D toy model. Two 3-branes1 are located at x5 = 0 and
x5 = πR in M3,1×S1. There is an N4 = 2 vector corresponding to the gauge symmetry G in
the bulk and N4 = 1 chiral multiplets charged under the gauge symmetry are confined to the
3-branes. The chiral multiplets from the two 3-branes couple to different bulk gauginos and
thus preserve different halves of the bulk supersymmetry. Brane scalar masses are generated
through Feynman diagrams involving a loop of fields from the distant brane. Such diagrams
arise at the two-loop level. The explicit computation shows that the expected quadratic
cutoff dependence is regulated by the finite brane separation. Only logarithmic divergences
arise. They are due to wave-function renormalization of the brane fields. More precisely, we
find that the brane scalar mass squared is positive and, for R much larger than the inverse
cutoff scale m−1

S , proportional to (2πR)−2 ln(2πRmS). Similarly, we find that the Casimir
energy depends quartically on the inverse of the brane separation but only logarithmically
on the cutoff scale. Thus supersymmetry breaking is soft in this class of models.

1In the intersecting D-brane model we have in mind, these are really (3 + 1)-dimensional intersections of
higher dimensional branes. For simplicity, we will call these intersections ‘3-branes’. We also assume that
five of the ten dimensions of type II string theory have been compactified on an orbifold of the size of the
string scale, which is chosen such that it breaks the supersymmetry on the D-branes down to N = 2.

1



These results are particularly interesting in view of the recent D-brane constructions
which represent embeddings of the standard model in string theory [1, 4]. The knowledge
of the precise expression for the mass splittings and their dependence on the interbrane
distance is is an important first step towards a phenomenological analysis of those models.
Although many of the explicit models have additional features, the toy model of this article
captures their main supersymmetry breaking mechanism. The quantitative results of this
article are directly applicable to D-brane models if the string scale is much larger than
the compactification scale since in this limit all excited string states as well as the states
corresponding to strings stretching between the distant D-branes are much heavier than the
Kaluza-Klein excitations and can therefore be neglected.

2 Determination of the Lagrangian

We start by determining the effective Lagrangian for the pseudo-supersymmetric model in
D = 4 [5]. It is of the form

L = Lbulk + L(1) + L(2). (2.1)

The different sectors have manifest N = 2, N = 1, N = 1′ supersymmetry, respectively,
where N = 1 denotes the first half and N = 1′ denotes the second half of the bulk su-
persymmetry. Thus, supersymmetry is explicitly and completely broken, but the remaining
supersymmetry on each of the two 3-branes (or (3 +1)-dimensional brane intersections) still
protects the brane scalar masses from radiative corrections up to 1-loop.

2.1 Non-linearly realized supersymmetry

Although the supersymmetry breaking is explicit in the effective theory, the second super-
symmetry is non-linearly realized in L(1), and the first supersymmetry is non-linearly realized
in L(2). The non-linear invariance arises because the Lagrangian contains appropriate cou-
plings to two Goldstino superfields [6] (see also [7]).

To see how this works, first consider chiral superfields Φb on the first brane. Their inter-
actions can be rendered invariant under the second supersymmetry by adding appropriate
couplings to a Goldstino superfield Λg, which transforms as (see, e.g., [8])

δ(2)Λg =
1

k
ξ(2) − ik (Λgσ

mξ̄(2) − ξ(2)σmΛ̄g)∂mΛg. (2.2)

Here, k−1/2 is the supersymmetry breaking scale.

Now, define the shifted superfields

Φ̃b(x, θ, θ̄) = Φb(x
m − ik2 Λgσ

mΛ̄g, θ, θ̄),

Λ̃g(x, θ, θ̄) = Λ(xm − ik2 Λgσ
mΛ̄g, θ, θ̄).

and assign to Φb the transformation law

δ(2)Φ̃b = −2ik Λ̃gσ
mξ̄(2)∂mΦ̃b. (2.3)

2



Then,

S =
∫
d4x

[∫
d2θd2θ̄ Ê Φ†

bΦb +
∫
d2θ EL P(Φ̃b) +

∫
d2θ̄ ER P(Φ̃†

b)
]

(2.4)

is invariant under both supersymmetries. The densities Ê, EL, ER in this expression are
given by

Ê = 1 +
k2

8
D̄2Λ̄2

g +
k2

8
D2Λ2

g + O(k4),

EL = 1 +
k2

4
D̄2Λ̄2

g + O(k4), ER = 1 +
k2

4
D2Λ2

g + O(k4).

2.2 Coupling N = 2 to N = 1

Next, we would like to find out how to consistently couple bulk N = 2 multiplets to brane
N = 1 multiplets. Let us decompose the N = 2 multiplets into their N = 1 sub-multiplets,
which couple naturally to the N = 1 fields on the brane.2 Then, we add appropriate
couplings to the Goldstino superfield Λg to non-linearly realize the second supersymmetry.

Example: Consider an N = 2 vector V = (Am, λ
(1), λ(2), φ) and decompose it into


N = 1 vector V = (Am, λ

(1))

N = 1 chiral Φ = (φ, λ(2))

It is easy to see that

V̂ = V + ik θσmθ̄
(
Λ̄gσ̄mDΦ + ΛgσmD̄Φ†)+ O(k2) (2.5)

transforms as
δ(2)V̂ = −ik

(
Λgσ

mξ̄(2) − ξ(2)σmΛ̄g

)
∂mV̂ . (2.6)

Thus,

S =
∫
d4x d2θd2θ̄ Ê Φ†

b e
2 V̂ Φb (2.7)

is invariant under both supersymmetries.

2.3 Pseudo-Supersymmetry

The N = 2 vector V = (Am, λ
(1), λ(2), φ) can either be decomposed into two N = 1 multiplets

V = −θσmθ̄Am + iθθθ̄λ̄1 − iθ̄θ̄θλ1 +
1

2
θθθ̄θ̄D,

Φ = φ+
√

2 θλ2 + θθF (2.8)

2Again, we use the term ‘brane’ for simplicity but really mean a (3 + 1)-dimensional intersections of
higher-dimensional branes.
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or into two N = 1′ multiplets

V ′ = −θ̃σm¯̃θAm + iθ̃θ̃¯̃θλ̄2 − i¯̃θ¯̃θθ̃λ2 − 1

2
θ̃θ̃¯̃θ¯̃θD,

Φ′ = φ−
√

2 θ̃λ1 + θ̃θ̃F †. (2.9)

V couples to charged chiral fields Φ(1) on the first brane, whereas V’ couples to charged
chiral fields Φ(2) on the second brane. Note that Φ(1) and Φ(2) are chiral matter superfields
whereas Φ and Φ′ are two different ways of arranging the components of the N = 1 chiral
superfield inside the N = 2 bulk vector. Φ(1) and Φ transform irreducibly under the first
supersymmetry whereas Φ(2) and Φ′ transform irreducibly under the second supersymmetry.

The effective Lagrangian is

L(1) =
∫
d2θd2θ̄ Ê(1) Φ(1)†eV̂ Φ(1) +

∫
d2θ E

(1)
L Λ̃gΛ̃g + h.c.

Lbulk =
∫
d2θd2θ̄Φ†eV Φ +

1

4

∫
d2θWW + h.c.

L(2) =
∫
d2θ̃d2¯̃θ Ê(2) Φ(2)†eV̂ ′

Φ(2) +
∫
d2θ̃ E

(2)
L Λ̃′

gΛ̃
′
g + h.c.

2.4 Generalization to D=5

Let us generalize the results of the previous subsections to D = 5 [9]. Consider two 3-branes
located at x5 = 0 and x5 = πR in M3,1 × S1, with an N5 = 1 vector multiplet in the bulk,
N4 = 1 chiral multiplets on the first brane and N4 = 1′ chiral multiplets on the second brane.

The components of the N5 = 1, D = 5 vector multiplet

AM , λ(5)i, φ(5), Xa,

M = 0, . . . , 3, 5, i = 1, 2, a = 1, 2, 3,

can be rearranged to fit into an N4 = 2, D = 4 vector multiplet ( see, e.g., [10])

Am, λi, φ, D, F, i = 1, 2.

The precise mapping is

λ(5)1 =


 λ1

−λ̄2


 , φ =

1√
2

(
A5 + i φ(5)

)
, D = X3, F =

i√
2

(
X1 + iX2

)
. (2.10)

These components can either be grouped into N4 = 1 multiplets

V = (Am, λ1, D), Φ = (φ, λ2, F )
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or into N4 = 1′ multiplets

V = (Am, λ1,−D), Φ = (φ,−λ2, F
†).

The 5D Super-Yang-Mills Lagrangian can be written in terms of 4D superfields [11, 12]

Lbulk =
1

2 g2
(5)

tr

[ ∫
d2θW αWα +

∫
d2θ̄ W̄α̇W̄

α̇ +
∫
d2θd2θ̄

(
e−2V ∇5e

2V
)2
]
, (2.11)

where
∇5e

2V = ∂5e
2V + i

√
2
(
Φe2V − e2V Φ†) . (2.12)

The bulk-brane couplings are described by the Lagrangians we found in the 4D case. The
complete 5D pseudo-supersymmetry Lagrangian is given by

L = Lbulk + L(1) + L(2)

=
1

2 g2
(5)

tr

[ ∫
d2θW αWα +

∫
d2θ̄ W̄α̇W̄

α̇ +
∫
d2θd2θ̄

(
e−2V ∇5e

2V
)2
]

(2.13)

+ δ(x5)
∫
d2θd2θ̄ Ê Φ(1)†e2 V̂ Φ(1) + δ(x5 − l)

∫
d2θ̃d2¯̃θ Ê ′ Φ(2)†e2 V̂ ′

Φ(2).

3 Computation of the soft breaking terms

Supersymmetry is explicitly broken in the effective Lagrangian but mass splittings for the
supersymmetric multiplets only arise through loop corrections.

3.1 One-loop corrections to Lbulk

One-loop corrections induce kinetic terms for the bulk vector and gauginos localized on the
3-branes. One finds

L(1-loop)
bulk =

Mc

2 g2
0

tr

[ ∫
d2θW αWα +

∫
d2θ̄ W̄α̇W̄

α̇ +
∫
d2θd2θ̄

(
e−2V ∇5e

2V
)2
]

+
δ(x5)

2 g2
1

tr

[ ∫
d2θW αWα +

∫
d2θ̄ W̄α̇W̄

α̇

]
(3.1)

+
δ(x5 − l)

2 g2
2

tr

[ ∫
d2θ̃ W ′αW ′

α +
∫
d2¯̃θ W̄ ′

α̇W̄
′α̇
]
,

where
Mc

g2
0

=
1

g2
(5)

+ ∆bulk,
1

g2
i

=
bi

8π2
ln
(
m

Λ

)
. (3.2)

5



k

q

q-k

k,k5 k,k5

φ(1) ψ(1) φ(1)

λ λ
ψ(2)

φ(2)

+

k

k,k5 k,k5

φ(1) ψ(1) φ(1)

λ λ

Figure 1: The leading order Feynman diagram giving rise to brane scalar masses. This
diagram does not really exist in pseudo-supersymmetry but rather represents a shortcut to
compute the sum of the nine two-loop diagrams that do exist. The counterterm is fixed by the
condition that the one-loop corrected bulk gauge coupling constant receives no contributions
from brane fields at the UV cutoff scale mS.

The logarithmic divergences localized on the 3-branes are eliminated through standard
four-dimensional renormalization. Requiring the brane-localized contributions to the bulk
gauge kinetic terms to vanish at the scale of supersymmetry breaking, mS, yields

1

g2
i (µ)

=
bi

8π2
ln
(
µ

mS

)
. (3.3)

3.2 Two-loop corrections to L(1)

Only two-loop (or higher loop) diagrams involving fields from the second brane contribute
to masses of scalars on the first brane. These diagrams do not contain the Goldstino.

The only counterterms needed to obtain a finite result are the ones introduced to renor-
malize the bulk gauge coupling. As explained in [9], the sum of all relevant diagrams is equal
to one fictitious diagram (plus its counterterm), which is shown in figure 1.

The explicit computation yields

−im2 = (g(4)

√
2)4C2(r)d

2(r′)
∫

k,q

i tr (ikmσ̄mik
nσniq

pσ̄pik
qσq)

(q − k)2k2(k2 − (k5)2)q2(k2 − (k̄5)2)

+ (counterterm contribution), (3.4)

where ∫
k,q

=
∑

k5= n
R

2(−1)n
∑

k5= n̄
R

2(−1)n̄
∫

d4k

(2π)4

∫
d4q

(2π)4
.

The result is

m2 =

(
g2

(4)

4π

)2

C2(r)d
2(r′)

24 ζ(3)

π2 (2πR)2

(
ln(2πRmS) − 11

6
− ζ ′(3)

ζ(3)
+ γ

)
. (3.5)

For 2πRmS � 1, where our approximation is valid, this leads to a positive mass squared for
the tree-level massless brane scalars.
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3.3 Casimir energy

The computation of the Casimir energy is very similar to the computation of the mass squared
of the brane scalars. It is easy to convince oneself that Feynman diagrams without external
legs involving fields from both branes are only possible at three-loop. For all diagrams that
contain only fields from one brane and/or the bulk, the supersymmetric non-renormalization
theorems still apply; as a consequence their contribution to the vacuum energy cancels.
Again, one finds that the sum of all diagrams contributing to the vacuum energy can be
obtained by computing a single fictitious diagram.

Thus, the vacuum energy is given by [9]

i E = (g(4)

√
2)4 d2(r)d2(r′) dim(G)

∫
k,q,p

(i)2 tr (ipmσ̄mik
nσniq

pσ̄pik
qσq)

(q − k)2(p− k)2p2(k2 − (k5)2)q2(k2 − (k̄5)2)

+ (counterterm contributions) (3.6)

The result is

E =
4 g4

(4)

π2 (4π)4
d2(r)d2(r′) dim(G)

Γ(6)ζ(5)

(2πR)4

((
ln(2πRmS) + A

)2
+B

)
, (3.7)

where
A ≈ −1.679, B ≈ 0.203.

For large compactification radii, this yields a repulsive Casimir force.

4 Outlook on supergravity breaking

It would be interesting to generalize the above results to situations where the bulk theory
consists of pure minimal D = 5 supergravity. Again the scalars inside the chiral multiplets
on the branes receive radiative corrections to their masses at two-loop. The components of
an N5 = 1, D = 5 gravity multiplet

hMN , ψi
M , AM , auxiliary fields, (4.1)

can be rearranged to fit into an N4 = 2 gravity multiplet

hmn, ψi
m, Am, auxiliary fields, (4.2)

and an N4 = 2 vector multiplet

Bm, λi, φ, auxiliary fields. (4.3)

The N4 = 2 gravity multiplet can either be split into N = 1 multiplets

Vm = . . .+ θσnθ̄ hmn + θ̄θ̄ θ ψ1
m + . . .

Ψα = . . .+ (σmθ̄)αAm + θσmθ̄ ψ2
m α + . . . (4.4)
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or into N = 1′ multiplets

V ′
m = . . .+ θσnθ̄ hmn + θ̄θ̄ θ ψ2

m + . . .

Ψ′
α = . . .+ (σmθ̄)αAm + θσmθ̄ ψ1

m α + . . . (4.5)

The Lagrangian for linearized N5 = 1, D = 5 supergravity can be written in terms of
N4 = 1 superfields [13]

L =∫
d4θ

[
1

8
V mDαD̄2DαVm +

1

48

(
[Dα, D̄α̇]Vαα̇

)2 − (∂mVm)2 − 1

3
Σ†Σ +

2i

3
(Σ − Σ†)∂mVm

]

+
∫
d4θ

{
[T †(Σ − i∂αα̇V

α̇α) + h.c.] − 1

2
[DαΨ̂α + D̄α̇Ψ̂†α̇ − ∂5P ]2

+[∂5Vαα̇ − (D̄α̇Ψ̂α −DαΨ̂†
α̇)]2

}
,

Here, Σ is the conformal compensator multiplet for the supergravity multiplet, P is a pre-
potential for Σ, defined by Σ = −1

4
D̄2P , and T is the N4 = 1 chiral multiplet inside the

N4 = 2 vector multiplet (4.3). Similarly, one can write down the gravitational coupling of
either (4.4) or (4.5) to chiral matter multiplets on the branes. The explicit computation of
the corresponding two-loop diagrams contributing to scalar masses, however, is considerably
more involved and will be left for future work.

5 Conclusions

Realistic D-brane models provide an interesting supersymmetry breaking mechanism with
the following features:

• supersymmetry is explicitly broken but non-linearly realized in the effective field theory

• bulk gauge fields acquire brane-localized kinetic terms at one-loop

• mass splittings for the brane supermultiplets only arise at two-loop
m2 ∼ g4

(4)(2πR)−2 ln(2πRmS)

• repulsive Casimir force at three-loop

• gravitino masses only at three-loop
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