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Abstract

We study a nonlinear integral equation that is a necessary condition on the equi-
librium phase space distribution function of stored, colliding electron beams. It is
analogous to the Häıssinski equation, being derived from Vlasov-Fokker-Planck theory,
but is quite different in form. The equation is analyzed for the case of the Chao-Ruth
model of the beam-beam interaction in one degree of freedom, a so-called strong-strong
model with nonlinear beam-beam force. We prove existence of a unique solution, for
sufficiently small beam current, by an application of the implicit function theorem. We
have not yet proved that this solution is positive, as would be required to establish ex-
istence of an equilbrium. There is, however, numerical evidence of a positive solution.
We expect that our analysis can be extended to more realistic models.

1 Introduction

In the theory of stability of stored beams a primary step should be the study of equilibrium
states, expected to exist at low current. An equilibrium state should become unstable at
some threshold in current, but in order to compute the threshold we must linearize the kinetic
equation (Vlasov or Vlasov-Fokker-Planck ) about the equilibrium phase space distribution.
Historically, investigators have often linearized the Vlasov equation about some state that
might be at best a rough approximation to an equilibrium. This may be excused by the
fact that determination of the equilibrium is an infinite-dimensional nonlinear problem, in
general rather difficult.

There is one case in which there is a widely known theory of equilibrium, which makes
some contact with experiment; namely, the case of longitudinal motion of a single bunched
electron beam in a storage ring, subject to a wake field [1, 2]. The theory is based on a model
in which the exact longitudinal wake field is replaced by its average over one turn. The
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averaged wake of course depends only on the distance between source and test particles, not
on the position in the ring. With such a wake one may seek a time-independent, factorized
solution of the Vlasov-Fokker-Planck (VFP) equation; namely, a product of a Gaussian in
the canonical momentum p (proportional to the energy deviation) and the charge density
ρ(q), where q is the canonical coordinate (proportional to the distance from the synchronous
particle). The equation is satisfied by such a factorized form, provided that the charge density
satisfies the Häıssinski equation [1, 2], a nonlinear integral equation. If the wake field satisfies
a mild restriction, it is not difficult to prove that the equation has a unique solution in a large
function space S, at sufficiently small current [2]. The corresponding solution of the VFP
equation is the unique, small-current solution satisfying the principle of detailed balance
( with ρ ∈ S).

There are many ways in which this prototype theory of equilibrium might be extended.
For instance, one might include multi-bunch beams, long-range wakes from cavity resonators
or resistive walls, nonlinear r.f. buckets, proton beams with non-Gaussian distribution in
p, localized wakes not averaged over azimuth. A generalization to 2d-dimensional phase
space might also be made, and in fact Dressler [3] has already done that for d ≥ 3 in a
mathematical study of VFP equilibria in the context of plasma physics. He has an external
confining potential, analogous to an r.f. bucket, and a Vlasov coherent force derived from a
Coulomb potential or mollified potential (smooth and bounded). The analysis gives results
on existence and uniqueness of equilibria, using factorization and an integral equation on d-
dimensional configuration space, quite in analogy to Häıssinski theory. Another possible line
of generalization would be to allow “colored” noise, in which the autocorrelation function is
not a delta function [4].

Here we are interested in two counter-rotating beams in collision. In mathematical as-
pects the problem has similarities to the case of a single beam with localized wake contri-
butions. The beam-beam collision gives a large transverse force that substantially modifies
the beams at every collision. Consequently, the equilibrium state, if any, cannot be time-
independent. Rather, it must be defined as a phase space distribution that is periodic in
azimuthal position s. The same may be said of the exact equilibrium in any storage ring,
with or without beam-beam collisions. The Häıssinski solution is time-independent only
because it is based on the averaged wake field. As a zeroth approximation one could also
do averaging in the beam-beam problem, distributing the localized beam-beam kick over a
full turn. This has been done in linear stability studies [5]. Here we wish to avoid such a
step, accounting fully for the localization. It that case the distribution cannot be factorized.
We must expect the equilibrium equation to be an integral equation for functions on phase
space, not just on configuration space as in the Häıssinski and Dressler theories. We derive
and analyze the simplest instance of such an equation, retaining the full nonlinearity of the
beam-beam force.

The integral equation can be viewed as a fixed point problem in a function space. One can
try to apply the usual fixed point theorems of nonlinear functional analysis, the contraction
mapping theorem and Schauder’s theorem [6], to prove existence of a solution. We had
no initial success with that approach, and turned instead to the implicit function theorem
in Banach space. The solution for zero beam current is known, and the implicit function
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theorem allows one to show that there is a locally unique continuation to non-zero current.
Although the operator of the problem in fixed point form preserves positivity of a probability
distribution to which it is applied, we have not been able to show that the solution from
the implicit function argument is positive. Consequently, our proof of the existence of an
equilibrium is not complete, contrary to our claim in a preliminary report [7].

In retrospect we find that the integral equation can be recast as a fixed point problem
with contractive operator, but only in terms of an auxiliary operator that appears in the
present analysis; namely, the operator Gf (f0, 0)−1 treated in Section 3.3. Since a proof
based on the contractive formulation does not lead to stronger results, and only rearranges
the argument, we defer an exposition of that and other formulations to a later report.

Some background to the present study is found in a recent paper [8]. There we gave a
derivation of the beam-beam force and made an analytic study of equilibria by linearizing
the force, but retaining the quadratic nonlinearity of the Vlasov equation. We also carried
out a numerical integration of the fully nonlinear VFP system. Here we adopt the notation
and equations of motion as given in Ref. [8].

2 Formulation of the Problem

We employ definitions of accelerator physics as treated in texts such as Refs.[9] and [10].
We treat vertical transverse motion with normalized phase-space variables (q, p) defined in
terms of the lattice function β(s) and emittance ε as

q = y(β(s)ε)−1/2 , p = (β(s)y′ − β′(s)y/2)(β(s)ε)−1/2 , (1)

where y is the vertical displacement and the prime denotes d/ds. The Hamiltonian of
motion unperturbed by the beam-beam interaction is H = (p2 + q2)/2 and the independent
“time” variable of Hamilton’s equations is the phase advance θ =

∫ s

0
du/β(u). We define

the emittance as the expected value of the Courant-Snyder invariant J in the unperturbed
equilibrium state; see Appendix A. We distinguish the two beams by a subscript i = 1, 2. The
parameters β, ε in (1) depend on i, so that the coordinates and time are defined differently
for the two beams. Which definition is being used will either be clear from the context, or
will be recognized explicitly when necessary. When the theory is generalized to allow more
than one degree of freedom, the phase advance is not a suitable independent variable. There
is no difficulty in using s in place of θ, as is well known.

Between beam-beam collisions the phase-space distribution function for beam i, denoted
by fi(q, p, θ), propagates according to the Fokker-Planck equation,

∂fi

∂θ
+ p

∂fi

∂q
− q

∂fi

∂p
= 2αi

∂

∂p

[
pfi +

∂fi

∂p

]
. (2)

If the left hand side were set to zero, we would have the Liouville equation for an harmonic
oscillator, the oscillations being motion transverse to the beam direction in fields of focusing
magnets. The right hand side is the Fokker-Planck term accounting for damping and diffusion
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due to synchrotron radiation in quanta. The damping constant is

αi =
1

2πνi(nd)i

, (3)

a small dimensionless parameter that typically could be around 10−4 or less. The number of
turns in a damping time is nd and 2πν is the change in θ per turn. Our dynamical variables
are scaled so that the diffusion constant, the coefficient of ∂2fi/∂p

2, is equal to 2αi. Such a
scaling is possible because the right hand side of (2) is not homogeneous in p.

At the point where the two beams are brought into collision (called the interaction point
or IP) the distribution function changes discontinuously. This happens at θ = 2πnνi for
beam i, with n = 0, 1, 2, · · ·. The change of the distribution is so as to preserve probability
and has the form

fi(q, p, 2πnνi + 0) = fi(q, p− Fj(q, n), 2πnνi − 0) , j �= i , (4)

where Fj(q, n) is the normalized momentum imparted to a particle at location q in beam
i by beam j at the instantaneous collision. The −0 and +0 indicate instants just before
and after the collision, respectively. The right hand side of (4) is the result of applying the
Perron-Frobenius operator [2] for the beam-beam kick map to the function fi(q, p, 2πnνi−0).

The Chao-Ruth model [11, 8] is intended to represent flat beams, with large x : y aspect
ratio. The force on a particle in beam i is approximated as though it came from infinite
uniform planes of charge perpendicular to the y-axis, distributed with a density ρj(y) char-
acterizing the other beam j. This force is concentrated in time, however, at the instant of
collision. In this model the momentum kick to beam i at the n-th collision caused by beam
j, also called the collective force, has the form

Fj(q, n) = −(2π)3/2ξj

∫
sgn(rijq − q′)fj(q

′, p′, 2πnνj − 0)dq′dp′ , i �= j . (5)

The signum function sgn(x) is 1 for x > 0 and -1 for x < 0. The integration of fj over p′ gives
the charge density of beam j. Here q refers to beam i and q′ to beam j, and the parameter
rij = (β∗

i εi/β
∗
j εj)

1/2 accounts for the difference in the definition of the two. The asterisk
specifies that the beta function be evaluated at the interaction point. The dimensionless
beam-beam parameter ξj is proportional to the current in beam j, but depends on the
kinematic parameters of beam i; it is defined as

ξj =
re

(2π)1/2

( β∗

γσy

)
i
nj , i �= j . (6)

Here n = N/Lx is the number of particles per unit length in the x-direction; i.e., N is the
number of particles and Lx is the bunch width. Also, re = e2/(4πε0mc

2) is the classical
electron radius, γ is the Lorentz factor, and σy = (β∗ε)1/2 is the bunch height.

For propagation of the distribution function between IP kicks, we have in (2) a linear
Fokker-Planck equation with harmonic force. The propagator or fundamental solution of
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that equation is known [12], namely a function Φ(z, z′, θ) , z = (z1, z2) = (q, p) such that for
any initial distribution f(z, 0) the solution at time θ is

f(z, θ) =

∫
Φ(z, z′, θ)f(z′, 0)dz′ , (7)

where dz′ = dq′dp′. The propagator depends of course on the beam index i, but we suppress
that index whenever we are concerned with just one beam at a time. There are several
equivalent representations of Φ. The following form, derived from a probabilistic argument
in Appendix A, is especially appealing and convenient for the present work:

Φ(z, z′, θ) =
1

2π(det Σ(θ))1/2
exp[−(z − eAθz′)T Σ(θ)−1(z − eAθz′)/2] ,

Σ(θ) = I − eAθeAT θ . (8)

Here T denotes transposition and eAθ is the transfer matrix (principal solution matrix) for
the single-particle harmonic motion with damping. With damping constant α we have

eAθ = e−αθR(θ) (9)

where

R(θ) =

(
cos Ωθ + (α/Ω) sin Ωθ (1/Ω) sin Ωθ

−(1/Ω) sin Ωθ cos Ωθ − (α/Ω) sin Ωθ

)
, (10)

Ω = (1 − α2)1/2 , detR = 1 . (11)

In Appendix B we show that Σ is positive definite for θ > 0. Also, Σ tends to the unit
matrix at large θ, according to (8), (9), and (10). For small α the matrix R is close to a
rotation, and Σ has the form

Σ(θ) = 2α

(
θ − cos θ sin θ − sin2 θ

− sin2 θ θ + cos θ sin θ

)
+ O(α2) (12)

Even though the realistic value of α is small our analysis requires only 0 < α < 1, which is
to say that the harmonic oscillator is not over-damped.

Let Φ denote the operator corresponding to the kernel Φ(z, z′, θ) in (7). The action of Φ
has a simple expression in Fourier space. Writing ĥ for the Fourier transform of h, we have

Φ̂h(v) = exp[−vT eAθΣeAT θv/2]ĥ(eAT θv) . (13)

There is an interesting alternative formulation of our problem based on this formula, which
we hope to explore in a later communication.

We can now set down a system of integral equations for the equilibrium distribution.
The equations are for the distributions evaluated just after the IP, fi(z, 0+). Henceforth we
suppress the time specification 0+. Starting with f = (f1, f2), we propagate one turn by
(7) with θ = 2πν, and then apply the beam-beam kicks according to (5). For equilibrium
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(periodicity), the result must be the starting f . To state this in equations we first define the
linear operator Lj by

Ljf(q) = (2π)3/2

∫
sgn(rijq − q′)Kjf(z′)dz′ , i �= j , (14)

Kjf(z) =

∫
Kj(z|z′)fj(z

′)dz′ , (15)

where Kj is the Fokker-Planck propagator for one turn,

Kj(z|z′) = Φj(z, z
′, 2πνj) . (16)

The integral equations take the form

fi(z) = Kif(q, p+ ξjLjf(q)), i, j = 1, 2 , i �= j , (17)

with ∫
fi(z)dz = 1 . (18)

It is essential that the normalization constraint (18) be regarded as part of the definition
of the mathematical system; otherwise in Eqs.(17) there is nothing to set the scale of the
beam-beam force. We choose to build in the constraint by redefining the integral equation,
multiplying the left hand side of (17) by

∫
fi(ζ)dζ. Then, since

∫
Ki(z|z′)dz = 1, any

solution of the modified equation will automatically satisfy (
∫
fi(z)dz)

2 =
∫
fi(z)dz. Since

the implicit function theorem will rule out
∫
fi(z)dz = 0, we shall then be assured that our

solution satisfies (18). Thus our task is to analyze the pair of equations

G(f, ξ) = 0 , (19)

where G = (G1, G2) , ξ = (ξ1, ξ2) with

Gi(f, ξ)(z) = fi(z)

∫
fi(z

′)dz′ − Kif( q, p+ ξjLjf(q)), i �= j . (20)

In the special case of beams with identical parameters, the two equations in (19) have
the same form. Then if (f1, f2) is a solution, so must be (f2, f1). Our analysis will show that
the small-current solution is unique, so for it f1 = f2. Consequently, for the case of identical
beams at small current it suffices to solve a single equation G(f, ξ) = 0, where

G(f, ξ)(z) = f(z)

∫
f(z′)dz′ −

∫
K(q, p+ ξLf(q)|z′)f(z′)dz′ = 0 . (21)

with

Lf(q) = (2π)3/2

∫ ∫
sgn(q − q′)K(z′|z′′)f(z′′)dz′dz′′ . (22)

To avoid notational clutter we present our proof for the identical beam problem (21). It will
be obvious that the proof goes through in essentially the same way for the general problem
(19).
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We know the solution of (21) at ξ = 0; it is the Gaussian equilibrium in the absence of
beam-beam force,

G(f0, 0) = 0 , f0 =
1

2π
exp(−1

2
(q2 + p2)) . (23)

We apply the implicit function theorem in a Banach space to prove that this solution can
be continued in a unique way to a solution f(ξ) of (21) for small ξ �= 0. Let us first recall
the intuitive basis of the theorem in finitely many dimensions, so that (21) represents n real
(generally nonlinear) equations in n unknowns fj , j = 1, · · · , n. We wish to solve for the fj

as a function of the parameter ξ, supposing that a solution f0j for ξ = 0 is known. Supposing
that G is smooth, we can expand it by Taylor’s formula with remainder R about the point
(f0, 0):

G(f, ξ) = Gf (f0, 0)(f − f0) +Gξ(f0, 0)ξ +R(f, ξ) = 0 . (24)

If the Jacobian matrix Gf = {∂Gi/∂fj} is non-singular at the expansion point, and the
nonlinear remainder R is small, an approximate solution of our problem is

f(ξ) ≈ f0 −Gf (f0, 0)−1Gξ(f0, 0)ξ . (25)

The implicit function theorem takes into account the nonlinear term, and assures us that for
sufficiently small ξ there will be a unique exact solution of (21) close to the approximation
(25).

For our infinite-dimensional case we look for a solution in a certain set of continuous
functions that form a Banach space. A Banach space is a normed linear space that is
complete in the topology provided by the norm. Completeness means that every Cauchy
sequence {fn} has a limit in the space: if for any ε > 0 we have ‖fn−fm‖ < ε for n,m > N(ε),
then there is an f so that ‖f − fn‖ → 0 , n→ ∞.

For an interesting history and overview of implicit function theorems see [13]. We apply
the following theorem, which is not the most general but adequate for our purpose [14]:

Theorem: Let B be a Banach space, and suppose that G(f, ξ) maps B × I
into B, where I = (−∆ξ,∆ξ) is an open interval, the domain of ξ. Suppose
also that G has (Fréchet) partial derivatives Gf (f, ξ) , Gξ(f, ξ), continuous in
B × I (equivalently, G is continuously differentiable on B × I). Let f0 ∈ B be
a solution of G(f0, 0) = 0, and suppose that Gf (f0, 0) is a bounded linear map
of B onto B with a bounded inverse. Then there exists a unique solution f(ξ)
of G(f, ξ) = 0 such that f(0) = f0, for ξ in some interval I0 = (−δξ , δξ) ⊂
I , δξ �= 0. Moreover, for ξ ∈ I0 this solution has a continuous derivative
with respect to ξ and (Gf (f(ξ), ξ))−1 exists. The derivative is given by f ′(ξ) =
−(Gf (f(ξ), ξ))−1Gξ(f(ξ), ξ) .

The partial derivative Gf (f, ξ) : B → B is a bounded linear operator such that

lim
‖h‖→0

1

‖h‖‖G(f + h, ξ) −G(f, ξ) −Gf (f, ξ)h‖ = 0 . (26)

Continuity on B × I means that for any ε > 0 there is a δ such that

‖Gf (f1, ξ1) −Gf (f2, ξ2)‖ < ε , (27)
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when max(‖f1 − f2‖, |ξ1 − ξ2|) < δ. Here the operator norm is

‖Gf (f, ξ)‖ = sup
‖h‖=1

‖Gf (f, ξ)h‖ , (28)

where sup means least upper bound. The derivative Gξ(f, ξ) : I → B is defined similarly.
In our case, Gf will be an integral operator and Gξ will be multiplication by a function.

The theorem alone does not give us an estimate of the size of the interval I0 in which the
solution exists. In specific cases analytic estimates can be made, but they may be pessimistic.
In our problem, we mainly seek assurance that an equilibrium exists for sufficiently small
current. We shall have to rely on numerical calculations to determine a maximum interval
of existence. Calling on experience with the Häıssinski equilibrium, we expect that the
equilibrium will be stable at small current, and with increasing current will continue to exist
long after it becomes unstable.

As is usual in applications of functional analysis, some experimentation is required to
find a suitable space B. The space must be designed to match the properties of the problem,
and there is no expectation that the choice will be obvious or unique. Physicists are most
familiar with Hilbert space (an example of Banach space) and its L2 norm, but squaring and
integrating to compute the norm is often quite awkward, especially in nonlinear problems. It
is usually easier to follow the model of a simple example of a Banach space, namely the set of
all continuous functions f on the closed interval [0, 1], with the norm ‖f‖ = supx∈[0,1] |f(x)|,
where sup (supremum) means “least upper bound”. One can extend the domain of the
functions to the real line R and also ensure appropriate decay of the functions at infinity
by including a weight function w(x) in the norm, thus ‖f‖ = supx∈R

w(x)|f(x)|, where w
is a positive function that grows at large x. The choice of w will depend on specific traits
of the operator being analyzed. In some problems it may be necessary to have terms in the
norm that involve derivatives or other information about the function; fortunately none are
needed in the present case.

After various estimates of integrals we find that a suitable B consists of all continuous
functions f on the phase space R

2 such that the following expression, identified as the norm,
is finite:

‖f‖ = sup
z∈R2

|w(z)f(z)| , w(z) = 1 + |z|2a , a > 2 . (29)

We suppress reference to the dependence of B on the fixed number a. In Appendix C we
show that the linear space of continuous functions f with ‖f‖ <∞ is complete in the metric
d(f, g) = ‖f − g‖. The choice of a weight function with power behavior is convenient, but
other functions with monotonic behavior in |z| could work as well. We are led in stages to the
requirement a > 2. The first part of the proof, in Sections 3.1 and 3.2, requires only a > 1.
For the last step of the proof, proving convergence of the series that defines Gf (f0, 0)−1, we
have to assume a > 2.

From a physical viewpoint this B is a very “big” space, since it contains some functions
with polynomial decay at infinity, whereas numerical and experimental results suggest that
the solution actually decays much more rapidly, somewhat as a Gaussian. Our existence
proof of a unique solution works for any a > 2, but the requirement on smallness of the
beam current parameter ξ may become more strict as a is increased. The choice of a small
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a, barely bigger than 2, has mathematical appeal in the assertion of uniqueness in a broad
universe.

For the case of dissimilar beams the Banach space would consist of pairs (f1, f2) of
continuous functions, and the norm could be

‖f‖ = max
i

sup
z∈R2

| (1 + |z|2a)fi(z) | , a > 2 . (30)

The beam-beam parameter would be the vector (ξ1, ξ2).

3 Existence and Uniqueness of a Solution to the

Integral Equation

We have to verify the three main hypotheses of the implicit function theorem, namely

1. G : B × I → B

2. G is a continuously differentiable mapping of B × I into B.

3. Gf (f0, 0)−1 exists (i.e., Gf (f0, 0) is 1:1 and onto) and is bounded.

3.1 Verifying Hypothesis 1

Suppose that f ∈ B. Then Kf(z) =
∫
K(z|y)f(y)dy exists and has continuous derivatives

of all orders. For estimates of the action of K on f we first note

Lemma 1:

I =

∫
R2

∣∣∣∂m+nK(z|y)
∂zm

1 ∂z
n
2

∣∣∣ dy

1 + |y|2a
≤ Mmn

1 + |z|2a
, a > 0 , (31)

for any m ≥ 0, n ≥ 0, where the constant Mmn depends on a and the parameters
defining K. Here and henceforth the Euclidean norm in any R

n is denoted by
single bars: |y| = (yTy)1/2.

We prove Lemma 1 after three steps as follows. We use M > 0 as a generic finite constant
in majorizations; it may change value from one appearance to the next.

Lemma 1a:

I =

∫
Rn

exp[−|z − y|2/2 ]dy

1 + |y|2a
≤ M

1 + |z|2a
, a > 0 . (32)

Proof 1a: With 0 < α < 1 we break the integral into I+ with |y| > α|z| and I− with
|y| < α|z|. Then

I+ ≤ 1

1 + (α|z|)2a

∫
|y|>α|z|

exp[−|z − y|2/2 ]dy ≤ M

1 + |z|2a
, (33)
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whereas in I− we have |z − y| ≥ | |z| − |y| | ≥ (1 − α)|z|, hence

I− ≤ exp[−(1 − α)2|z|2/4]

∫
|y|<α|z|

exp[−|z − y|2/4 ]dy ≤ M

1 + |z|2a
. (34)

Lemma 1b:

If A and B are positive definite n× n matrices, then there is an M such that for
a > 0 and all z we have

1

1 + (zTAz)a
≤ M

1 + (zTBz)a
. (35)

Proof 1b: We know that

a− ≤ zTAz

zT z
≤ a+ , (36)

where a∓ is the minimum (maximum) eigenvalue of A, and similarly for B. Then zTAz ≥
(a−/b+)zTBz, and

1

1 + (zTAz)a
≤ β

β + (zTBz)a
, β =

( b+
a−

)a

. (37)

We get a lower bound on the denominator of the r.h.s. if we replace its first term by 1 if
β ≥ 1, or multiply its second term by β if β < 1; thus M = max(1, β).

Lemma 1c:

I =

∫
R2

K(z|y)dy
1 + |y|2a

≤ M

1 + |z|2a
, a > 0 . (38)

Proof 1c: Recall the definition ofK in (16) and (8) and put θ = 2πν. Change the integration
variable to ζ = exp(Aθ)z′, noting (11). Then

I =
e2αθ

2π[ det Σ(θ)]1/2

∫
exp [ − (z − ζ)T Σ(θ)−1(z − ζ)/2]dζ

1 + [ζT e−AT θe−Aθζ]a
. (39)

Since Σ(θ)−1 and e−AT θe−Aθ are positive definite, we can apply Lemma 1b to get

I ≤M

∫
exp [ − |z − ζ|2s/2]dζ

1 + |ζ|2a
s

, (40)

where we have introduced a new norm |z|s = (zT Σ(θ)−1z)1/2. Lemma 1a holds as well if the
Euclidean norm is replaced by the new norm . Applying Lemma 1b again, we then finish
the proof.

Proof 1: We can now prove Lemma 1 by a similar argument. For I of Lemma 1 we
change the integration variable to ζ and apply Lemma 1b as before to get

I ≤M

∫ |Pmn(z − ζ)| exp [ − |z − ζ|2s/2]dζ

1 + |ζ|2a
s

, (41)
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where Pmn(z) is a polynomial in the components of z. Now the r.h.s. can be estimated by
the method used in the proof of Lemma 1a (but with the new norm), since the polynomial
does not spoil convergence of the integrals bounding I+ and I−. One more application of
Lemma 1b finishes the proof.

Note also

Lemma 2: If φ : R
2 → R is any bounded function, |φ(z)| ≤ b, then

1

1 + [q2 + (p+ φ(z))2]a
≤ M

1 + |z|2a
. (42)

Proof 2: Let r(z) = (1 + |z|2a)/(1 + [q2 + (p+ φ(z))2]a). For |p| ≥ 2b we have

r(z) ≤ 1 + (q2 + p2)a

1 + (q2 + p2/4)a
< M , (43)

whereas for |p| < 2b,

r(z) ≤ 1 + (q2 + (2b)2)a

1 + q2a
< M (44)

To establish Hypothesis 1, suppose that f ∈ B. Then

|f(z)| ≤ ‖f‖
w(z)

, (45)

and G(f, ξ)(z) is a continuous function of z, according to the definitions of K and L. Also,
Lf of (22) is bounded. Since

∫
K(z′|z′′)dz′ = 1, we have

|Lf(q)| ≤ (2π)3/2‖f‖
∫ ∫

K(z′|z′′)dz′dz′′
w(z′′)

< M‖f‖ . (46)

Now by Lemma 1c, and Lemma 2 applied with φ = ξLf , we see that G(f, ξ) has finite norm
and therefore belongs to B:

‖G(f, ξ)‖ = sup
z
w(z)

∣∣∣f(z)

∫
f(u)du− Kf(q, p+ ξLf(q))

∣∣∣
≤M‖f‖2 +M‖f‖ sup

z

w(z)

w(q, p+ ξLf(q))
< M . (47)

3.2 Verifying Hypothesis 2

Recall from (20) that G has the form

G(f, ξ) = G0(f) −G1(f, ξ)

G0(f)(z) = f(z)

∫
f(u)du

G1(f, ξ)(z) = Kf(q, p+ ξLf(q)) , (48)
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where the linear operator L is defined in (22). To verify Hypothesis 2, we determine Gf (f, ξ)
and Gξ(f, ξ) as bounded linear operators and show that they are continuous functions of
(f, ξ) in the operator norm. The obvious candidates for these operators are obtained from
the formal first-order variations of G with respect to f and ξ, respectively. Writing h = δf
for the variation of f , we find a linear integral operator L = L0 + L1 + L2 : B → B as the
candidate for Gf :

δG0 = L0δf, δG1 = (L1 + L2)δf

[L0(f)h](z) =

∫
f(u)du h(z) + f(z)

∫
h(u)du

[L1(f, ξ)h](z) = Kh(q, p+ ξLf(q))

[L2(f, ξ)h](z) = D2Kf(q, p+ ξLf(q))ξLh(q) , (49)

where D2 means derivative with respect to the second argument of a function g(q, p). Simi-
larly, the candidate L3 : R → B for Gξ is multiplication by a function, that is

[L3(f, ξ)κ](z) = − [D2Kf(q, p+ ξLf(q))Lf(q)]κ , κ ∈ R . (50)

The path to showing that L = Gf is indicated right away in the case of the simple term
G0. We take h, f ∈ B and compute

‖G0(f + h) −G0(f) − L0(f)h‖ =

sup
z
w(z)

∣∣∣h(z) ∫
h(u)du

∣∣∣ ≤ ‖h‖2

∫
du

w(u)
= O(‖h‖2) . (51)

Also, L0(f) is bounded, since ‖L0(f)h‖ ≤ M‖h‖. Then (G0)f (f) = L0(f) by the definition
(26). It is easy to see that ‖L0(f)‖ = sup‖h‖=1 ‖L0(f)h‖ ≤M‖f‖. Then L0(f) is continuous,
since it depends linearly on f .

Proceeding to the less trivial terms we define

ζ = z + (0, ξLf(q)), η = (0, ξLh(q)) = O(‖h‖) . (52)

Suppressing reference to ξ dependence, we have

‖G1(f + h) −G1(f) − (L1 + L2)(f)h‖ =

‖K(f + h)(ζ + η) − Kf(ζ) − Kh(ζ) −D2Kf(ζ)η2‖ ≤ T1 + T2 , (53)

where

T1 = sup
z
w(z)

∣∣∣Kh(ζ + η) − Kh(ζ)
∣∣∣

T2 = sup
z
w(z)

∣∣∣Kf(ζ + η)) − Kf(ζ) − η2D2Kf(ζ)
∣∣∣ . (54)

Now let us verify that both T1 and T2 are O(‖h‖2). Considering first T1, we apply the Taylor
formula with remainder

φ(x+ y) = φ(x) + y

∫ 1

0

φ′(x+ uy)du , (55)
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which gives

Kh(ζ + η) − Kh(ζ) = η2

∫ 1

0

D2Kh(ζ + uη)du . (56)

Here D2K can be estimated by Lemmas 1 and 2 as follows:

|D2Kh(ζ + uη)| ≤ M‖h‖
w(q, ζ2 + uη2)

≤ M‖h‖
w(z)

, (57)

from which it follows that T1 = O(‖h‖2). The argument to show that T2 = O(‖h‖2 is similar,
except that we must apply the second order Taylor formula,

φ(x+ y) = φ(x) + φ′(x)y + y2

∫ 1

0

(1 − u)φ′′(x+ uy)du . (58)

Boundedness of L1(f) and L2(f) follows immediately from Lemmas 1 and 2, and the fact
that L is bounded as noted in (46). Thus Gf = L as claimed.

The continuity of Gf (f, ξ) is proved in a similar manner by Lemmas 1 and 2 and the first
order Taylor formula. For instance, to prove continuity of L2 we examine

L2(f + f1, ξ + ξ1) − L2(f, ξ) =

D2K(f + f1)(ζ + φ)(ξ + ξ1)Lh−D2Kf(ζ)ξLh =

D2K(f + f1)(ζ + φ)ξ1Lh+D2Kf1(ζ + φ)ξLh+

∫ 1

0

D2
2Kf(ζ + uφ)du φ2 , (59)

where
φ = (0, ξ1Lf + ξLf1) . (60)

The norm of each of the three terms in the last line of (59) is O(‖h‖max(‖f1‖, |ξ1|)), which
implies continuity, in fact Lipschitz continuity.

The same sort of argument shows that Gξ(f, ξ) = L3(f, ξ) exists and is continuous.

3.3 Verifying Hypothesis 3

The hardest part of the proof is verifying item (3). In textbook examples it is usual to
suppose that Gf − 1 is a compact operator, in which case one can apply Fredholm theory
to discuss existence of G−1

f . In the present case this operator appears to be non-compact,
and we have to resort to a more subtle method. We get the inverse by proving uniform
convergence of an operator power series development. The convergence is at a slow rate
determined by the small damping constant.

To check Hypothesis 3 we have to show that the equation

Gf (f0, 0)x = y (61)

has a unique solution x ∈ B for any y ∈ B, and that the solution is a continuous function
of y in the norm topology of B. Since f0 has unit integral, (61) has the form

x(z) + f0(z)

∫
x(u)du− Kx(z) = y(z) . (62)
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For the general problem (19), Gf breaks into two independent blocks at zero current, and
each block has the form (62). This is the reason that there is no substantial complication in
extending our argument to the case of dissimilar beams.

To understand the structure of (62) it is important to note that for any x ∈ B,∫
Kx(z)dz =

∫
x(z)dz , (63)

Remark: In view of (63) we can see how essential it was to include
∫
f(z)dz in

the definition of G. If this factor were replaced by 1 then the second term on the
l.h.s. of (62) would not be present, and there could be a solution of (61) only if∫
y(z)dz = 0, not for every y ∈ B.

It follows from (63) that any solution of (62) must satisfy∫
x(z)dz =

∫
y(z)dz . (64)

Consequently, any solution of (62) must also be a solution of

x(z) = Kx(z) + p(z) , (65)

p(z) = y(z) − f0(z)

∫
y(z′)dz′ ,

∫
p(z)dz = 0 . (66)

We look for solutions of (62) among the solutions of (65). Iterating (65) n− 1 times we find

x = Knx+
n−1∑
m=1

Kmp+ p . (67)

Here the story is different from the familiar case of the Neumann series, since the term Knx
does not vanish in the limit of large n. By the semigroup property of the linear Fokker-Planck
evolution, Kn is given through (8) as follows:

Knx(z) =
1

2π det1/2 Σn

∫
exp

[
−1

2

∣∣Σ−1/2
n (z − enAθz′)

∣∣2]x(z′)dz′ , (68)

where
θ = 2πν , Σn = Σ(nθ) . (69)

If x ∈ B the integral (68) converges uniformly in n, since the integrand is majorized by
|x(z′)| and

∫ |x(z)|dz <∞. We may then take the limit under the integral to obtain

lim
n→∞

Knx(z) = f0(z)

∫
x(z)dz , (70)

since
Σn = I − enAθenAT θ → I (71)
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follows from (9). Thus, from (67) and (70) we can hope to find a solution of (65) in the form
of a series,

x = f0

∫
x(z′)dz′ +

∞∑
m=1

Kmp+ y − f0

∫
y(z′)dz′. (72)

Any solution of (62) must satisfy (64), so that from (72) a candidate for a series solution is

x(z) =
∞∑

m=1

Kmp(z) + y(z) . (73)

To establish that (73) is a unique solution to the original equation our main task will be
to prove

Lemma 3: If p ∈ B and
∫
p(z)dz = 0 then

|Knp(z)| ≤ Me−nθα‖p‖
w(z)

. (74)

Suppose that Lemma 3 is true, and that y ∈ B, hence p ∈ B. Then the following observations
complete our argument:

(i) By (74) and the Weierstrass M-test, the series (73) converges uniformly in z and therefore
represents a continuous function, since its terms are continuous. The sum of the series
is less in magnitude than M

∑
n e

−nθα/w(z), so it belongs to B.

(ii) Furthermore, (73) satisfies the original equation (62):

∞∑
m=1

Kmp+ y + f0

∫
[

∞∑
m=1

Kmp(u) + y(u)]du−
∞∑

m=2

Kmp− Ky

= Kp+ y + f0

∫
y(u)du− Ky = y, (75)

since Kf0 = f0 and
∫ ∑∞

m=1 Kmp(u)du =
∑∞

m=1

∫
Kmp(u)du =

∑∞
m=1

∫
p(u)du = 0,

the reversal of sum and integral in the latter being justified by (74).

(iii) To prove that the solution is unique, suppose that there were two solutions x1 , x2 in
B. Then x = x1−x2 satisfies (62) with y = 0, from which it follows that

∫
x(z)dz = 0,

hence x − Kx = 0. Iterating the latter equation, we have x = Knx = limn→∞ Knx =
f0

∫
x(z)dz = 0.

(iv) By (66), (73) and (74) we have ‖x‖ ≤ M‖p‖ + ‖y‖ ≤ M‖y‖. Thus G−1
f (f0, 0) is a

bounded linear map, and x is a continuous function of y in the norm topology.

Proof 3: To motivate the first step in the proof of Lemma 3, note that if we could take
the limit n → ∞ under the integral that defines Knp, the limit of that integral would be
f0(z)

∫
p(z′)dz′. This indicates that the above noted property

∫
p(z)dz = 0 is essential to
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convergence of the series in (73). Accordingly we formally subtract a term that is zero to
obtain ∣∣∣Knp(z)

∣∣∣ =
1

2π det1/2 Σn

∣∣∣ ∫
[e−|x−y|2/2 − e−|x|2/2]p(z′)dz′

∣∣∣ (76)

≤ M‖p‖e−|x|2/2

det1/2 Σn

∫ ∣∣∣e−|y|2/2+xT y − 1
∣∣∣ dz′

w(z′)
, (77)

where
y = e−nαθΣ−1/2

n R(nθ)z′ , x = Σ−1/2
n z . (78)

Notice that

|z′|2 = e2nαθyTSny > se2nαθ|y|2 , Sn = Σ1/2
n (R(nθ)RT (nθ))−1Σ1/2

n , (79)

where s > 0 is an n-independent lower bound on the eigenvalues of Sn as given in (118).
Also,

σ|x|2 < |z|2 < |x|2, (80)

where σ > 0 and 1 are n-independent lower and upper bounds, respectively, on the eigen-
values of Σn. A value for σ is given in (116). In estimates we repeatedly use (79) to relate

|z′| and |y| and (80) to relate |z| and |x|. Now note that ev − 1 = v
∫ 1

0
evtdt and that

−|y|2/2 + xTy = −|y − x|2/2 + |x|2/2 ≤ |x|2/2, so that by (79) and (80) we have∣∣∣e−|y|2/2+xT y − 1
∣∣∣ ≤ ∣∣∣− |y|2/2 + xTy

∣∣∣ ∫ 1

0

et|x|2/2dt ≤Me−nαθ
(|z′|2 + |z| |z′|) e|x|2/2 − 1

|x|2 (81)

Using this in (77) and noting that det Σn > σ2 we find∣∣∣Knp(z)
∣∣∣ ≤Me−nαθ‖p‖(1 + |z|)1 − e−|x|2/2

|x|2

≤Me−nαθ‖p‖(1 + |z|)1 − e−|z|2/(2σ)

|z|2 (82)

The condition a > 2 ensured convergence of the z′-integral. (The requirement a > 2 in the
definition of the norm in fact arose from this estimate). Now the bound (82) is enough to
show that the series of (73) converges uniformly in the maximum norm for z in any compact
region and therefore defines a continuous function of z. Since it gives decay only as 1/|z| it
is insufficient to show that the sum belongs to B.

To complete the job we get a bound by a different method which fails at small |z| but
works for |z| > r. For that we begin with (77) and break the integral I into a part I− with
|y| < b|x| and a part I+ with |y| > b|x|, where 0 < b < 1/2. For I− we apply the bounds

xTy − |y|2/2 ≤ b|x|2 , |exT y−|y|2/2 − 1| ≤ |xTy − |y|2/2|
∫ 1

0

etb|x|2dt , (83)
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which leads as in the calculation above to

|I−| ≤Me−nαθ‖p‖e−(1/2−b)|z|2 |z| ≤M
e−nαθ‖p‖
w(z)

. (84)

In I+ we do not get the decay at large n from the coefficient of p(z′), but rather from the
decay of p(z′) at large z′. Accordingly we replace the minus sign in (77) by plus, and treat
the two terms separately: |I+| ≤M‖p‖(J1 + J2) where

J1 = e−|x|2/2

∫
|y|>b|x|

dz′

w(z′)
, J2 =

∫
|y|>b|x|

e−|x−y|2/2dz′

w(z′)
. (85)

We change the variable of integration in J1 to y and apply (79) and (80). The determinant
of the Jacobian is less than or equal to exp(2nαθ) since detR = 1. We find

J1 ≤ e−|x|2/2e2nαθ

∫
|y|>b|x|

dy

1 + e2anαθ(yTSny)a

≤ Me−|z|2/2e−2(a−1)nαθ

∫
|y|>br

dy

|y|2a
≤M

e−nαθ

w(z)
. (86)

For J2 we proceed in the same way to get

J2 ≤ Me−2(a−1)nαθ

∫
|y|>b|x|

e−|x−y|2/2dy

|y|2a
≤ Me−2(a−1)nαθ

(b|z|)2a

∫
R2

e−|x−y|2/2dy

≤ M
e−nαθ

w(z)
, |z| > r . (87)

Now by applying (82) for |z| ≤ r and (34, 86, 87) for |z| > r, we complete the proof of
Lemma 3.

4 The Question of Positivity

We derived the integral equation (21) as a necessary condition on the equilibrium state of
colliding electron beams. The equation has a unique positive solution at zero beam current,
the Gaussian of Eq.(23). We proved that this solution has a unique continuation f(z, ξ)
to non-zero current, with

∫
f(z, ξ)dz = 1. We have not yet proved that f(z, ξ) ≥ 0, as

is required of a probability density. Positivity would follow if we knew that the following
iteration converged to f = A(f) ∈ B at sufficiently small current:

f (n+1) = A(f (n), ξ) , f (0) = f0 , (88)

where the definition of A is obtained from (21),

A(f, ξ)(z) =

∫
K( q, p+ ξLf(q) | z′ )f(z′)dz′ . (89)
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The operator A preserves both positivity and the integral of a function to which it is applied.
Consequently, convergence as stated, beginning with the positive zero-current solution f0,
would produce a positive solution, which must be identical to the solution established by
the implicit function theorem.

At present we have no mathematical understanding of a mechanism for convergence
of (88), although convergence would be perfectly in accord with physical intuition about
equilibration. Furthermore, we have numerical evidence of convergence, as first reported
in [8]. In the numerical work the Fokker-Planck evolution between beam-beam kicks was
done by numerical solution of the partial differential equation (2). That is equivalent, modulo
discretization error, to applying the propagator (16) as we have done in the present work. An
effort was made to control discretization error, but whatever the deficiencies in that regard,
the convergence of the iteration to an equilibrium was found to very robust. We give some
results for a case of identical beams with ν = 0.6364, β∗ = 0.015m, ε = 1.44 · 10−9m, ξ =
0.0485, nd = 5000. The numerical method is that of [8], with a 401 × 401 grid in phase
space. Figure 1 shows the r.m.s. vertical bunch size σq in the normalized variable q, versus
turn number, for the first 1000 turns. The plot shows rapid oscillations with a period of
about 3 turns, which begin to damp out by 1000 turns. Figure 2 shows the same quantity
over 30000 turns. The number of turns for disappearance of oscillations and convergence to
an equilibrium is 2 or 3 times the radiation damping time of the machine (nd turns), again in
agreement with intuition. The beam-beam force, proportional to Lf(q), is shown in Figure
3 as it looks in the equilibrium state at 30000 turns. The corresponding distributions in q
and p are plotted in Figure 4. Since d/dq

∫
sgn(q− q′)ρ(q′)dq′ = 2ρ(q), the beam-beam force

is proportional to the integral of the q-distribution. The shoulders in the plots of Figure 4
seem to be associated with a broad sixth-order resonance, as is revealed by the contour plot
of f(q, p) given in Figure 5, and the three-dimensional plot of the same in Figure 6. The
distribution is extremely flat in six regions, apparently vestiges of the ν = 2/3 Hamiltonian
resonance islands as perturbed by damping and noise.

5 Conclusion

We have derived the integral equation (21) as a necessary condition on the equilibrium
phase space distribution for the Chao-Ruth model of colliding electron beams. We proved
that this equation has a unique solution in the function space defined through (29) when
the beam current is sufficiently small. We are fairly confident that the proof will go through
in almost the same way for other models in one degree of freedom [5] and for the model
in two degrees of freedom in which the force is obtained from the two-dimensional Poisson
equation. A sideline of our analysis was the probabilistic derivation of an elegant formula
for the fundamental solution of the Fokker-Planck equation with harmonic force. We expect
this formula to have further applications.
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A Fundamental Solution of the Fokker-Planck

Equation with Harmonic Force

Our definition of phase space coordinates in (1) is a bit unusual in that it involves the emit-
tance ε, which has a statistical definition. For the present discussion let us start with con-
ventional coordinates having a purely mechanical definition, namely ζ = (Q,P ) =

√
ε(q, p).

For the betatron motion unperturbed by the beam-beam force and radiation, the Courant-
Snyder action J is invariant, where

J =
1

2β(s)

[
x2 + (β(s)p− β′(s)x/2)2

]
=

1

2

[
Q2 + P 2

]
. (90)

With time coordinate θ =
∫ s

0
du/β(u) this quantity is also the Hamiltonian H for ζ. The

corresponding Fokker-Planck equation for the probability density ψ(ζ, θ) may be written as

∂ψ

∂θ
+ ∇ · (Aζ ψ) = D

∂2ψ

∂P 2
, (91)

where ∇· is the divergence in R
2, and the matrix A is(

0 1
−1 −2α

)
. (92)

The damping and diffusion constants are α and D, respectively. The differential equation
for damped harmonic motion is dζ/dθ = Aζ, and eAθ as given in (9) is the corresponding
principal solution matrix (or transfer matrix in the nomenclature of accelerator physics).
Rearranging (91) we have

∂ψ

∂θ
+ P

∂ψ

∂Q
−Q

∂ψ

∂P
= 2α

∂

∂P
(Pψ) +D

∂2ψ

∂P 2
. (93)

We look for the θ-independent equilibrium solution ψ0 as an even function of P , in accord
with the principle of detailed balance [16, 17]. Then the left hand side of (93) is odd in P ,
while the right hand side is even, therefore either side is zero. The left side set to zero
says [ψ0, H] = 0, where [ ] is the Poisson bracket, which is satisfied by any smooth function
ψ0(Q,P ) = Φ(H). Putting this in the right side set to zero we have

2αΦ +DΦ′ + P 2[2αΦ′ +DΦ′′] = 0 . (94)

Since this equation must hold for all Q at P = 0, a solution must have the form Φ(H) =
const · exp(−2αH/D), and indeed this is the general solution for all (Q,P ). Normalizing ψ0

to have unit integral, we have

ψ0(Q,P ) =
1

2πε
exp

(
−J
ε

)
, ε =

D

2α
. (95)

One easily verifies that ε =< J >, the expected value of J in the unperturbed equilibrium
state. Our definition of emittance as ε =< J > agrees with Ref.[10], but one finds several
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different but related definitions in the literature. Rewriting (93) in terms of the thoroughly
normalized dimensionless variables (q, p) = (Q,P )/

√
ε, we find the equation for f(q, p, θ) =

εψ(Q,P, θ) previously stated in (2):

∂f

∂θ
+ p

∂f

∂q
− q

∂f

∂p
= 2α

∂

∂p

[
pf +

∂f

∂p

]
. (96)

It appears in (96) that the constant D has been eliminated, but this is true only at the level
of solving the differential equation. To get results concerning the physical variables (y, y′)
one needs as well the ratio ε = D/2α in (1).

The Fokker-Planck equation (96) gives the evolution law of the probability density of the
stochastic process Z(θ) defined by the Langevin equation

dZ

dθ
= AZ + 2

√
α

(
0
1

)
ξ(θ) , (97)

where ξ(θ) is Gaussian white noise. Formally, ξ(θ) is the derivative of the Wiener process
W (θ) (mathematical Brownian motion), but that derivative actually fails to exist almost
everywhere. The associated Itô stochastic differential equation [15] is

dZ = AZdt+ 2
√
α

(
0
1

)
dW (θ) . (98)

The solution of (98) is

Z(θ) = eAθ

[
Z(0) + 2

√
α

∫ θ

0

e−At

(
0
1

)
dW (t)

]
, (99)

where the second term has a technical definition as the so-called Itô integral. It can be
shown that the Itô integral is a Gaussian random variable. We assume that Z(0) is either
deterministic or is a Gaussian random variable independent of W (θ); then Z(θ) is a Gaussian
variable. Furthermore, f is the probability density of Z, so that

f(z, θ) =
1

2π det1/2C(θ)
exp

[
−1

2
(z −m(θ))TC(θ)−1(z −m(θ))

]
, (100)

where m and C are the vector mean and covariance matrix,

m(θ) = E[Z(θ)] ,

C(θ) = E[(Z(θ) −m(θ))(Z(θ) −m(θ))T ] = M(θ) −m(θ)m(θ)T ,

M(θ) = E[Z(θ)Z(θ)T ] . (101)

Since the expected value of the integral in (99) is zero, we have

m(t) = eAθE[Z(0)] , (102)
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and M(θ) satisfies the differential equation

dM

dθ
= AM +MAT + 4α

(
0 0
0 1

)
. (103)

Before outlining the derivation of (103), we discuss its solution and the resulting C(θ).
The general solution is

M(θ) = eAθKeAT θ +Mp(θ) , (104)

where K is an arbitrary constant matrix and Mp is a particular solution. Using (101) and
(102), and determining K in terms of the initial value of C, we have

m(θ) = eAθm(0) , (105)

C(θ) = eAθ(C(0) −Mp(0))eAT θ +Mp(θ) . (106)

These expressions substituted in (100) complete the solution of the Fokker-Planck equation
(96) by the probabilistic method. One can check by direct substitution that (100) satisfies
(96), if detC �= 0.

Equation (103) can be established by applying Itô’s formula to the stochastic differential
equation. Here we give an heuristic derivation, starting with the solution (99). We have

M(θ) = E[Z(θ)ZT (θ)] = eAθE
[(
Z(0) + 2

√
α

∫ θ

0

e−At

(
0
1

)
dW (t)

)
·(

Z(0)T + 2
√
α

∫ θ

0

(
0 1

)
e−AT sdW (s)

)]
eAT θ

= eAθ
[
M(0) + 4α

∫ θ

0

dt

∫ θ

0

dse−At

(
0 0
0 1

)
e−AT sE[ξ(t)ξ(s)]

]
eAT θ

= eAθ
[
M(0) + 4α

∫ θ

0

e−At

(
0 0
0 1

)
e−AT tdt

]
eAT θ . (107)

Here we have applied E[ξ(t)ξ(s)] = δ(t− s), which is a formal expression of a basic property
of the stochastic integral. That is, the autocorrelation function of white noise is the delta
function. Now (103) follows from differentiation of (107).

Now consider our special case with A defined in (92), for which a particular solution of
(103) is the unit matrix Mp = I. With that choice in (106) we see from (9) that C(θ) →
I, m(θ) → 0 , θ → ∞, hence f(z, θ) → f0(z). That is, whatever the initial condition the
solution tends to the equilibrium. The fundamental solution Φ(z, z0, θ) of the Fokker-Planck
equation is (100) with a non-random initial condition Z(0) = z0. In this case m(0) = E[z0] =
z0 and C(0) = 0, so that C(θ) = I−eAθeAT θ coincides with Σ(θ), and Φ is indeed as claimed
in (8). The right hand side of (7) is a solution which tends to f(z, 0) as θ → 0, since Φ peaks
up to form a delta function δ(z − z′) in the limit.
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B Eigenvalues of RRT

We are concerned with the matrix

Σ(θ) = I − e−2αθR(θ)RT (θ) , (108)

with R defined in (10) and (11). One can prove by a probabilistic argument that Σ(θ) is
positive-definite for θ > 0. Here we wish to prove the same thing by a direct examination of
eigenvalues, and also derive some bounds needed in the proof of Lemma 3. We first calculate
the eigenvalues of RRT from (10), beginning with the trace

tr[RRT ] = 2
(
1 + 2(

αz

Ω
)2

)
, z = sin(Ωθ) . (109)

Since detRRT = 1 this gives the eigenvalues of RRT as

λ±(z) = 1 + 2(
αz

Ω
)2 ±

[(
1 + 2(

αz

Ω
)2

)2

− 1

]1/2

=
(
1 + (

αz

Ω
)2

)
+ (

αz

Ω
)2 ± 2

α|z|
Ω

(
1 + (

αz

Ω
)2

)1/2

=
1

Ω2

[
α|z| ± (

Ω2 + (αz)2
)1/2

]2

, (110)

where it is understood that all square roots are positive. The eigenvalues of Σ are

σ∓(θ) = 1 − e−2αθλ±(z) . (111)

We compute their derivatives as follows:

σ′
∓(θ) = e−2αθ

[
2αλ±(z) − λ′±(z)Ω cos(Ωθ)

]
, λ′±(z) = ±2 sgn(z)αλ±(z)

(Ω2 + (αz)2)1/2
. (112)

This gives

σ′
∓(θ) = 2αλ±(z)e−2αθ

[
1 ∓ sgn(z)

Ω cos(Ωθ)

[Ω2 + (αz)2]1/2

]
≥ 0 . (113)

For 0 < θ < π/Ω we see that σ∓ is definitely increasing, and for larger θ it is non-decreasing
(actually increasing except for periodically recurring points of zero slope). It follows that
Σ(θ) is positive-definite for positive θ, since σ∓(0) = 0.

For bounds on λ± note that (110) gives

λ− ≤ 1 ≤ λ+ . (114)

From the sign of λ′± given in (112) we can find an upper bound on λ+ and a lower bound on
λ−. Altogether,

1 − α

1 + α
≤ λ− ≤ 1 ≤ λ+ ≤ 1 + α

1 − α
. (115)
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For the proof of Lemma 3 we are concerned with Σn = Σ(nθ) , θ = 2πν , n = 1, 2, · · ·.
Choosing a θ0 ∈ (0, π/Ω) such that θ0 < 2πν we have by (113) that

0 < σ = σ−(θ0) < σ∓(nθ) < 1 . (116)

We also need a lower bound on the eigenvalues of the matrix Sn appearing in (79), namely

Sn = Σ1/2
n (R(nθ)R(nθ)T )−1Σ1/2

n , θ = 2πν . (117)

Since Σn and R(nθ)R(nθ)T are diagonalized by the same orthogonal transformation, the
eigenvalues of Sn are

σ∓
λ±

>
σ

λ+

≥ 1 − α

1 + α
σ = s > 0 . (118)

C Completeness of the space B

We wish to show that the space B defined in Section 2, with norm given in (29), is complete.
Supposing that {fn} is a Cauchy sequence in B, we must show that there exists f ∈ B such
that ‖fn − f‖ → 0.

Step 1: Construction of a candidate for f .
For any fixed z, {fn(z)} is a Cauchy sequence in R since |fn(z) − fm(z)| ≤ w(z)|fn(z) −
fm(z)| ≤ ‖fn − fm‖. Since R is complete there exists an f such that fn(z) → f(z), that is,
fn converges pointwise to f .

Step 2: ‖f‖ <∞.
{‖fn‖} is a Cauchy sequence in R since by the triangle inequality | ‖fn‖−‖fm‖ | ≤ ‖fn−fm‖.
Thus w(z)|fn(z)| ≤ ‖fn‖ implies w(z)|f(z)| ≤ limn→∞ ‖fn‖ =: d <∞. Therefore, ‖f‖ ≤ d.

Step 3: ‖fn − f‖ → 0.
Since w(z)|fn(z)−f(z)| ≤ w(z)|fn(z)−fm(z)|+w(z)|fm(z)−f(z)| it follows that for any ε > 0
there exists N(ε) such that n,m ≥ N implies w(z)|fn(z) − f(z)| < 1

2
ε+w(z)|fm(z) − f(z)|.

We may choose an m ≥ N , dependent on z, such that w(z)|fm(z) − f(z)| < 1
2
ε. Therefore

n ≥ N implies w(z)|fn(z) − f(z)| < ε, which implies that ‖fn − f‖ ≤ ε.

Step 4. f is continuous.
We know that for any ε > 0 there existsN(ε) such that ‖fn−f‖ < 1

3
ε if n ≥ N . Consequently,

|f(z) − f(z0)| ≤ |f(z) − fn(z)| + |fn(z) − fn(z0)| + |fn(z0) − f(z0)| ≤ 2
3
ε+ |fN(z) − fN(z0)|,

since w(z) ≥ 1. Now the result follows from continuity of fN : for the above ε there exists
δ(ε) such that |z − z0| < δ implies |fN(z) − fN(z0)| < 1

3
ε.

The only property of w required in the completeness proof is that it have a positive lower
bound. This gives one a great deal of flexibility in choosing the Banach space to fit the
operator in fixed point or implicit function studies.
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