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Abstract

In the proximity of a nonlinear resonance ν ≈ m
n , the beam distribution

in a storage ring is distorted depending on how close by is the resonance and
how strong is the resonance strength. In the 1-dimensional case, it is well
known that the particle motion near the resonance can be described in a smooth
approximation by a Hamiltonian of the form (ν − m

n )J + Dν(J) + f1(φ, J),
where (φ, J) are the phase space angle and action variables, Dν is the detuning
function, and f1 is an oscillating resonance term. In a proton storage ring, the
equilibrium beam distribution is readily solved to be any function exclusively
of the Hamiltonian. For an electron beam, this is not true and the equilibrium
distribution is more complicated. This paper solves the Fokker-Planck equation
near a single resonance for an electron beam in a storage ring. The result is then
applied to obtain the quantum lifetime of an electron beam in the presence of
this resonance. Resonances due to multipole fields and due to the beam-beam
force are considered as examples.
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1 INTRODUCTION AND SUMMARY

Particle motion in a storage ring is seriously perturbed when the particle’s tune

ν (defined as particle’s natural oscillation frequency divided by its revolution

frequency around the ring) is close to a fractional value i.e., when a nonlinear

resonance condition ν ≈ m
n is fulfilled. In particular, the beam distribution

in phase space can be significantly distorted depending on how close by is the

resonance and how strong is the resonance strength.

In the 1-dimensional case, it is well known that the particle motion can be

described in a smooth approximation [1] by a Hamiltonian of the form

K =
1
R

[(
ν − m

n

)
J + Dν(J) + f1(φ, J)

]
(1)

where (φ, J) are the phase space angle and action variables, 2πR is the storage

ring circumference, Dν is the detuning function, and f1(φ, J) is some resonance

structure function which is purely oscillatory in the sense that it is periodic in

φ with period 2π/n and its average over φ vanishes.

In a proton storage ring, the equilibrium beam distribution near a resonance

is readily obtained once the smooth Hamiltonian is available; it is given by any



function exclusively of K, i.e.

ψ(φ, J) = any function ψ0(K) (2)

where the function ψ0 is determined by the initial condition of the beam. Any

function of K is a possible equilibrium distribution for a proton beam.

For an electron beam, however, this is no longer the case and the equilibrium

distribution is more complicated. In addition to the Hamiltonian dynamics, we

will have also to include the slow radiation damping and quantum diffusion

effects caused by synchrotron radiation [3]. In the absence of resonances, the

equilibrium distribution is also well-known, and is given by the gaussian distri-

bution

ψ(φ, J) = e−J/J0 (3)

where J0 is the nominal beam emittance determined by a balance between

the damping and diffusion effects. (The distribution is exponential in J , but

is gaussian in x and p. Its normalization is
∫∞
0

dJ
∫ 2π

0
dφψ = 2πJ0.) The

question therefore remains as to what will the electron beam distribution become

when there is a nonlinear resonance nearby. Simple physical arguments can be

constructed to show that a simple gaussian of the new Hamiltonian such as

ψ ∼ e−K will not do the job. (For example, as Dν is bound to dominate

over the other terms in the Hamiltonian at large J , the distribution becomes

divergent at large J and is unnormalizable if Dν < 0. Also, as another example,

consider the case away from resonances, for which one has f1 = 0. In that case,

one would expect the beam distribution to be given by (3) regardless of Dν .



This expected behavior is not observed by ψ ∼ e−K .)

In this paper, we will first establish the Fokker-Planck equation near a single

resonance for an electron beam in a storage ring. By solving this equation to

first order in the resonance strength, we find that the equilibrium distribution

is given by

ψ(φ, J) = exp
[
− 1

J0

(
J +

f1(φ, J)
ν − m

n + D′ν(J)

)]
(4)

The three terms in the new Hamiltonian (1) take on different roles and appear in

different places in the equilibrium beam distribution, reflecting their respective

physical meanings.

The result (4) is then applied to obtain the quantum lifetime of an electron

beam in the presence of a nearby single resonance. Quantum lifetime is the

lifetime of the electron beam when particles are brought by the diffusion effect

to a maximum allowed amplitude (representing an absorbing wall in the physical

x-space) and are lost from the beam. We find that due to the proximity to the

nonlinear resonance, the quantum lifetime is shortened by a factor

exp


 f̂1(Ĵ)

J0

∣∣∣ν − m
n + D′ν(Ĵ)

∣∣∣

 (5)

compared with the nominal expression [3]. In Eq.(5), Ĵ = A2/2β with A the

maximum allowed value of x and β the β-function at the aperture limit, and

f̂1(J) is the oscillation amplitude of f1(φ, J).

In Section 2, we give a brief summary of the well-known smooth approxi-

mation in the 1-dimensional case. Section 3 derives the Fokker-Planck equation

in the smooth approximation. Section 4 solves the Fokker-Planck equation for



the equilibrium beam distribution with weak resonances and slow damping and

diffusion. Section 5 derives an expression for the quantum lifetime. Section 6

applies these results to specific examples, first to the case of a nonlinear magnet

field error, and then to the case of a 1-dimensional beam-beam perturbation.

2 SMOOTH APPROXIMATION NEAR A SIN-

GLE RESONANCE

Consider 1-dimensional dynamics of a particle in a storage ring. Let the particle

motion be described by the Hamiltonian in the (x, p) phase space

H(x, p) =
p2

2
+

K(s)x2

2
+

f(x, s)
R

(6)

where K(s) specifies the linear focusing system of the storage ring, and f(x, s)

represents a weak nonlinear perturbation. Both K(s) and f(x, s) are periodic

in s with period 2πR.

In the presence of one and only one single resonance ν = m
n , we follow Ref.[4]

and make a canonical transformation similar to the Courant-Snyder transfor-

mation from (x, p) to (φ, J). We use the generating function

G(x, φ) = − x2

2β(s)

[
tanφ1 −

β′(s)
2

]
, φ1 = φ +

m

n

s

R
+

∫ s

0

ds′
(

1
β(s′)

− ν

R

)

(7)

where β(s) is the periodic Courant-Snyder β-function and β′(s) = dβ
ds . With

this generating function, we obtain

x =
√

2Jβ(s) cosφ1



p = −
√

2J
β(s)

[
sinφ1 −

β′(s)
2

cosφ1

]
(8)

or

J =
x2

2β
+

β

2

(
p− β′

2β
x

)2

tanφ1 = −β
p

x
+

β′

2
(9)

The new Hamiltonian is

K(φ, J) = H +
∂G

∂s

=
J

R

(
ν − m

n

)
+

1
R

f
(√

2Jβ(s) cosφ1, s
)

(10)

where use has been made of 2ββ′′ − β′2 + 4β2K = 4 [4].

In the smooth approximation, we drop fast oscillating terms from Eq.(10).

This means the Hamiltonian is approximated by replacing the f term in Eq.(10)

by its average over s over the range (0, 2πnR). The new Hamiltonian therefore

becomes

K(φ, J) ≈ J

R

(
ν − m

n

)
+

1
R
〈f〉s (11)

where

〈f〉s =
∫ 2πnR

0

ds

2πnR
f
(√

2Jβ(s) cosφ1, s
)

(12)

is a function of φ and J but is no longer a function of s. In Eq.(12), the

integration over s is done by considering φ1 as a function of s while holding φ

fixed. The quantity 〈f〉s is a periodic function of φ with period 2π/n.

The smooth approximation therefore allows the replacement of a time-dependent

Hamiltonian (6) by a time-independent Hamiltonian (11). The particle motion



is described by applying the Hamilton’s equations to the new Hamiltonian. Since

this new Hamiltonian is independent of s, it is a constant of the motion. One

may note that the Courant-Snyder transformation for a linear system [when

f(x, s) = 0] is in fact a special case of smooth approximation in the sense that

the s-dependent focusing function K(s) has been replaced by the tune ν. The

linear case, on the other hand, enjoys the distinction that the Courant-Snyder

transformation is exact.

The function 〈f〉s is periodic in φ with period 2π/n. As φ varies, 〈f〉s may

be decomposed into a constant part given by

Dν(J) =
1

4π2

∫ 2π

0

dξ

∫ 2π

0

ds

R
f

(√
2Jβ(s) cos

[
ξ +

∫ s

0

ds′
(

1
β(s′)

− ν

R

)]
, s

)

(13)

plus an oscillating part f1(φ, J), i.e.

〈f〉s = Dν(J) + f1(φ, J) (14)

which in turn gives Eq.(1). As we shall see, the two terms Dν and f1 play quite

different roles in the beam dynamics.

3 FOKKER-PLANCK EQUATION

The Fokker-Planck equation in the (x, p) space is given by [5]

∂ψ

∂s
+

∂H

∂p

∂ψ

∂x
−

(
∂H

∂x
+ 2αp

)
∂ψ

∂p
− D

β(s)
∂2ψ

∂p2
− 2αψ

=
∂ψ

∂s
+ p

∂ψ

∂x
−

(
Kx +

1
R

∂f

∂x
+ 2αp

)
∂ψ

∂p
− D

β(s)
∂2ψ

∂p2
− 2αψ = 0(15)



where α and D are the damping and diffusion coefficients. Note that a factor

β(s) is introduced in the diffusion constant. Strickly speaking, this form of

Fokker-Planck equation assumes that quantum noise occurs in p and not in

x. However, when the diffusion process is slow, our result does not change if

the noise also occurs in x. What matters is only the effect of diffusion after

averaging out the fast oscillating terms.

We then make the transformation to the (φ, J) space. The Fokker-Planck

equation in the (φ, J) space becomes, after some algebra,

∂ψ

∂s
+

1
R

(
ν − m

n

) ∂ψ

∂φ
+

(
1
R

∂f

∂x
+ 2αp

)(√
2Jβ sinφ1

∂ψ

∂J
+

√
β

2J
cosφ1

∂ψ

∂φ

)

−D

(
2J sin2 φ1

∂2ψ

∂J2
+

∂ψ

∂J
+ sin 2φ1

∂2ψ

∂φ∂J
− 1

2J
sin 2φ1

∂ψ

∂φ
+

1
2J

cos2 φ1
∂2ψ

∂φ2

)
− 2αψ = 0

(16)

Damping and diffusion effects are considered to be very slow. If we con-

sider only this very slow evolution of ψ, then we can average the Fokker-Planck

equation over s (or φ1), i.e. average over the fast oscillation. This yields the

Fokker-Planck equation under smooth approximation,

∂ψ

∂s
+

∂K

∂J

∂ψ

∂φ
− ∂K

∂φ

∂ψ

∂J
− 2α

(
J
∂ψ

∂J
− β′

4
∂ψ

∂φ

)

−D

(
J
∂2ψ

∂J2
+

∂ψ

∂J
+

1
4J

∂2ψ

∂φ2

)
− 2αψ = 0 (17)

When f = 0, the equilibrium beam distribution depends only on J , and

indeed, by solving Eq.(17), we recover the distribution (3) with

J0 =
D

2α
(18)

In terms of the unperturbed rms beam size σx, we have J0 = σ2
x/β.



4 EQULIBRIUM DISTRIBUTION

We need to solve Eq.(17) for the equilibrium distribution when f �= 0 in the

smooth approximation. To do so, we make two assumptions. We first assume

that the resonance is weak in such a way that f1 is small. More specifically, as

can be seen in the manipulations with Fokker-Planck equation, we require

ν − m

n
+ D′ν(J) � 1

J
f1(φ, J) (19)

The left hand side is the distance of the amplitude-dependent tune ν + D′ν(J)

from the resonance. The right hand side can be considered a resonance width in

tune units. This condition (19) applies when either ν− mn or the detuning D′ν is

larger than the resonance width, but it does not require both to be larger. For

example, the analysis will be applicable exactly on resonance ν = m
n , provided

that D′ν is sufficiently large. On the other hand, the analysis breaks down

when ν − m
n + D′ν(J) = 0, i.e. when the amplitude-dependent tune crosses the

resonance at some amplitude within the beam distribution.

We also assume that the damping and diffusion effects are very slow, so that

ν − m

n
+ D′ν(J) � αR =

T0

2πτ
(20)

where T0 = 2πR/c = revolution period, and τ = 1/αc = radiation damping

time.

What assumptions (19) and (20) allow us to do is that, in the Fokker-Planck

equation, we may keep only terms that are up to first order in f1, α, or D.

Higher order terms in these parameters, such as terms proportional to αf1, can



be dropped. [Since f1, α and D are small parameters, this seems to be a rea-

sonable procedure. Nevertheless, a more detailed justification of this procedure

can be established by making another canonical transformation from (φ, J) co-

ordinate system to a new system (Φ,K), where the new momentum is just the

Hamiltonian itself. The same exercise also provided the hint of the ansatz (21)

below.]

With assumptions (19) and (20), it turns out that we may try the ansatz for

the equilibrium beam distribution in the form

ψ = e−A(J)−B(J)f1(φ,J) (21)

Substituting Eq.(21) into (17), keeping terms first order in f1, α and D, yields

the solution

A(J) =
J

J0

B(J) =
1

J0[ν − m
n + D′ν(J)]

(22)

where J0 is given by Eq.(18). It is remarkable that this equilibrium distribution

holds for arbitrary ν− mn , Dν(J), and f1(φ, J), and for all J . We have therefore

arrived at Eq.(4). The term involving f1 gives rise to island structure in the

beam distribution. Near the resonance ν ≈ m
n , there will be n islands in the

phase space.[2]

The normalization is such that, to first order in f1,∫ ∞
0

dJ

∫ 2π

0

dφψ(φ, J) = 2πJ0 (23)

The distribution is not normalizable if f1 overcomes the detuning, i.e. if the

opposite of condition (19) holds.



5 QUANTUM LIFETIME

When the storage ring imposes a maximum permitted aperture to the electron

beam, the beam will suffer a continuous loss of particles due to quantum diffu-

sion [3]. If the aperture is far from the beam core, this loss will be slow, and

the corresponding quantum beam lifetime will be long. The beam distribution

will still be accurately given by Eq.(4) except immediately near the aperture

boundary [6]. In particular, the distribution will be a function of

J1 = J +
f1(φ, J)

ν − m
n + D′ν(J)

(24)

which can be considered a distorted action variable and where the second term

is purely oscillatory in φ with period 2π/n. We shall write the beam distribution

with an aperture limit as

ψ(φ, J, s) = ψ1(J1)e
− s
τqc (25)

where τq is the quantum lifetime.

The aperture boundary is imposed on the physical amplitude x of particle

motion. Let this limit be A, i.e. a particle is lost when its physical amplitude

reaches x ≥ A, or equivalently J ≥ A2/2β, with β the β-function at the aperture

limit. This means that a particle is lost when its J1 reaches J1 ≥ Ĵ1, where

Ĵ1 =
A2

2β
−

f̂1(A
2

2β )∣∣∣ν − m
n + D′ν(

A2

2β )
∣∣∣ (26)

f̂1(J) = max. of |f1(φ, J)| as φ is varied over the range (0, 2π
n )

under the condition that [ν − m
n + D′ν(

A2

2β )]f1 < 0 (27)



A particle with J1 ≥ Ĵ1 will have during its motion a moment when its physical

x reaches the aperture x ≥ A.

The beam distribution still obeys the Fokker-Planck equation (17), except

now that at the aperture boundary, the beam distribution will have to satisfy

the additional condition

ψ1(J1 = Ĵ1) = 0 (28)

With ψ1 depending only on J1, and keeping terms linear in f1, α, and D,

the Fokker-Planck equation reduces to

− 1
cτq

ψ1 − 2αJ1ψ
′
1 −D(J1ψ

′′
1 + ψ′1)− 2αψ1 = 0 (29)

where a prime on ψ1 means taking derivative with respect to J1. Integrating

Eq.(29) over J1 from 0 to Ĵ1 and applying integration by parts, we obtain

1
τqc

∫ Ĵ1

0

ψ1dJ1 + DĴ1ψ
′
1(Ĵ1) = 0 (30)

When the aperture is far from the beam core, i.e. when Ĵ1 � J0, ψ1 will be

accurately given by the unperturbed distribution (4) [3, 6]. Near the aperture

boundary, ψ1 will have to approach zero, but the derivative ψ′1 will remain very

close to the derivative obtained using Eq.(4). (Physically this is because the

diffusion rate outward from the beam through the aperture will be the same

whether the aperture limit is there or not.) We therefore substitute ψ1(J1) =

e−J1/J0 into both terms in Eq.(30), and obtain

1
τq

=
2Ĵ1

τJ0
e−Ĵ1/J0 (31)



where τ = 1/αc is the radiation damping time. When f1 = 0, Eq.(31) reduces

to the nominal expression in the absence of the nonlinear resonance [3],

1
τq0

=
A2

τσ2
x

e−A
2/2σ2

x (32)

When f1 �= 0, one finds that the quantum lifetime in the presence of the reso-

nance is shortened compared with the nominal expression by a factor (5). Note

that the argument of the exponent in Eq.(5) does not have to be
 1 under the

constraints (19) and (20).

6 EXAMPLE APPLICATIONS

We now apply the results obtained so far to specific examples. Consider a

perturbation of the form

f(x, s) = εg(x)δP (s), δP (s) = periodic δ-function
∞∑

k=−∞
δ
( s

R
− 2πk

)
(33)

with arbitrary g(x). This f(x, s) represents a nonlinear perturbation located at

s = 0 that gives δ-function kicks to the particle as it circulates around the ring.

Following the smooth approximation, we first obtain

〈f〉s =
ε

2πn

n∑
k=1

g

(√
2Jβ cos(φ + 2π

km

n
)
)

(34)

where β = β(0). We then decompose 〈f〉s into a detuning term plus an oscil-

lating term according to Eq.(14). The detuning term is found using Eq.(13) to

be

Dν(J) =
ε

4π2

∫ 2π

0

dξ g(
√

2Jβ cos ξ) (35)



6.1 Multipole Magnet Field Error

When the perturbation is given by a magnet multipole, we take

g(x) = xn

ε =
$

n!(Bρ)
∂n−1By
∂xn−1

(36)

where (Bρ) = P/e is the magnetic rigidity of the particle (P is the particle

momentum, e is its electric charge), $ is the length of the multipole magnet. For

a nonlinear multipole, we assume n ≥ 3. Applying the smooth approximation,

we obtain

Dν(J) =
ε

π

(
Jβ

2

)n/2 


n!
2[(n/2)!]2 , if n = even

0, if n = odd

f1(φ, J) =
ε

π

(
Jβ

2

)n/2
cosnφ (37)

where β is the β-function evaluated at the multipole.

In this example, we see that the detuning function Dν(J) is provided by the

multipole if n is even. When n is odd, however, the multipole contribution to

the detuning vanishes, and to stabilize the beam distribution, it is necessary

that an additional detuning is provided by some other source of nonlinearity,

and this additinal detuning must be such that Dν(J) grows with J at least as

fast as Jn/2 to overcome the resonance term.

Substituting Eq.(37) into Eq.(4) gives (take n to be even) the equilibrium

beam distribution

ψ(φ, J) = exp


− J

J0
−

ε
πJ0

(
Jβ
2

)n
2

cosnφ

ν − m
n + ε

4πJ
nn!

[(n/2)!]2

(
Jβ
2

)n
2


 (38)



Substituting into Eq.(5) gives the quantum lifetime shortening factor

exp


 |ε|An∣∣∣π2n

(
ν − m

n

) σ2
x

β + 1
2

nn!
[(n/2)!]2 εσ

2
xA
n−2

∣∣∣

 (39)

If operated exactly on resonance, ν = m
n , it follows that the quantum lifetime

is shortened by a factor independent of the multipole strength. For an octupole

magnet, for example, n = 4, and the factor is eA
2/12σ2

x .

6.2 Beam-beam Perturbation

Now we apply our results to the beam-beam perturbation. In a colliding-beam

storage ring, the head-on collisions of the colliding beams produce a perturbation

of the form (33). Consider only x-motion (or y-motion as the case may be).

Assuming no dispersion at the interaction point, the beam-beam interaction

can be described by [7]

ε =
Nr0

γ

g(x) =
∫ ∞

0

dt
1− exp

(
− x2

2σ2
x+t

)
√

(2σ2
x + t)(2σ2

y + t)
(40)

where r0 is the classical radius of the particles, γ is the relativistic Lorentz factor,

and N is the number of particles in a colliding beam bunch. Again following

the smooth approximation procedure, we obtain

〈f〉s =
ε

2πn

∫ ∞
0

dt√
(2σ2

x + t)(2σ2
y + t)

n∑
k=1

[
1− e−2X cos2(φ+2π kmn )

]

=
ε

2π

∫ ∞
0

dt√
(2σ2

x + t)(2σ2
y + t)

[
1− e−X

∞∑
�=−∞

(−1)�n
′
I�n′(X)e2i�n′φ

]
(41)



where X = Jβ
2σ2
x+t

, and

n′ =




n, if n = odd

n
2 , if n = even

(42)

Note that the results are independent of m. We can set m = 1.

Decomposing 〈f〉s into detuning and oscillating terms,

Dν(J) =
ε

2π

∫ ∞
0

dt√
(2σ2

x+t)(2σ2
y+t)

[
1− e−XI0(X)

]

f1(φ, J) = − ε

π

∞∑
�=1

(−1)�n
′
cos 2$n′φ

∫ ∞
0

dt e−XI�n′(X)√
(2σ2

x+t)(2σ2
y+t)

(43)

The beam distribution is given by substituting Eq.(43) into Eq.(4).

The extreme value of f1 occurs at φ = π/2, i.e. f̂1(J) = |f1(π2 , J)|. (This is

because the integral over t is positive; the extreme value occurs when cos 2$n′φ =

(−1)�n
′
. Also, for f̂1(J), we take the absolute value of f1(π2 , J) because we are

interested in obtaining the maximum oscillation amplitude of f1 and we assumed

ν − m
n + D′ν(

A2

2β ) > 0.) If we designate

Dν =
ε

2π
h0

(
Jβ

2σ2
x

,
σy
σx

)

f̂1(J) =
ε

2π
hn

(
Jβ

2σ2
x

,
σy
σx

)
(44)

then

h0(x, r) =
∫ 1

0

du

u
√

1 + (r2 − 1)u

[
1− e−xuI0(xu)

]

hn(x, r) =
∫ 1

0

du e−xu

u
√

1 + (r2 − 1)u

[
1
n

n∑
k=1

exu cos(4π kn ) − I0(xu)

]
(45)

Note that hn(x, r) = h2n(x, r) if n = odd. Note also that the beam-beam tune

shift parameter [7] is given by

∆νBB = D′ν(0) =
Nr0

2πγ
β

2σ2
x

∂h0(x, r)
∂x

∣∣∣∣
x=0

=
Nr0β

2πγσx(σx + σy)
(46)
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Figure 1: Functions h0(x, r) and hn(x, r) versus x.

Figure 1 shows h0(x, r) and hn(x, r) as functions of x for three cases r =

σy/σx = 0.1, 1, and 10, respectively. In each sub-figure, the top thick curve is

h0. The three thinner curves, ordered from top to bottom, are h4, h3 = h6, and

h5 = h10, respectively. The case r = 10 can be alternatively considered to be

applied to the case r = 0.1 but for the y-motion. Figure 2 shows the detuning

function ∂h0(x, r)/∂x as a function of x for the cases (from top to bottom)

r = 10, 1, and 0.1.

Quantum lifetime is reduced by a factor

exp

(
∆νBB(1 + r)hn∣∣ν − m
n + 1

2∆νBB(1 + r)h′0
∣∣
)

(47)

where h′0 = ∂h0(x,r)
∂x , hn = hn(x, r) with x = A2

4σ2
x
, r = σy

σx
. As a numerical

example, take ∆νBB = 0.05, n = 4, ν − m
4 = 0.01, A = 6σx, r = 0.1, we have

h4 = 0.99, h′0 = 0.11 and the quantum lifetime is shortened by a factor of 70

compared with the value without the nearby resonance.
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Figure 2: Function ∂h0(x, r)/∂x versus x.
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