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ABSTRACT

Accretion onto compact objects plays a central role in high energy astrophysics. In
these environments, both general relativistic and plasma effects may have significant
impacts upon the spectral and polarimetric properties of the accretion flow. In paper
I we presented a fully general relativistic magnetoionic theory, capable of tracing rays
in the geometric optics approximation through a magnetised plasma in the vicinity of
a compact object. In this paper we discuss how to perform polarised radiative transfer
along these rays. In addition we apply the formalism to a barotropic thick disk model,
appropriate for low luminosity active galactic nuclei. We find that it is possible to
generate large fractional polarisations over the innermost portions of the accretion
flow, even when the emission mechanism is unpolarised. This has implications for
accreting systems ranging from pulsars and X-ray binaries to AGN.

Key words: black hole physics – magnetic fields – plasmas – polarisation – Radiative
Transfer

1 INTRODUCTION

The spectral and polarimetric properties of astrophysical ob-
jects can provide significant insights into their structure and
dynamics. As a result, a number of theoretical investigations
into the source of these properties have been undertaken.
Many of these have been primarily concerned with the spec-
tral properties alone, typically comparing a physically mo-
tivated accretion flow to observations. However, with the
measurement of polarisation in a number of sources, a sig-
nificant fraction of the focus has been turned towards re-
producing their polarimetric properties. In the context of
an accreting compact object, both general relativistic and
plasma effects can play a role in determining these proper-
ties. In Broderick & Blandford 2003 (hereafter Paper I) we
demonstrated how to construct ray trajectories, in the geo-
metric optics approximation, in a magnetoactive plasma in
a relativistic environment. In order to apply this to realistic
accretion environments it is necessary to be able to perform
radiative transfer along these rays.

Non-refractive, polarised radiative transfer through
magnetised plasmas is flat space has been extensively stud-
ied. A number of examples involving weak magnetic fields
exist in the literature (see e.g. Sazonov & Tsytovich 1968;
Sazonov 1969; Jones & O’Dell 1977a,b; Ginzburg 1970).
More recently, investigations into the net effects of tangled
magnetic fields (expected to be typical in magnetised ac-
cretion flows) have begun (see e.g. Ruszkowski & Begelman
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2002). However, none of these deal with general relativistic
environments.

The importance of refraction in the propagation of ra-
dio wavelengths has long been appreciated in the context of
the ionosphere (see e.g. Budden 1964; Ginzburg 1970). More
recently, refraction has been studied in conjunction with pul-
sars (see e.g. Weltevrede et al. 2003; Petrova 2002, 2000;
Barnard & Arons 1986; Arons & Barnard 1986). Nonethe-
less, in all of these cases, the emission was assumed to orig-
inate from a region distinct from where the refraction oc-
curred. Refractive lensing of neutron stars was considered by
Shaviv et al. 1999, but ignored general relativisitic effects.

General relativistic studies into the propagation of po-
larisation in vacuum have been done. These have been
primarily interested in the geometrical effects due to the
parallel transport of the linear polarisation (see e.g. Agol
1997; Laor et al. 1990; Connors et al. 1980). Alternatively,
in Bromley et al. 2001, polarised emission in a general rel-
ativistic environment is considered. However, none of the
typical plasma transfer effects (e.g. Faraday rotation) were
included in these calculations. In Heyl et al. 2003, the vac-
uum birefringence due to strong magnetic fields was con-
sidered in the context of neutron star atmospheres. How-
ever, in both, refraction was completely ignored. There have
been some attempts to study the problem of ray propagation
in a covariant form (see e.g. Broderick & Blandford 2003;
Melrose & Gedalin 2001), but in these the radiative trans-
fer was not addressed.

As discussed in Paper I, refraction coupled with the
presence of a horizon can be a source of significant polar-
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isation when the observation frequency is near the plasma
and cyclotron frequencies of emitting region. The sense of
the resulting net polarisation is determined by the plasma
parameters at the surface at which the polarisation freezes
out (when the modes cease to be adiabatic and must be
treated as if they were in vacuum). Typically, this will re-
sult in a net circular polarisation. In a future paper we will
discuss astrophysical environments in which this may be the
case, including applications to Sgr A∗and high mass X-ray
binaries.

We present a method for performing polarised radiative
transfer through a strongly refractive magnetised plasma in
a general relativistic environment. Additionally, we apply
this to a model of a thick accretion disk. This is done in six
sections with §2 briefly reviewing the formalism presented in
Paper I, §3 discussing how to perform the radiative transfer
in a magnetised plasma, §4 presenting low harmonic syn-
chrotron as a possible emission mechanism, §5 presenting
some results, and §6 containing conclusions. The details of
constructing a magnetised, thick, barotropic disk are pre-
sented in the appendix.

2 RAY PROPAGATION

While astrophysical plasmas will, in general, be hot, the cold
case provides an instructive setting in which to demonstrate
the types of effects that may be present. As a result, it will
be assumed that the plasma through which the rays prop-
agate will be cold, with a small component of emitting hot
electrons. As shown in Paper I, the rays may be explicitly
constructed given a dispersion relation, D (kµ, xµ) (a func-
tion of the wave four-vector and position which vanishes
along the ray), by integrating the ray equations:

dxµ

dτ
=

(

∂D

∂kµ

)

xµ

and
dkµ

dτ
= −

(

∂D

∂xµ

)

kµ

, (1)

where τ is an affine parameter along the ray. Expand-
ing Maxwell’s equations in the geometric optics limit pro-
vides the polarisation eigenmodes and the dispersion rela-
tion (given a conductivity):

(kαkαδµ
ν − kµkν − 4πiωσµ

ν) Eν = 0 , (2)

where Eµ is the four-vector coincident with the electric
field in the locally flat, comoving rest frame (LFCR frame),
ω ≡ −uµkµ (uµ is the plasma four-velocity which defines the
LFCR frame), and σµ

ν is the covariant extension of the the
conductivity tensor. For the cold, magnetoactive, electron-
ion plasma (in the limit of infinite ion mass), the dispersion
relation is

D (kµ, xµ) =

kµkµ − δω2 − δ

2 (1 + δ)

{[

(

eBµkµ

mω

)2

− (1 + 2δ) ω2
B

]

±
√

(

eBµkµ

mω

)4

+ 2 (2ω2 − ω2
B − ω2

P )

(

eBµkµ

mω

)2

+ ω4
B

}

,

(3)

where Bµ is the four-vector coincident with external mag-
netic field in the LFCR frame, ωP is the plasma frequency

in the LFCR frame, ωB is the cyclotron frequency associ-
ated with Bµ, and δ ≡ ω2

P /(ω2
B − ω2

P ), This is a covariant
form of the Appleton-Hartree dispersion relation (see e.g.
Boyd & Sanderson 1969).

In general, the electromagnetic polarisation eigenmodes
will not follow the same trajectories, and in particular will
not follow null geodesics. As a result, the different polarisa-
tion eigenmodes will sample different portions of the accre-
tion flow. As shown in Paper I, it is possible for one mode
to be captured by the central black hole while the other
escapes, leading to a net polarisation.

3 POLARISED RADIATIVE TRANSFER IN

REFRACTIVE PLASMAS

Both emission and absorption are local processes. However,
because the transfer of radiation necessarily involves a com-
parison between the state of the radiation at different points
in space, global propagation effects need to be accounted
for. These take two general forms: correcting for the gravi-
tational redshift; and keeping track of the local coordinate
system, i.e. ensuring that polarised emission is being added
appropriately in the presence of a rotation of the coordinate
system propagated along the ray. In addition, for a magne-
toactive plasma, it is necessary to determine how to perform
the radiative transfer in the presence of refraction.

3.1 Length Scales and Regimes

The problem of performing radiative transfer in a magne-
toactive plasma has been treated in detail in the context of
radio-wave propagation in the ionosphere (for a detailed dis-
cussion see e.g. Ginzburg 1970; Budden 1964). In these cases
it was found that there were two distinct limiting regimes.
These can be distinguished by comparing two fundamental
scales of the affine parameter τ : that over which the polari-
sation eigenmodes change appreciably, τS, and the Faraday
rotation length, τF . Before τS can be defined it is necessary
to define a pair of basis four-vectors that define the axes of
the ellipse:

êµ
‖ =

(

kαkα + ω2
)

Bµ −Bνkν (kµ − ωuµ)
√

kβkβ + ω2

√

(kσkσ + ω2)BγBγ − (Bγkγ)2
(4)

êµ
⊥ =

εµναβuνkαBβ
√

(kσkσ + ω2)BγBγ − (Bγkγ)2
, (5)

where εµναβ is the Levi-Civita pseudo-tensor. In terms of
these, the ellipticity angle χ can be defined by

tanχ ≡ i
eµ
‖EO µ

eν
⊥EO ν

= i
eµ
⊥EX µ

eν
‖
EX ν

. (6)

In general, an additional angle, φ, is necessary to define the
polarisation, namely the angle which defines the orientation
of the ellipse. The basis four-vectors have been chosen such
that φ is identically zero. However, this choice introduces a
new geometric term into the equations which accounts for
the necessary rotation of the basis four-vectors, contribut-
ing a non-zero dφ/dτ (see §3.3 for more details). Then, in
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general,

τS ≡
(

∣

∣

∣

∣

dφ

dτ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dχ

dτ

∣

∣

∣

∣

2
)−1/2

, (7)

For the ordered fields employed here (see the appendices),

τS ≃
∣

∣

∣

∣

ωB

ω3

∂ω2
P

∂xµ

dxµ

dτ

∣

∣

∣

∣

−1

, (8)

where this approximation form is true for small cyclotron
and plasma frequencies and all but the most oblique angles
of incidence. The Faraday rotation length is defined to be
the distance over which the phase difference between the two
polarisation eigenmodes reaches 2π, i.e.

τF ≡
∣

∣

∣

∣

∆kµ
dxµ

dτ

∣

∣

∣

∣

−1

, (9)

where ∆kµ is the difference between the wave vectors of the
two modes. Strictly speaking in addition to τF , τS should
be compared to a term describing the rate of change of the
Faraday rotation length, however in the situations under
consideration here this term is completely dominated by τF .

Together, these length scales define three regimes:
the adiabatic regime (τF ≪ τS), the intermediate regime
(2τF ∼ τS), and the strongly coupled regime (τF ≫ τS).
In all regimes the polarisation of the plasma eigenmodes is
uniquely set by the dispersion equation, equation (2).

In general, as θ → π/2, ∆k ≃ (ω2
P ωB/ω2c) cos θ +

(ω2
P ω2

B/ω3c), where θ is the angle between the wave-vector
and the magnetic field. Hence to remain in the adiabatic
regime τS ≫ (ω/ωB)2τF (θ = 0), which is typically not true
in astrophysical sources. As a result, as the magnetic field
becomes perpendicular to the wave-vector, the modes gener-
ally become strongly coupled. This is the reason why, when
dealing with a large number of field reversals (e.g. in a molec-
ular cloud), the amount of Faraday rotation and conversion
is ∝ B · dx and not |B| · dx (which would follow in the adi-
abatic regime) despite the fact that τs ≫ τF (θ = 0) may be
true throughout the entire region.

3.2 Adiabatic Regime

In the adiabatic regime the two polarisation modes propa-
gate independently (see e.g. Ginzburg 1970). As a result, to
a good approximation, the polarisation is simply given by
the sum of the two polarisations. The intensities, IO and IX ,
of the ordinary and the extraordinary modes, respectively,
are not conserved along the ray due to the gravitational
redshift. Consequently, the photon occupation numbers of
the two modes, NO and NX , which are Lorentz scalars, and
hence are conserved along the rays, are used. Therefore, the
equation of radiative transfer is given by

dNO,X

dτ
=

dl

dτ

(

jO,X − αO,XNO,X

)

, (10)

where

dl

dτ
=

√

gµν
dxµ

dτ

dxν

dτ
−
(

uµ
dxµ

dτ

)2

(11)

is the conversion from the line element in the LFCR frame to
the affine parameterisation, and jO,X is the emissivity in the
LFCR frame scaled appropriately for the occupation number

(as opposed to the intensity). In practice, the occupation
numbers will be large. However, up to fundamental physical
constants, it is permissible to use a scaled version of the
occupation numbers such that NO,X = ω−3IO,X in vacuum.

It is also this regime in which Faraday rotation and con-
version occur. However, because these propagation effects re-
sult directly from interference between the two modes, and
hence require the emission to be coherent among the two
modes, when they diverge sufficiently the modes must be
added incoherently and thus Faraday rotation and conver-
sion effectively cease. The modes will have divereged suffi-
ciently when

|∆x⊥| &
λ2

∆λ
, (12)

where ∆λ is the emission band-width. For continum emis-
sion, this reduces to |∆x⊥| & λ. Therefore in a highly refrac-
tive medium an additional constraint is placed upon Faraday
rotation. The depth at which equation (12) is first satisfied
can be estimated by considering an oblique ray entering a
plane-parallel density and magnetic field distribution (at an-
gle ζ to the gradient). In this case, to linear order in ωP and
ωB,

d2∆x⊥

dz2
≃ − sin ζ

∂D

∂z
≃ ωBω2

P

ω3z
(13)

As a result,

|∆x⊥| ≃
ωBω2

P z

2ω3
, hence zmax ≃

√

λ
2ω3

ωBω2
P

. (14)

The resulting number of Faraday rotations, nF , is then given
by,

nF ≡
∫ zmax

0

∆k

2π
dz ≃ 1

2π sin ζ
, (15)

which is typically small for all but the smallest ζ. Because,
as discussed in section 5, linear polarisation is strongly sup-
pressed by refraction, such a small Faraday rotation in neg-
ligible. As a result, for the situations of interest here, in
this regime the modes can be added together incoherently
to yield the net polarisation.

3.3 Strongly Coupled Regime

In the limit of vanishing plasma density it is clear that the
polarisation propagation must approach that in vacuum re-
gardless of the magnetic field geometry. In this limit the two
modes must be strongly coupled such that their sum evolves
as in vacuum. In particular, it is necessary to keep track of
their relative phases. This can be most easily accomplished
by using the Stokes parameters to describe the radiation. In
this case also it is possible to account for the gravitational
redshift by using the photon occupation number instead of
intensities, N , NQ, NU , NV . However, it is also necessary to
define the NQ, NU , and NV in a manner that is consistent
along the entire ray. In order to do this we may align the
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axes of NQ along the magnetic field, i.e.

NQ = N(êµ
‖ ) − N(êµ

⊥)

NU = N

(

1√
2
êµ
‖ − 1√

2
êµ
⊥

)

− N

(

1√
2
êµ
‖ +

1√
2
êµ
⊥

)

(16)

NV = N

(

1√
2
êµ
‖ +

i√
2
êµ
⊥

)

− N

(

1√
2
êµ
‖ − i√

2
êµ
⊥

)

,

where N(eµ) is the occupation number of photons in the
polarisation defined by eµ. Thus the problem of relating NQ,
NU , and NV along the ray is reduced to propagating êµ

‖ and

êµ
⊥. A change in τ by dτ is associated with a rotation of the

basis by an angle

dφ = ê⊥µ
dxν

dτ
∇ν êµ

‖dτ , (17)

where the use of the covariant derivative, ∇ν , accounts for
the general relativistic rotations of êµ

‖ and êµ
⊥. As a result,

the transfer effect due to general relativity and the rotation
of the magnetic field about the propagation path is

dNQ

dτ
= −2

dφ

dτ
NU

dNU

dτ
= 2

dφ

dτ
NQ , (18)

where the factor of 2 arises from the quadratic nature of N.
After a specific emission model is chosen the emissivi-

ties and the absorption coefficients are scaled as in §3.2. An
example will be discussed in more detail in §4.

3.4 Intermediate Regime

At some point it is necessary to transition from one limiting
regime to the other. In this intermediate regime the polari-
sation freezes out. A great deal of effort has been expended
to understand the details of how this occurs (see e.g. Budden
1952). However, to a good approximation it is enough to set
the polarisation at the point when τF = 2τS to the incoher-
ent sum of the polarisation eigenmodes (see the discussion
in Ginzburg 1970):

N = NO + NX

NQ = − cos 2χ(NO − NX)

NU = 0 (19)

NV = sin 2χ(NO − NX)

It is straightforward to show that in terms of the generalised
Stokes parameters NO and NX are given by (this is true even
when they are offset by a phase)

NO =
1

2
(N − cos 2χNQ + sin 2χNV )

NX =
1

2
(N + cos 2χNQ − sin 2χNV ) . (20)

Note that, in general, polarisation information will be lost in
this conversion. This is a reflection of the fact that the space
spanned by the incoherent sum of the two modes forms a
subset of the space of unpolarised Stokes parameters. This
is clear from their respective dimensionalities; the former
is three dimensional (there are only three degrees of free-
dom for the decomposition into the two polarisation modes,
namely their amplitudes and relative phase), while the later
is four dimensional (I , Q, U , and V , subject only to the
condition that I2 > Q2 + U2 + V 2).

4 LOW HARMONIC SYNCHROTRON

RADIATION INTO COLD PLASMA MODES

As discussed in the previous section, emission and absorp-
tion are inherently local processes. As a result it will be
sufficient in this context to treat them in the LFCR frame,
and hence in flat space. In this frame it is enough to solve
the problem in three dimensions and then insert quantities
in a covariant form.

Because refractive effects become large only when ω ∼
ωB, ωP , for there to be significant spectral and polarimetric
effects it is necessary to have an emission mechanism which
operates in this frequency regime as well. A plausible can-
didate is low harmonic synchrotron emission. It is assumed
that a hot power-law distribution of electrons is responsi-
ble for the emission while the cold plasma is responsible for
the remaining plasma effects. In Paper I we did present the
theory for the warm plasma as well, however, as in the con-
ventional magnetoionic theory, it is much more cumbersome
to utilise.

4.1 Razin Suppression

A well known plasma effect upon synchrotron emission is
the Razin suppression (see e.g. Rybicki & Lightman 1979;
Bekefi 1966). This arises due to the increase in the wave
phase velocity above the speed of light, preventing electrons
from maintaining phase with the emitted electromagnetic
wave, resulting in an exponential suppression of the emission
below the Razin frequency,

ωR =
ω2

P

ωB
. (21)

However, as discussed in the Appendix, for the disk model
we have employed here, typically ωB > ωP and hence the
Razin effects do not arise.

4.2 Projection onto Non-Orthogonal Modes

A significant problem with emission mechanisms in the ω ∼
ωB, ωP frequency regime is that the modes are no longer
orthogonal. It is true that for a lossless medium (such as the
cold plasma), equation (2), which defines the polarisation,
is self-adjoint. However, because of the kµ differ for the two
modes, it is a slightly different equation for each mode, and
hence the polarisations are eigenvectors of slightly different
hermitian differential operators. In the high frequency limit
this difference becomes insignificant.

The energy in the electromagnetic portion of the wave
(neglecting the plasma portion) is given by

E =
E∗ · ǫ · E

4π
=

1

4π
E

∗ ·
(

1 +
4πi

ω
σ

)

· E (22)

For each mode (EO and EX), the dispersion equation gives
(

ω2 + 4πiωσ

)

· EO,X =
(

k2
O,X − kO,X ⊗ kO,X

)

· EO,X

= k2
O,X

(

1 − k̂ ⊗ k̂
)

· EO,X . (23)

Therefore, with E =
∑

i Ei,

E =
1

4πω2

∑

i,j

k2
jE

∗
i ·
(

1 − k̂ ⊗ k̂
)

· Ej . (24)



Covariant Magnetoionic Theory II: Radiative Transfer 5

However, for a lossless medium it is also true that

E = E† =
1

4πω2

∑

i,j

k2
i E

∗
i ·
(

1 − k̂⊗ k̂
)

· Ej , (25)

and therefore,

∑

i,j

(

k2
i − k2

j

)

E
∗
i ·
(

1 − k̂ ⊗ k̂
)

· Ej = 0 . (26)

For a non-degenerate dispersion relation, e.g. that of a mag-
netoactive plasma, this implies that the the components of
the polarisation transverse to the direction of propagation
are orthogonal for the two modes, i.e.

F̂
∗
i · F̂j = k2

i δij (27)

where

F̂O,X = kO,X

(

1 − k̂ ⊗ k̂
)

· ÊO,X

Ê∗
O,X ·

(

1 − k̂ ⊗ k̂
)

· ÊO,X

. (28)

As a result it is possible to define EO,X such that

EO,X =
F∗

O,X · FO,X

4π
and E =

∑

i

Ei , (29)

i.e. that the electromagnetic energy can be uniquely decom-
posed into the electromagnetic energy in the two modes.

Expressions for the FO,X can be obtained by solving
for the eigenvectors of the dispersion equation. For the cold
magnetoactive plasma this gives

F̂O,X =
kO,X√

2

[
√

1 ± (1 + ε)−1/2
ê‖

± i

√

1 ∓ (1 + ε)−1/2
ê⊥

]

, (30)

where, (not to be confused with the Levi-Civita pseudo-
tensor)

ε =

(

sin2 θ

2 cos θ

ωωB

ω2
P − ω2

)−2

, (31)

θ is the angle between the magnetic field and the wave vec-
tor, and ê‖,⊥ are the flat space analogues of the basis vectors
in equation (5). θ may be defined covariantly by

cos2 θ =
(Bµkµ)2

BνBν (kσkσ + ω2)
. (32)

This corresponds to the polarisation found in the literature
(cf. Budden 1964).

4.3 Emissivities

Because the energy can be uniquely decomposed into the
energy in each polarisation eigenmode, it is possible to
calculate the emissivities and absorption coefficients by
the standard far-field method. For synchrotron radiation
this was originally done by Westfold 1959. The calcula-
tion is somewhat involved but straightforward and has
been done in detail in the subsequent literature (see e.g.
Rybicki & Lightman 1979). Consequently, only the result for
the power emitted (per unit frequency and solid angle) for

a given polarisation is quoted below:

〈P O,X
ω Ω 〉 =

e3B sin θ

8
√

3π2mk2
O,X

n2
r

∫

d3pf(p)

[

(

∣

∣

∣
F̂O,X · ê‖

∣

∣

∣

2

+
∣

∣

∣
F̂O,X · ê⊥

∣

∣

∣

2
)

F (x)

+

(

∣

∣

∣
F̂O,X · ê‖

∣

∣

∣

2

−
∣

∣

∣
F̂O,X · ê⊥

∣

∣

∣

2
)

G(x)

]

, (33)

where

x =
2mcω

3γ2eB sin θ
, (34)

f(p) is the distribution function of emitting electrons, nr is
the ray-refractive index (for a suitable definition see Bekefi
1966), and F and G have their usual definitions,

F (x) = x

∫ ∞

x

K 5
3
(y)dy and G(x) = xK 2

3
(x) , (35)

where the K5/3 and K2/3 are the modified Bessel functions
of 5/3 and 2/3 order, respectively. The addition factor of n2

r

arises from the difference in the photon phase space, d3k and
the analogous integral over frequency, 4πdω.

For the adiabatic regime, the emissivities, jO,X ω, can
now be defined:

jO,X =
1

4πn2
rω3

〈P O,X
ω Ω 〉 . (36)

For a power-law distribution of emitting electrons,
f(p)d3p = Cγ−sdγ, this gives

jO,X =

√
3e2C

24π2ω2c(1 + s)

(

3
ωB

ω
sin θ

)
s+1

2
Γ

(

s

4
+

19

12

)

× Γ

(

s

4
− 1

12

)[

1 ± 3s + 3

3s + 7
(1 + ε)−

1
2

]

. (37)

The Stokes emissivities and absorption coefficients for an
emitting hot power law (ignoring effects of order γ−1 as these
explicitly involve the propagation through the hot electrons)
are given by

jN = jO + jX (38)

jQ =

√
3e2C

48π2ω2c

(

3
ωB

ω
sin θ

)
s+1

2

× Γ

(

s

4
+

7

12

)

Γ

(

s

4
− 1

12

)

(39)

jU = jV = 0 . (40)

Note that for low γ synchrotron can efectively produce cir-
cular polarisation, namely jV ∼ 3/γ. The production of cir-
cular polarisation in this way in environments with large
Faraday depths will be considered in future publications.

4.4 Absorption Coefficients

For the adiabatic regime, detailed balance for each mode
requires that the absorption coefficients are then given by

αO,X =

√
3πe2C

6ωmc

(

3
ωB

ω
sin θ

)
s+2
2

Γ

(

s

4
+

11

6

)

× Γ

(

s

4
+

1

6

) [

1 ± 3s + 6

3s + 10
(1 + ε)−

1
2

]

. (41)
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In the strongly coupled regime, the Stokes absorption
coefficient matrix (see e.g. Jones & O’Dell 1977b, and refer-
ences therein),









αN αQ 0 αV

αQ αN 0 0
0 0 αN 0

αV 0 0 αN









. (42)

where the Faraday rotation and conversion due to the hot
electrons have been ignored as a result of the fact that they
will be negligible in comparison to the Faraday rotation and
conversion due to the cold electrons. The individual α’s can
be obtained in terms of the αO,X using the fact that the
energy in the electromagnetic oscillations can be uniquely
decomposed into contributions from each mode (equation
(29)). Then,

dN

dλ
=

dNO

dλ
+

dNX

dλ

= jO + jX − αONO − αXNX

= (jO + jX) − 1

2
(αO + αX)N (43)

+
1

2
cos 2χ (αO − αX )Q − 1

2
sin 2χ (αO − αX) V .

Therefore, the absorption coefficients may be identified as,

αN =
1

2
(αO + αX) (44)

αQ = −1

2
cos 2χ (αO − αX) (45)

αV =
1

2
sin 2χ (αO − αX ) . (46)

4.5 Unpolarised Low Harmonic Synchrotron

Radiation

To highlight the role of refraction in the generation of po-
larisation, an unpolarised emission mechanism is also used.
To compare with the results of the polarised emission model
discussed in the previous section, the artificial scenario in
which the synchrotron emission is split evenly into the two
modes was chosen. In this case,

j
UP

O,X =
1

2
jN , (47)

and

j
UP

N = jN , (48)

with the other Stokes emissivities vanishing. Similarly, the
absorption coefficients are given by,

αUP
O,X = αUP

N = αN , (49)

with the other absorption coefficients vanishing as well.

4.6 Constraints Upon the Emitting Electron

Fraction

For refractive plasma effects to impact the spectral and po-
larimetric properties of an accretion flow, it is necessary that
it be optically thin. This places a severe constraint upon the
fraction of hot electrons, f ≡ C/[ne(s − 1)]. In terms of the
plasma frequency and f the absorptivity is approximately

αN ∼
√

3

24c
f

ω2
P

ω

(

3
ωB

ω
sin θ

)(s+2)/2

. (50)

With s ∼ 2, and ω ∼ ωP , ωB , the typical optical depth (not
to be confused with the affine parameter) is

τ ∼ 10−1f
R

λ
hence f ∼ 10

λ

R
, (51)

where R is the typical disk scale length (here on the order
of 10M).

5 RESULTS

5.1 Disk Model

Before any quantitative results are presented it is necessary
to select a specific plasma and magnetic field distribution.
Here this takes the form of an azimuthally symmetric, thick,
barotropic disk around a maximally rotating Kerr black hole
(a ≃ 0.98). The magnetic field is chosen to lie upon surfaces
of constant angular velocity, thus insuring that it does not
shear. In order to maintain such a field it must also be strong
enough to suppress the magneto-rotational instability. Fur-
ther details may be found in the appendix.

5.2 Ray Trajectories

Figure 1 shows vertical and horizontal slices of rays propa-
gated back through the disk discussed in the previous section
from an observer elevated to 45◦ above the equatorial plane
at a frequency ω∞ = 3ωP max/4. Note that since the maxi-
mum occurs at req = 2M , the relativistically blue-shifted ω
is approximately 1.8ωP max placing it comfortably above the
plasma resonance at all points (assuming Doppler effects do
not dominate at this point.)

The refractive effects of the plasma are immediately
evident with the extraordinary mode being refracted more
so (see discussion in Broderick & Blandford 2003). Gravita-
tional lensing is also shown to be important over a signifi-
cant range of impact parameters. There will be an azimuthal
asymmetry in the ray paths due to both the black hole spin
and the Dopper shift resulting from the rotation of the disk.
This can be clearly observed in panel (b) Figure 1.

In panel (a) of Figure 1 the transition between the two
radiative transfer regimes is also clearly demonstrated. Each
time a ray passes from the strongly coupled to the adia-
batic regime it must be reprojected into the two polarisation
eigenmodes. If the plasma properties (e.g. density, magnetic
field strength or direction, etc) are not identical to when the
polarisation had previously frozen out (if at all), this de-
composition will necessarily be different. As a result, when
propagating the rays backwards, whenever one passes from
the adiabatic to the strongly coupled regime, it is necessary
to follow both polarisation eigenmodes in order to ensure the
correctness of the radiative transfer. The leads to a doubling
of the rays at such points. When integrating the radiative
transfer equations forward along the ray, the net intensity is
then projected out using equation (20). This ray doubling is
clearly present in panel (a) of Figure 1, where the rays pass
into the strongly coupled regime and back again as they tra-
verse the evacuated funnel above and below the black hole.

Note that the trajectories of the rays depend upon
ωP /ω∞ and ωB/ω∞ only (given a specified disk and mag-
netic field structure, of course), where ω∞ is ω as measured
at infinity. Therefore, the paths shown in Figure 1 are valid



Covariant Magnetoionic Theory II: Radiative Transfer 7

(a) (b)

Figure 1. Shown in panels (a) and (b) are vertical and horizontal cross sections of rays propagating backwards from an observer located
45◦ above the equatorial plane. The strongly coupled (adiabatic) regime is denoted by the solid (long-dashed) lines for the ordinary
(thin) and extraordinary (thick) polarisation eigenmodes. For reference, the null geodesics are drawn in the short dash. In addition, the
black hole horizon and the boundary of the ergosphere are also shown.

for any density normalisation of the disk described in the
appendix as long as ω is adjusted accordingly.

5.3 Polarisation Maps

In order to demonstrate the formalism described in this pa-
per, polarisation maps were computed for the disk model
described in section 5.1 and the appendix A orbiting a max-
imally rotating black hole as seen by an observer at infinity
elevated to 45◦ above the equatorial plane. Each map shows
Stokes I , Q, U , and V .

As with the rays trajectories, the particular form of the
polarisation maps only depend upon a few unitless param-
eters. These necessarily include ωP max/ω and ωB max/ω as
these define the ray trajectories. In addition, the relative
brightness depends upon the optical depth which is pro-
portional to (ωP max/ω)2(ωB max/ω)Mfω/c. As a result if
the following dimensionless quantities remain unchanged,
the polarisation maps shown in the following sections will
apply (up to a constant scale factor)

ωP max

ω∞
=

4

3
ωB max

ω∞
=

4

3

f
M

λ
= 2.30 × 103 . (52)

Despite the fact that the form of the polarisation maps
will remain unchanged if the quantities in equation (52) re-
main constant, the normalisation will change by a multi-
plicative constant in the same way as the source function,
namely proportional to ω2

∞. However, an additional multi-
plicative factor arises from the solid angle subtended by the

source on the sky. As a result, Stokes I , Q, U , and V are all
shown in units of

(

M

D

)2

me ω2
P max , (53)

where D is the distance to the source. This amounts to plot-
ting

kTB

mec2

(

ω∞

ωP max

)2

, (54)

where TB is the brightness temperature of the source.

5.3.1 Unpolarised Emission

For the purpose of highlighting the role of refractive plasma
effects in the production of significant quantities of circu-
lar polarisation, Figure 2 shows Stokes I , Q, U , and V at
ω∞ = 3ωP max/4, calculated using the unpolarised emis-
sion model described in section 4.5. Immediately noticeable
are the regions of considerable polarisation surrounding the
black hole. In addition, the outlines of the evacuated funnel
above and below the hole are clearly visible.

Differences in refraction of the two polarisation eigen-
modes leads two two generic effects: (i) the presence of two
maxima in the intensity map, each associated with the inten-
sity maxima in a given polarisation eigenmode; and (ii) a net
excess of one polarisation, and in particular, circular polari-
sation. The polarisation changes rapidly at the edges of the
evacuated funnels because the refraction and mode decom-
position changes rapidly for modes that just enter the funnel
and those that pass wide of it. Note that all of the polarisa-
tion is due entirely to refractive plasma effects in this case.
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The integrated values for the Stokes parameters are I = 1.3,
Q = −9.4 × 10−4, U = 4.9 × 10−5, and V = 6.2 × 10−2,
demonstrating that there does indeed exist a significant net
circular polarisation.

Figure 2 may be compared with Figure 3 in which
Stokes I , Q, U , and V are shown at ω∞ = 3ωP max for the
same unpolarised emission model. In the latter case the re-
fractive effects are significantly repressed. This demonstrates
the particularly limited nature of the frequency regime in
which these types effects can be expected to occur. In
this case there still does exist a net circular polarisation,
now with integrated values I = 1.0, Q = −4.8 × 10−6,
U = 2.4 × 10−7, and V = 1.2 × 10−3.

5.3.2 Polarised Emission

In general, synchrotron emission will be polarised. As a re-
sult it is necessary to produce polarisation maps using the
emission model described in sections 4.3 and 4.4. In this
case a net polarisation will exist even in the absence of any
refraction. In order to compare the amount of polarisation
generated by refractive effects to that created intrinsically,
Figure 4 shows Stokes I , Q, U , and V calculated using the
polarised emission model and ignoring refraction (i.e. set-
ting the rays to be null geodesics) for ω∞ = 3ωP,max/4.
Strictly speaking, this is a substantial over estimate of the
polarisation. This is because, in the absence of refraction, in
principle it is necessary to include Faraday rotation and con-
version in the transfer effects considered. As a result of the
high plasma density and magnetic field strengths, the Fara-
day rotation and conversion depths for this system should be
tremendous for non-refractive rays, effectively depolarising
any emission.

In comparison to Figures 2 and 3, the general morphol-
ogy of the polarisation maps are substantially different. In
addition, the amount of linear polarisation is significantly
larger, having an integrated value of over 60% compared
to less than 0.1% in Figure 2 and less than 10−3% in Fig-
ure 3. This calculation can be compared to that done by
Bromley et al. 2001. In both it was assumed that the rays
were null geodesics. In both Faraday rotation/conversion
were neglected (in Bromley et al. 2001 because for their
disk model it was assumed to be negligible.) However, in
Bromley et al. 2001 it was also assumed that the radiative
transfer could always be done in the adiabatic regime. As a
result, the net polarisation was determined entirely by the
emission mechanism. However, as discussed in section 3.1
this is only possible in the strongly coupled regime. In this
case, the dichroic terms in equation (42) provide the source
of circular polarisation, even in the absence of a circularly
polarised emission, resulting from the different absorption
properties of the two polarisation eigenmodes. This is what
leads to the presence of circular polarisation in Figure 4 but
not in Bromley et al. 2001. In this case, the integrated val-
ues of the Stokes parameters are I = 1.1, Q = 6.0 × 10−1,
U = −4.9 × 10−3, and V = 6.9 × 10−2. The vertical feature
directly above the black hole in panels (b) and (c) are asso-
ciated with the rapid decrease in the magnetic field strength
in the evacuted funnel above and below the black hole and
are due to the geometric transfer effect discussed in section
3.3.

Finally, in Figure 5, both refractive effects and the po-

larised emission mechanism are included (again at ω∞ =
3ωP,max/4). Many of the qualitative features of Figure 2
still persist. The integrated values of the Stokes parame-
ters are I = 1.3, Q = −2.2 × 10−3, U = 1.2 × 10−4, and
V = 1.4×10−1. While the intrinsic polarisation in the emis-
sion does make a quantitative difference, it is clear that in
this case the generic polarimetric properties are dominated
by the refractive properties. This is most clearly demon-
strated by noting the strong supression of linear polarisa-
tion. In Figure 5 the linear polarisation fraction is less than
0.2% as compared with nearly 60% in Figure 4.

5.4 Integrated Polarisations

Figure 6 shows the Stokes parameters as a function of fre-
quency for when only polarised emission is considered, only
refractive plasma effects are considered, and when both are
considered. There are two notable effects due to refraction:
(i) the significant suppression of the linear polarisation, and
(ii) the large amplification of circular polarisation. The lin-
ear polarisation is decreased by at least two orders of magni-
tude, and in particular, at least two orders of magnitude less
than the final circular polarisation. On the other hand, the
circular polarisation is more than doubled at its peak, and
increases by many orders of magnitude at higher frequencies.
Nonetheless, by ω∞ = 10ωP max, both polarisations are less
than one tenth of their maxima. As a result, it is clear that
this mechanism is restricted to approximately one decade in
frequency, centred about ωP max.

Figure 7 shows the circular polarisation fraction as a
function of frequency for the same set of cases that were
depicted in the previous figure. As can be seen in Figure 6,
the circular and linear polarisation spectral index are ap-
proximately equal, and both are softer than that of the to-
tal intensity. The result is a decreasing circular polarisation
fraction with increasing frequency.

6 CONCLUSIONS

We have presented refraction as a mechanism for the gen-
eration of polarisation when ω∞ ∼ ωP , ωB . That this will
typically result in mostly circular polarisation is a result of
the fact that the polarisation eigenmodes are significantly
elliptical only when the wave-vector and the magnetic field
are within ωB/ω of perpendicular, which is usually a small
number near the surface where the polarisation freezes out.
In addition to producing circular polarisation, this mech-
anism also significantly suppresses linear polarisation. Be-
cause it does require significant refraction to take place, it is
necessarily limited to approximately a decade in frequency,
making it simple to identify.

As shown in section 5.4, the resulting circular polarisa-
tion will be softer than the intensity. However, because of op-
tical depth effects, as the observation frequency increases the
polarimetric properties of such a system will be dominated
be increasingly smaller areas. As a result, the fractional vari-
ability in such a system would be expected to increase with
frequency. Furthermore, even though the emission may arise
from a large region, the polarimetric properties will continue
to be determined by this compact area, making it possible
to have variability on time scales short in comparison to
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Figure 2. Stokes I, Q, U , and V per unit M2 are shown in panels (a), (b), (c), and (d), respectively, for the unpolarised emission
mechanism described in section 4.5 and the disk model described in section 5.1 and appendix A orbiting a maximally rotating black
hole from a vantage point 45◦ above the equatorial plane at the frequency ω∞ = 3ωP,max/4. The contour levels are at 0.2 (dashed)
and 0.6 (solid) of the maximum values shown on the associated colorbars. The integrated fluxes over the region shown are I = 1.3,

Q = −9.4 × 10−4, U = 4.9 × 10−5, and V = 6.2 × 10−2. All fluxes are in units of (M/D)−2ω2
P max as discussed above equation (53).

those associated with the emission region. In addition, vari-
ability in the circular polarisation would be expected to be
correlated with variability in the integrated intensity at fre-
quencies where the emission is dominated by contributions
from close to the horizon (e.g. X-rays).

Possible applications to known astrophysical sources in-
clude the Galactic Centre (at submm wavelengths) and ex-
tinct high mass X-ray binaries (in the infrared). These will
be disscussed in further detail in an upcoming paper.
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APPENDIX A: A THICK DISK MODEL

In general, the innermost portions of the accretion flow will
take the form of a thick disk. The equation for hydrostatic
equilibrium in the limit that Ω ≫ vr is given by

∂µP

ρ + Γ
Γ−1

P
= −∂µ ln E +

Ω∂µL

1 − ΩL
, (A1)

where here Γ is the adiabatic index, E = −ut, Ω = uφ/ut,
and L = −uφ/ut (Blandford & Begelman 2003). Note that,
given the metric, any two of the quantities E, Ω, or L, may
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Figure 3. Same as Figure 2 except with ω∞ = 3ωP max. The integrated fluxes over the region shown are I = 1.0, Q = −4.8 × 10−6,
U = 2.4 × 10−7, and V = 1.2 × 10−3. All fluxes are in units of (M/D)−2ω2

P max as discussed above equation (53).

be derived from the third. Explicitly, Ω and L are related
by

Ω =
gφφL + gtφ

gtt + gtφL
, (A2)

and the condition that uµuµ = utut + uφuφ = −1 gives E
in terms of Ω and L to be

E =
[

−
(

gtt + gtφL
)

(1 − ΩL)
]−1/2

. (A3)

In principle this should be combined with a torque bal-
ance equation which explicitly includes the mechanism for
angular momentum transport through the disk. However,
given a relationship between any two of the quantities E, Ω,
and L specifies this automatically. Thus the problem can be
significantly simplified if such a relationship can be obtained,
presumably from the current MHD disk simulations.

A1 Barotropic Disks

For a barotropic disk the left side of equation (A1) can be
explicitly integrated to define a function H :

H =

∫

dP

ρ(P ) + Γ
Γ−1

P
, (A4)

which may be explicitly integrated for gases with constant
Γ to yield

H = ln

(

1 +
Γ

Γ − 1

P

ρ

)

. (A5)

Therefore, reorganising equation (A1) gives

∂µ (H − ln E) = − Ω∂µL

1 − ΩL
, (A6)

which in turn implies that Ω is a function of L alone. Speci-
fying this function allows the definition of another function
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Figure 4. Same as Figure 2 except using the polarised emission mechanism (described in sections 4.3 and 4.4) and ignoring refractive
plasma effects. The integrated fluxes over the region shown are I = 1.1, Q = 6.0 × 10−1, U = −4.9 × 10−3, and V = 6.9 × 10−2. All
fluxes are in units of (M/D)−2ω2

P max as discussed above equation (53).

Ξ:

Ξ =

∫

Ω(L)dL

1 − Ω(L)L
. (A7)

Using their definitions, it is possible to solve Ω = Ω(L) for
L(xµ) and hence Ξ(xµ). Then H and Ξ are related by,

H = H0 + ln E − Ξ , (A8)

which then may be inverted to yield ρ(H0 − lnE + Ξ). In-
verting H for ρ then yields ρ(xµ). The quantity H0 sets the
density scale and may itself be set by choosing ρ at some
point:

H0 = H(ρ0) − (ln E − Ξ)(xµ
0 ) . (A9)

A1.1 Keplerian Disk

As a simple, but artificial, example of the procedure, a Ke-
plerian disk is briefly considered in the limit of weak gravi-
tating Schwarzschild black hole (i.e. r ≫ M). Note that this
cannot be done in flat space because in equation (A1) the
gravitational terms are present in the curvature only. For a
Keplerian flow, Ω =

√

M/(r sin θ)3 ≃ M2L−3. In that case
using the definition of Ξ gives

Ξ = M2

∫

dL

L3 − M2L

=

∫

dℓ

ℓ3 − ℓ
= ln

√

1 − ℓ−2 , (A10)

where ℓ = L/M . However, ln E is given by

lnE = − ln
√

−gtt(1 − ΩL) = ln

√

1 − 2M

r
− ln

√

1 − ℓ−2 ,

(A11)
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Figure 5. Same as Figure 4 except including refractive plasma effects. The integrated fluxes over the region shown are I = 1.3,
Q = −2.2 × 10−3, U = 1.2 × 10−4, and V = 1.4 × 10−1. All fluxes are in units of (M/D)−2ω2

P max as discussed above equation (53).

and hence,

H = H0 − ln E + Ξ

= H0 − ln

√

1 − 2M

r
+ ln

(

1 − ℓ−2
)

≃ H0 +
M

r
− M

r sin θ
, (A12)

where ℓ =
√

r sin θ/M and the weakly gravitating condition
were used. As expected, along the equatorial plane H , and
therefore ρ, is constant. For points outside of the equato-
rial plane pressure gradients are required to maintain hy-
drostatic balance.

A1.2 Pressure Supported Disk

Accretion disks will in general have radial as well as vertical
pressure gradients. Inward pressure gradients can support
a stable disk inbetween the innermost stable orbit and the

photon orbits, thus decreasing the radius of the inner edge of
the disk. Around a Schwarzschild black hole this can bring
the inner edge of the disk down to 3M . In a maximally
rotating Kerr spacetime this can allow the disk to extend
down nearly to the horizon.

Far from the hole, accreting matter will create outward
pressure gradients. An angular momentum profile appropri-
ate for a Kerr hole which goes from being super to sub-
Keplerian is

L(req) =































(

√

gtφ 2
,r − gtt

,rg
φφ

,r − gtφ
,r

)

gφφ −1
,r

∣

∣

∣

∣

r=req

if req < rinner

c1M
3/2r−1

eq + c2M
1/2 + l0

√

Mreq

otherwise

Ω(req) =
gφφL + gtφ

gtt + gtφL

∣

∣

∣

∣

r=req

, (A13)
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Figure 6. The log of the integrated intensity, total linear polar-
isation, and circular polarisation are shown as a function of the
observation frequency at infinity for when only polarised emission
is considered (open triangles), only refractive plasma effects are
considered (open squares), and when both are considered (filled
circles). As in Figures 1-5, the disk model described in section
5.1 and appendix A orbiting a maximally rotating black hole is
viewed from a vantage point 45◦ above the equatorial plane. All
fluxes are in units of (M/D)−2ω2

P max as discussed above equa-
tion (53).

where both L and Ω are parametrised in terms of the equato-
rial radius, req. The condition that L reduces to the angular
momentum profile of a Keplerian disk for radii less than
the inner radius ensures that no pathological disk struc-
tures are created within the photon orbit. The constants
c1 and c2 are defined by the requirement that at the inner
edge of the disk, rinner, and at the density maximum, rmax,
the angular momentum must equal that of the Keplerian
disk. In contrast, l0 is chosen to fix the large r behaviour
of the disk. The values chosen here were rinner = 1.3M ,
rmax = 2M , and l0 = 0.1. The value of H0 was set so
that H(req = 100M) = 0, thus making the disk extend
to req = 100M .

In addition to defining Ω and L it is necessary to define
P (ρ). Because the gas in this portion of the accretion flow is
expected to be unable to efficiently cool, Γ = 5/3 was chosen.
The proportionality constant in the polytropic equation of
state, κ, is set by enforcing the ideal gas law for a given
temperature (T0) at a given density (ρ0). Thus,

P (ρ) = ρ0
kT0

mp

(

ρ

ρ0

)5/3

. (A14)

Note that ρ0 and T0 provide a density and temperature scale.
A disk solution obtained for a given ρ0 and T0 may be used to
generate a disk solution for a different set of scales simply
by multiplying the density everywhere by the appropriate
constant factor.

Figure 7. Shown is the circular polarisation fraction as a function
of the observation frequency at infinity for when only polarised
emission is considered (open triangles), only refractive plasma ef-
fects are considered (open squares), and when both are considered
(filled circles). As in Figures 1-6, the disk model described in sec-
tion 5.1 and appendix A orbiting a maximally rotating black hole
is viewed from a vantage point 45◦ above the equatorial plane.

A2 Non-Sheared Magnetic Field Geometries

The disk model discussed thus far is purely hydrodynamic.
Typically, magnetic fields will also be present. In general, it
is necessary to perform a full MHD calculation in order to
self-consistently determine both the plasma and magnetic
field structure. However,an approximate steady state mag-
netic field can be constructed by requiring that the field lines
are not sheared.

To investigate the shearing between two nearby, space-
like separated points in the plasma, xµ

1 and xµ
2 , consider the

invariant interval between them:

∆s2 = ∆xµ∆xµ where ∆xµ = xµ
2 − xµ

1 . (A15)

The condition that this doesn’t change in the LFCR frame
is equivalent to

d∆s2

ds
= 0 . (A16)

Expanding in terms of the definition of ∆s gives,

d

ds
gµν∆xµ∆xν = gµν,σ

dxσ

ds
∆xµ∆xν

+ 2gµν∆xµ d∆xν

ds
= 0 . (A17)

Note that by definition,

dxµ

ds
= uµ and

d∆xµ

ds
= uµ

2 − uµ
2 = uµ

,σ∆xσ . (A18)
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Figure A1. Shown are the contours of the density and azimuthal
velocity as measured by the zero angular momentum observer,
and the magnetic field lines. Starting at the density maximum
(req = 2M and z = 0), the density is contoured at levels 10−0.5

to 10−4.5 times the maximum density in multiples of 10−1. From
left to right, the velocity is contoured at levels 2−0.5c to 2−5c
in multiples of 2−0.5. In order to provide a distinction between
the velocity contours and the magnetic field lines, the velocity
contours are terminated at the disks surface.

Hence,

d∆s2

ds
=
(

gµν,σuσ + 2gµσuσ
,ν

)

∆xµ∆xν

= (gµν,σuσ + 2uµ,ν − 2gµσ,νuσ)∆xµ∆xν

= 2
(

uµ,ν − Γσ
µνuσ

)

∆xµ∆xν

= 2 (∇µuν)∆xµ∆xν = 0 . (A19)

The final equality is easy to understand from a geomet-
rical viewpoint; for there to be no shearing, there can be
no change in the direction of ∆xµ of the component of the
plasma four-velocity along ∆xµ.

That a steady state, axially symmetric magnetic field
must lie upon the non-shearing surfaces can be seen di-
rectly by considering the covariant form of Maxwell’s equa-
tions. In particular ∇∗

νF
µν = 0, where ∗F µν is the dual of

the electromagnetic field tensor, which in the absence of
an electric field in the frame of the plasma takes the form
∗F µν = Bµuν − Bνuµ. Therefore,

Bµ∇∗
νF

µν = BµBµ∇νuν + Bµuν∇νBµ

− Bµuµ∇νBν − BµBν∇νuµ

= −BµBν∇νuµ = 0 , (A20)

where the first three terms vanish due to the symmetries
and the requirement that Bµuµ = 0. This is precisely the
non-shearing condition obtained in equation (A19).

For plasma flows that are directed along the Killing

vectors of the spacetime, ξµ
i , i.e.

uµ = uttµ +
∑

i

uiξµ
i , (A21)

where tµ is the time-like Killing vector, it is possible to sim-
plify the no-shear condition considerably.

∆xµ∆xν∇µuν

= ∆xµ∆xν

(

ut∇µtν +
∑

i

ui∇µξν
i

)

+ ∆xµ∆xν

(

tν∂µut +
∑

i

ξν
i ∂µui

)

= ∆xt∆xµ∂µut +
∑

i

∆xi∆xµ∂µui = 0 , (A22)

Where terms in the first parentheses vanish due to Killing’s
equation. The additional constraint that ∆xµuµ = 0 gives

∆xt = −
∑

i

Ωi∆xi , (A23)

where Ωi ≡ ui/ut is a generalisation of the definition of Ω
at the beginning of the section. Inserting this into equation
(A22) and simplifying yields

∑

i

∆xi∆xµ∂µΩi = 0 , (A24)

i.e. the no shear hypersurfaces are those upon which all of
the Ωi are constant.

For the plasma flows considered in §A1 the plasma ve-
locity is in the form of equation (A21) where the space-like
Killing vector is that associated with the axial symmetry,
φµ. Thus with Ωφ = Ω, the no-shear condition for this class
of plasma flows is

∆xµ∂µΩ = 0 . (A25)

Note that while we have been considering only axially sym-
metric plasma flows, this no shear condition is more gener-
ally valid, extending to the case where Ω is a function of t
and φ as well as r and θ. However, in this case it is not the
perfect-MHD limit of Maxwell’s equations.

For a cylindrically symmetric disk, the no-shear condi-
tion may be used to explicitly construct the non-shearing
poloidal magnetic fields by setting

Br = BΩ,θ and Bθ = −BΩ,r . (A26)

Once the magnitude of Bµ is determined at some point along
each non-shearing surfaces (e.g. in the equatorial plane), it
may be set everywhere by ∇µBµ − Bµuν∇νuµ = 0, which
comes directly from Maxwell’s equations in covariant form
and Bµuµ = 0. Inserting the form in equation (A26) into
the first term gives

∇µBµ =
1√
g

∂ν
√

gBν

=
1√
g

(∂r
√

gBΩ,θ − ∂θ
√

gBΩ,r)

=
1√
g

(Ω,θ∂r
√

gB − Ω,r∂θ
√

gB)

= Bν∂ν ln
√

gB . (A27)
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The second term can be simplified using equation (A21),

Bµuν∇νuµ = Bµuν∇ν

(

uttµ + uφφµ

)

= Bµuν
(

tµ∂νut + φµ∂νuφ − ut∇µtν − uφ∇µφν

)

= Btu
ν∂νut + Bφuν∂νuφ + Bµuν

(

tν∂µutφν∂µuφ
)

+ Bµuν∇µuν

= Bµ
(

ut∂µut + uφ∂µutΩ
)

= Bµ (ut + Ωuφ)∂µut + uφutBµ∂µΩ

= −Bµ∂µ ln ut , (A28)

where the stationarity and axially symmetry have been used
in the third step and the no-shear condition was used in the
final step. Therefore, the magnitude B can be determined
by

∇µBµ − Bµuν∇νuµ = Bµ∂µ ln
√

gB − Bµ∂µ ln ut

= Bµ∂µ ln

√
gB
ut

= 0 , (A29)

and hence
√

gB
ut

= constant (A30)

along the non-shearing surfaces. If B is given along a curve
which passes through all of the non-shearing surfaces (e.g. in
the equatorial plane), Bµ is defined everywhere through
equations (A26) and (A30).

A2.1 Non-Shearing Magnetic Fields in a Cylindrical Flow

An example application of this formalism is a cylindrical
flow in flat space. In this case, Ω is a function of the cylin-
drical radius ̟ ≡ r sin θ. The Keplerian disk is a specific
example with Ω = ̟−3/2. The direction of the magnetic
field is determined by,

Ω,r =
dΩ

d̟
sin θ and Ω,θ =

dΩ

d̟
r cos θ . (A31)

The magnitude, B is given by

r2 sin θ
√

1 − r2 sin2 θΩ2
B = f(Ω) , (A32)

and thus

B =
1

r
b(̟) , (A33)

where the particular form of b(̟) depends upon the partic-
ular form of f(Ω). Therefore,

Br = b(̟) cos θ and Bθ = −b(̟)
1

r
sin θ , (A34)

which is precisely the form of a cylindrically symmetric ver-
tical magnetic field.

A2.2 Stability to the Magneto-Rotational Instability

A sufficiently strong non-shearing magnetic field configura-
tion will remain stable to the magneto-rotational instability
(MRI). The criterion for instability to the MRI is

(k · vA)2 < −r
dΩ2

dr
, (A35)

where k is the wave vector of the unstable mode and vA

is the Alfvén velocity (Hawley & Balbus 1995). For a nearly
vertical magnetic field geometry, stability will be maintained
if modes with wavelength less than twice the disk height (h)
are not unstable. With

vA =
B√
4πρ

=
ωB

ωP

√

me

mP
c , (A36)

a Keplerian disk will be stable if

4π

h

ωB

ωP

√

me

mP
c >

√
3

(

M

r

)3/2
c

M
. (A37)

A conservative criterion may be obtained by approximating
h ≃ h0r for some constant of proportionality h0, hence

ωB

ωP
& 6h0

√

M

r
≃ 0.3 , (A38)

for h0 ≃ 0.1 and r ≃ 7 which are typical for the disk pictured
in Figure A1.

Comparison to equipartion fields can provide some in-
sight into how unrestrictive the stability criterion really is.
Given β = Pgas/Pmag and the ideal gas law it is straight
forward to show that

ωB

ωP
=

√

2kT

βmec2
≃
√

3β−1T10 , (A39)

where T is the ion temperature. Because the ion temperature
in a thick disk will typically be on the order of or exceed 1012

K, the equipartition ωB (β = 1) will be at least an order of
magnitude larger than ωP . As a result the field needed to
stabilise the disk against the MRI is an order of magnitude
less than equipartition strength, and hence is not physically
unreasonable.

A2.3 Magnetic Field Model

Considering the restriction placed upon the magnetic field
strength discussed in the previous sections, B was set such
that in the equatorial plane

ωB = ωP + η (r + 10M)−5/4 , (A40)

where the second term provides a canonical scaling at large
radii. Here η was chosen to be 0.01.
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