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Abstract

I survey a number of interesting tests of quantum chro-
modynamics at the amplitude level which can be carried
out in electron-positron annihilation and in photon-photon
collisions at low energy. Some of the tests requiree+e−

center of mass energy as small as
√

s = 2 GeV. Other tests
which involve a spectrum of energies can be carried out
advantageously at high energy facilities using the radiative
return method. These include measurements of fundamen-
tal processes such as timelike form factors and transition
amplitudes, timelike Compton scattering, timelike photon
to meson transition amplitudes, and two-photon exclusive
processes. Many of these reactions test basic principles of
QCD such as hadronization at the amplitude level, factor-
ization, and hadron helicity conservation, tools also used
in the analysis of exclusiveB and D decays. Measure-
ments of the final-state polarization in hadron pair produc-
tion determine the relative phase of the timelike form fac-
tors and thus strongly discriminate between analytic forms
of models which fit the form factors in the spacelike re-
gion. The role of two-photon exchange amplitudes can be
tested using the charge asymmetry of thee+e− → BB
processes. These tests can help resolve the discrepancy
between the Jefferson laboratory measurements of the ra-
tio of GE and GM proton form factors using the polar-
ization transfer method versus measurements using the tra-
ditional Rosenbluth method. Precision measurements of
the electron-positron annihilation cross section can test the
generalized Crewther relation and determine whether the
effective couplings defined from physical measurements
show infrared fixed-point and near conformal behavior. I
also discuss a number of tests of novel QCD phenomena
accessible ine+e− annihilation, including near-threshold
reactions, the production of baryonium, gluonium states,
and pentaquarks.

INTRODUCTION

Quantum Chromodynamics has been very well tested at
high energies, particularly in inclusive reactions involving
large momentum transfers much higher than the QCD scale
ΛQCD. Tests of QCD at low energies are much more chal-
lenging, since they require an understanding of nonpertur-
bative elements of the theory, including the behavior of the
QCD coupling at low momentum transfers, the fundamen-
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tal features of hadron wavefunctions, and the fundamental
color coherence of QCD interactions.

In this talk I will survey a number of tests of QCD
which test fundamental issues of hadron physics at the
amplitude level. These include measurements of funda-
mental processes such as timelike form factors and tran-
sition amplitudes, timelike Compton scattering, timelike
photon to meson transition amplitudes, and two-photon
exclusive processes. Many of these reactions test basic
principles of QCD such as factorization and hadron he-
licity conservation, tools also used in the analysis of ex-
clusive B and D decays. Electron-positron annihilation
can determine whether the effective couplings defined from
physical measurements show infrared fixed-point and near-
conformal behavior. I also discuss a number of tests of
novel QCD phenomena accessible ine+e− annihilation,
including near-threshold reactions, the production of bary-
onium, gluonium states, and pentaquarks.

There has recently been a number of experimental sur-
prises in QCD spectroscopy and heavy quark production
which show the importance of detailed measurements in
electron-positron collisions. These include:

1. The cross section measured at Belle [1] for double-
charmonium productione+e− → J/ψηc andJ/ψDX is
an order of magnitude larger than predicted [2], It is impor-
tant to see whether this anomaly also holds for analogous
channels involving strangeness:e+e− → φη andφKX.

2. The evidence for the predicted gluonic bound states
gg, ggg, qqg spectroscopy of QCD is still not conclusive.
The subprocessese+e− → ccgg ande+e− → cccc have
comparable rates, suggesting a large role for the production
of associated charmonium plus gluonic states. See Fig. 1.
Fred Goldhaber, Jungil Lee and I have recently calculated
the cross section fore+e− → HGJ=0,2 using perturbative
QCD factorization [3]. We find thatγ∗ → J/ψG0 pro-
duction dominates over that ofJ/ψG2, and show how the
angular distribution of the final state can be used to deter-
mine the angular momentumJ and projectionJz of the
glueball; onlyJz = ±2 tensor states are produced by the
perturbative QCD mechanism at leading twist. The rate for
e+e− → J/ψG0 production could be comparable to the
corresponding nonrelativistic QCD (NRQCD) prediction
for e+e− → J/ψηc without exceeding the known bound
from radiativeΥ decay. Another interesting glueball search
process is the missing mass spectrum ine+e− → φX.

3. New signals for baryonium resonances just below
threshold inpp → e+e− (odd charge conjugation) and
J/ψ → (pp)γ (even charge conjugation) have been re-
ported [4, 5, 6], but not inJ/ψ → (pp)π0 (odd charge
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Figure 1: Illustration of QCD mechanism for the exclu-
sive production of quarkonium and gluonium in electron-
positron collisions.

conjugation). A strong threshold enhancement is also ob-
served inpp → e+e− [7]. These near-threshold states
may reflect the binding ofqqq or qq systems, the QCD
van der Waals interaction [8, 9], quark interchange covalent
bonds, or attractive meson exchange interactions analogous
to the nuclear potential [10, 11]. It is important to test this
phenomenon not only in baryon production near threshold
e+e− → BB andγγ → BB, but also for any hadron-pair
threshold. It is also interesting to study the formation of
Coulomb-bound atomic states such asµ+µ− andτ+τ−.

4. The recent discovery [12, 13, 14, 15] of a pentaquark
stateΘ+(uddus) indicates that the spectroscopy of QCD
is much richer than previously thought [16, 17, 18, 19, 20]
These states could be produced and analyzed in exclusive
reactions such ase+e− → Θ+(uudds)Θ−(uudds) and

e+e− → Θ+(uudds)K−(us)n(udd) or Θ+K
0
p. See Fig.

2. These types or reactions can give decisive information
on the quantum numbers of the new states. The form fac-
tor for timelike pentaquark pair production is predicted to
falloff ass−4 according to dimensional counting rules.

5. The transition form factor forep → e∆+ falls
anomalously fast at high spacelikeq2 compared to other
ep → eN∗ form factors [21]. Is this due to a special char-
acteristic of∆ substructure? For example, if the∆+ is
dominantly a pentaquarkuuuud state, then the timelike
e+e− → p∆+ transition form factor will fall ass−3 com-
pared to the canonicals−2 QCD fall-off for timelike baryon
pair form factors.

6. The phenomenology ofJ/ψ decays is still puz-
zling [22]. For example, the decayJ/ψ → ρπ is the largest
two-body decay channel for theJ/ψ even though the decay
of theJ/ψ with Jz = ±1 to pseudoscalar vector channels
is forbidden by hadron helicity conservation [23], which
follows from QCD factorization and the chirality conserva-
tion of QCD interactions. In contrast, theψ′ has not been
observed to decay toρπ. As discussed below, an intrigu-
ing solution of this puzzle is the presence of intrinsic heavy
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Figure 2: Mechanisms for producing baryon pairs and pen-
taquarks

quark Fock states in the light hadrons [24]. It is impor-
tant to verify whether hadron-helicity conservation is ob-
served in the continuum production of meson pairs;e.g.,
e+e− → ρπ should be strongly suppressed.

7. The form factors of hadrons as measured in both the
spacelike and timelike domains provide fundamental infor-
mation on the structure and internal dynamics of hadrons.
Recent measurements [25] of the electron-to-proton polar-
ization transfer in−→e − p → e−−→p scattering at Jefferson
Laboratory show that the ratio of spacelike Sachs form
factors [26]Gp

E(q2)/Gp
M (q2) is monotonically decreasing

with increasingQ2 = −q2, in strong contradiction with the
GE/GM scaling determined by the traditional Rosenbluth
separation method. The Rosenbluth method may in fact
not be reliable, perhaps because of its sensitivity to uncer-
tain radiative corrections, including two-photon exchange
amplitudes [27]. The polarization transfer method [25, 28]
is relatively insensitive to such corrections.

The same data which indicate thatGE for protons falls
faster thanGM at large spacelikeQ2 require in turn that
F2/F1 falls more slowly than1/Q2. The conventional ex-
pectation from dimensional counting rules [29] and pertur-
bative QCD [30] is that the Dirac form factorF1 should fall



with a nominal power1/Q4, and the ratio of the Pauli and
Dirac form factors,F2/F1, should fall like1/Q2, at high
momentum transfers. The Dirac form factor agrees with
this expectation in the rangeQ2 from a few GeV2 to the
data limit of 31 GeV2. However, the Pauli/Dirac ratio is
not observed to fall with the nominal expected power, and
the experimenters themselves have noted that the data is
well fit by F2/F1 ∝ 1/Q in the momentum transfer range
2 to 5.6 GeV2.

The new Jefferson Laboratory results make it critical to
carefully identify and separate the timelikeGE and GM

form factors by measuring the center-of-mass angular dis-
tribution and by measuring the polarization of the proton in
baryon paire+e− → BB reactions. Polarization measure-
ments can determine phase structure of the timelike form
factors and thus provide a remarkable window into QCD at
the amplitude level [31]. The role of two-photon exchange
amplitudes can be tested using the charge asymmetry of
thee+e− → BB processes. The advent of high luminos-
ity e+e− colliders at Frascati and elsewhere provide the
opportunity to make such measurements, both directly and
via radiative return.

The advent of electron-positron colliders of high lumi-
nosity thus can open up a new range of sensitive tests of
QCD. The following sections give an introduction to the
theory of a number ofe+e− collider topics including hard
exclusive processes such as timelike Compton scattering,
timelike photon-to-pion transition amplitudes, two-photon
exclusive processes and single-spin polarization asymme-
tries. Many of these topics test the main tools used in the
analysis of exclusiveB andD decays and thus are highly
relevant to progress in that field.

Some of the tests discussed here requiree+e− center of
mass energy as small as

√
s = 2 GeV. Other tests which

involve a spectrum of energies can be carried out advan-
tageously at high energy facilities using initial-state radia-
tion [32, 33, 34]. See Fig. 3. Recent results from KLOE
and BaBar are given in [32, 33, 34]. The radiation of a hard
photon from the initial-state electron or the positron allows
one to measure the annihilation cross section at a lower en-
ergys(1− x). The basic formula is:

dσ(s, x)
dx

= W (s, x)σ[s(1− x)] (1)

where in Born approximation

W (s, x) =
2α

πx
(2 ln

√
s

me
− 1)(1− x +

x2

2
) (2)

Although the effective luminosity using ISR is reduced by
the probability for radiation, this is compensated by the fact
that one measures the entire spectrum at one setting ofs.
The hard photons are primarily radiated along the initial
lepton direction. Half of the radiative cross section occurs

atθ ≤
√

me

Ee
. If the photon is radiated at large angles, then

one can test for single spin asymmetries relative to the nor-
mal~n = ~pe+ × ~pe− to the annihilation plane.
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Figure 3: Illustration of initial state radiation in electron-
positron collisions. The contribution where the photon is
emitted from the hadron currents causes charge and spin
asymmetries.

In radiative inclusive reactions,e+e− → qqγ, the in-
terference of initial and final state radiation produces jet
charge asymmetries which measure the cube of the quark
chargee3

q. [35, 36] The hadron charge asymmetry in semi-
inclusive reactionse+e− → H±γX determines interest-
ing odd charge-conjugation fragmentation functions [35].
In the case of exclusive reactions, one can use the hadron
charge asymmetry to measure the interference of the time-
like Compton amplitudee+e− → γ∗ → H+H−γ with the
timelike form factor appearing in the initial state radiation
amplitudee+e− → γ∗γ → H+H−γ. This remarkable
physics potential is discussed in more detail below. The
corresponding formulae for lepton charge asymmetries in
e+e− → ``γ are given in Ref. [35]

EXCLUSIVE PROCESSES IN QCD

Hard hadronic exclusive processes such as timelike an-
nihilation e+e− → HH andγγ → HH are at the fore-
front of low energy QCD studies, particularly because of
their role in the interpretation of exclusive hadronicB de-
cays, processes which are essential for determining the
CKM phases and the physics ofCP violation. Perturba-
tive QCD and its factorization properties at high momen-
tum transfer provide an essential guide to the phenomenol-
ogy of exclusive amplitudes at large momentum transfer—
the leading power fall-off of form factors and fixed-angle
cross sections, the dominant helicity structures, and their
color transparency properties. The perturbative QCD pre-
dictions for two photon reactions can be compared with a
phenomenological successful model based on the handbag
approximation [37].

A primary issue is the nature and shapes of hadron light-
front wavefunctions, the amplitudes which interpolate be-
tween hadrons and their quark and gluon degrees of free-
dom. This is particular important forB physics since the
calculation of exclusive hadronicB are computed from the
convolution of hadron wavefunctions and distribution am-
plitudes. For example, the decay amplitude forB → `νπ
is exactly given by the overlap ofB andπ light-front wave-



functions. Furthermore the phase structure of hadronic am-
plitudes and the effects of color transparency are directly
relevant to the analysis of phase structure ofB decays.

There has been considerable progress analyzing exclu-
sive and diffractive reactions at large momentum transfer
from first principles in QCD. Rigorous statements can be
made on the basis of asymptotic freedom and factoriza-
tion theorems which separate the underlying hard quark
and gluon subprocess amplitude from the nonperturba-
tive physics of the hadronic wavefunctions. The leading-
power contribution to exclusive hadronic amplitudes such
as quarkonium decay, heavy hadron decay, and scattering
amplitudes involving large momentum transfer can usually
be factorized as a convolution of distribution amplitudes
φH(xi,Λ) and hard-scattering quark/gluon scattering am-
plitudesTH integrated over the light-cone momentum frac-
tions of the valence quarks [38]:

MHadron =
∫ ∏

φ
(Λ)
H (xi, λi)T

(Λ)
H dxi . (3)

HereT
(Λ)
H is the underlying quark-gluon scattering ampli-

tude subprocess in which each incident and final hadron is
replaced by valence quarks with collinear momentak+

i =
xip

+
H , ~k⊥i = xi~p⊥H . The invariant mass of all interme-

diate states inTH is evaluated above the separation scale
M2

n > Λ2. The essential part of the hadronic wavefunc-
tion is the distribution amplitude [38], defined as the inte-
gral over transverse momenta of the valence (lowest parti-
cle number) Fock wavefunction;e.g.for the pion

φπ(xi, Q) ≡
∫

d2k⊥ ψ
(Q)
qq/π(xi,~k⊥i, λ) (4)

where the separation scaleΛ can be taken to be order
of the characteristic momentum transferQ in the pro-
cess. It should be emphasized that the hard scattering am-
plitude TH is evaluated in the QCD perturbative domain
where the propagator virtualities are above the separation
scale. The leading power fall-off of the hard-scattering
amplitude as given by dimensional counting rules follows
from the nominal scaling of the hard-scattering ampli-
tude: TH ∼ 1/Qn−4, wheren is the total number of
fields (quarks, leptons, or gauge fields) participating in
the hard scattering [29, 39]. Thus the reaction is domi-
nated by subprocesses and Fock states involving the mini-
mum number of interacting fields. In the case of2 → 2
scattering amplitudes, this impliesdσ

dt (AB → CD) =
FAB→CD(t/s)/sn−2. In the case of form factors, the
dominant helicity conserving amplitude obeysF (t) ∼
(1/t)nH−1 wherenH is the minimum number of fields in
the hadronH. The full predictions from PQCD modify the
nominal scaling by logarithms from the running coupling
and the evolution of the distribution amplitudes. In some
cases, such as large anglepp → pp scattering, there can be
“pinch” contributions [40] when the scattering can occur
from a sequence of independent near-on shell quark-quark
scattering amplitudes at the same CM angle. After inclu-

sion of Sudakov suppression form factors, these contribu-
tions also have a scaling behavior close to that predicted by
constituent counting.

As shown by Maldacena [41], there is a remarkable cor-
respondence between largeNC supergravity theory in a
higher dimensional anti-de Sitter space and supersymmet-
ric QCD in 4-dimensional space-time. String/gauge dual-
ity provides a framework for predicting QCD phenomena
based on the conformal properties of the ADS/CFT corre-
spondence. In a remarkable recent development, Polchin-
ski and Strassler [42] have derived the dimensional count-
ing rules using string duality, mapping features of gravi-
tational theories in higher dimensions(AdS5) to physical
QCD in ordinary 3+1 space-time. The power-law fall-off
of hard exclusive hadron-hadron scattering amplitudes at
large momentum transfer can be derived without the use of
perturbation theory by using the scaling properties of the
hadronic interpolating fields in the large-r region of AdS
space.

The distribution amplitudes which control leading-twist
exclusive amplitudes at high momentum transfer can be
related to the gauge-invariant Bethe-Salpeter wavefunc-
tion at equal light-cone timeτ = x+. The logarithmic
evolution of the hadron distribution amplitudesφH(xi, Q)
with respect to the resolution scaleQ can be derived from
the perturbatively-computable tail of the valence light-cone
wavefunction in the high transverse momentum regime.
The DGLAP evolution of quark and gluon distributions
can also be derived in an analogous way by computing
the variation of the Fock expansion with respect to the
separation scale. Other key features of the perturbative
QCD analyses are: (a) evolution equations for distribu-
tion amplitudes which incorporate the operator product ex-
pansion, renormalization group invariance, and conformal
symmetry [38, 43, 44, 45, 46]; (b) hadron helicity conser-
vation which follows from the underlying chiral structure
of QCD [23]; (c) color transparency, which eliminates cor-
rections to hard exclusive amplitudes from initial and final
state interactions at leading power and reflects the under-
lying gauge theoretic basis for the strong interactions [47]
and (d) hidden color degrees of freedom in nuclear wave-
functions, which reflect the color structure of hadron and
nuclear wavefunctions [48]. There have also been recent
advances eliminating renormalization scale ambiguities in
hard-scattering amplitudes via commensurate scale rela-
tions [49] which connect the couplings entering exclusive
amplitudes to theαV coupling which controls the QCD
heavy quark potential.

EXCLUSIVE TIMELIKE REACTIONS
AND HADRON HELICITY

CONSERVATION

Measurements of exclusive hadronic amplitudes in the
timelike domain can test many basic principles of QCD,
including factorization principles, dimensional counting
rules, hadron helicity conservation, color transparency and



the possible role of higher Fock states such as intrinsic
charm. Dimensional counting rules test the near conformal
nature of QCD at moderate to high momentum transfers.
The essential prediction for the production cross section of
N hadrons each emitted at distinct fixed CM angles is the
leading power-law prediction

dRe+e−→H1H2...HN

dΩ1dΩ2...dΩN−1
(s) ∝ [αsΛ2

QCD

s

]ntot−2
, (5)

wherentot is the total number of quark and gluon con-
stituents in the final state hadrons. The prediction is mod-
ified by possible anomalous dimensions and the running
of the QCD coupling. However, there is now substan-
tial theoretical and empirical evidence that the QCD cou-
pling has an effective IR fixed point and can be treated
as a constant over a large range of momentum transfers.
In the case of two-body final states, this scaling predicts
sFH(s) → const for meson pairs ands2FH(s) → const
for baryon pairs,s5F (s) → const for deuteron pairs, and
s4F (s) → const for pentaquark pairs. As discussed in
the introduction, the anomalous fall-off of the proton to∆
transition form factor may indicate a dominance of higher
Fock states in the∆. This can be tested by measuring the
power-law fall-off ofe+e− → p∆.

Hadron helicity conservation (HHC) is a QCD selection
rule concerning the behavior of helicity amplitudes at high
momentum transfer, such as fixed CM scattering. Since
the convolution ofTH with the light-cone wavefunctions
projects out states withLz = 0, the leading hadron ampli-
tudes conserve hadron helicity [23, 22]. Thus the dominant
amplitudes are those in which the sum of hadron helicities
in the initial state equals the sum of hadron helicities in
the final state; other helicity amplitudes are relatively sup-
pressed by an inverse power in the momentum transfer.

The study of time-like hadronic form factors usinge+e−

colliding beams can provide very sensitive tests of hadron
helicity conservation, since the virtual photon ine+e− →
γ∗ → hAhB always has spin±1 along the beam axis at
high energies. Angular momentum conservation implies
that the virtual photon can “decay” with one of only two
possible angular distributions in the center of momentum
frame: (1 + cos2 θ) for |λA − λB | = 1 and sin2 θ for
|λA − λB | = 0 whereλA and λB are the helicities of
the outgoing hadrons. Hadronic helicity conservation, as
required by QCD, greatly restricts the possibilities. It im-
plies thatλA +λB = 0. Consequently, angular momentum
conservation requires|λA| = |λB | = l/2 for baryons, and
|λA| = |λB | = 0 for mesons; thus the angular distribu-
tions for any sets of hadron pairs are now completely deter-
mined at leading twist: dσ

d cos θ (e+e− = BB) ∝ 1 + cos2 θ

and dσ
d cos θ (e+e− = MM) ∝ sin2 θ. Verifying these an-

gular distributions for vector mesons and other higher spin
mesons and baryons would verify the vector nature of the
gluon in QCD and the validity of PQCD applications to ex-
clusive reactions. In the case of vector pseudoscalar chan-
nels, parity conservation requires that the vector meson has
Jz = ±1. Thus the vector-pseudoscalar meson pairs must

be suppressed in the leading twist limit;e.g.

σe+e−→ρπ(s)
σe+e−→π+π−(s)

∝ Λ2
QCD

s
. (6)

Surprisingly, this critical PQCD prediction has not been
tested. If it fails, the perturbative QCD approach to hard ex-
clusive hadron processes including the QCD factorization
predictions for exclusiveB decays would be in question.

In the case of electron-proton scattering, hadron helicity
conservation states that the proton helicity-conserving form
factor ( which is proportional toGM ) dominates over the
proton helicity-flip amplitude (proportional toGE/

√
τ ) at

large momentum transfer. Hereτ = Q2/4M2, Q2 = −q2.
Thus HHC predictsGE(Q2)/

√
τGM (Q2) → 0 at large

Q2. The new data from Jefferson Laboratory [50] which
shows a decrease in the ratioGE(Q2)/GM (Q2) is not it-
self in disagreement with the HHC prediction.

The leading-twist QCD motivated formQ4GM (Q2) '
const/Q4 ln Q2Λ2 provides a good guide to both the time-
like and spacelike proton form factor data atQ2 > 5 GeV2

[51]. However, the Jefferson Laboratory data [50] appears
to suggestQF2(Q2)/F1(Q2) ' const, for the ratio of
the proton’s Pauli and Dirac form factors in contrast to
the nominal expectationQ2F2(Q2)/F1(Q2) ' const ex-
pected (modulo logarithms) from PQCD. It should however
be emphasized that a PQCD-motivated fit is not precluded.
For example, the form

F2(Q2)
F1(Q2)

=
µA

1 + (Q2/c) lnb(1 + Q2/a)
(7)

with µA = 1.79, a = 4m2
π = 0.073 GeV2, b = −0.5922,

c = 0.9599 GeV2 also fits the data well [52].
It is usually assumed that a heavy quarkonium state such

as theJ/ψ always decays to light hadrons via the annihila-
tion of its heavy quark constituents to gluons. However, as
Karliner and I [24] have shown, the transitionJ/ψ → ρπ
can also occur by the rearrangement of thecc from theJ/ψ
into the | qqcc〉 intrinsic charm Fock state of theρ or π.
On the other hand, the overlap rearrangement integral in
the decayψ′ → ρπ will be suppressed since the intrinsic
charm Fock state radial wavefunction of the light hadrons
will evidently not have nodes in its radial wavefunction.
This observation provides a natural explanation of the long-
standing puzzle why theJ/ψ decays prominently to two-
body pseudoscalar-vector final states in conflict with HHC,
whereas theψ′ does not. If the intrinsic charm explanation
is correct, then this mechanism will complicate the analy-
sis of virtually all heavy hadron decays such asJ/ψ → pp.
In addition, the existence of intrinsic charm Fock states,
even at a few percent level, provides new, competitive de-
cay mechanisms forB decays which are nominally CKM-
suppressed [53]. For example, the weak decays of the B-
meson to two-body exclusive states consisting of strange
plus light hadrons, such asB → πK, are expected to
be dominated by penguin contributions since the tree-level
b → suu decay is CKM suppressed. However, higher Fock



states in the B wave function containing charm quark pairs
can mediate the decay via a CKM-favoredb → scc tree-
level transition. The presence of intrinsic charm in theb
meson can be checked by the observation of final states
containing three charmed quarks, such asB → J/ψDπ
[54].

TIMELIKE VIRTUAL COMPTON
SCATTERING

The Compton amplitudeγπ → γπ is the simplest
two-body scattering amplitude in QCD after lepton-meson
scattering. Despite its fundamental importance, the me-
son Compton amplitude has never been measured directly.
However, one can make interesting measurements of the
timelike Compton amplitude usinge+e− → γ∗ → HHγ.
See Fig. 4. More generally, one can use electron-positron
annihilation to measure the timelike Compton amplitude
for virtually any hadron:γ∗ → HHγ whereH can be
any neutral or charged meson or baryon. The interference
with the radiative return amplitudee+e− → e+e−γ →
γ∗γ → HHγ, which is proportional to the timelike
form factor FH(q2), can be measured throughH ↔ H
charge and single-spin asymmetries. One can also mea-
sure timelike transition Compton amplitudesγ∗ → HH

∗

and timelike form factors. In principle, the spacelike and
timelike amplitudes are related by crossing and disper-
sion theory to generalized parton distributions; in prac-
tice, the timelike analysis involves even more complexities
than virtual Compton scattering. One of the most inter-
esting measures is the two-hadron distribution amplitude
φHH(x,M2, Q̃2) which measures the transition between
a qq state and theHH hadron pair with invariant mass
M2 = (pH + pH)2 [55, 56]. One can factorize this dis-
tribution amplitude from the timelike virtual Compton am-
plitude when the quark propagator has high virtualityQ̃2.
It obeys the same operator product expansion and the same
type of logarithmicQ̃2 evolution as the pion distribution
amplitude.

Theγ∗γ → π+π− hadron pair process is related to vir-
tual Compton scattering on a pion target by crossing. The
leading-twist amplitude is also sensitive to the1/x−1/(1−
x) moment of the two-pion distribution amplitude coupled
to two valence quarks.

The virtual Compton scattering amplitudesT (γ∗ →
HHγ) have extraordinary sensitivity to fundamental fea-
tures of hadron structure [57, 58, 59, 60, 61, 62, 63, 64].
Even though the final-state photon is on-shell, the deeply
virtual Compton process probes the elementary quark
structure of the hadron near the light cone as an effective
local current. In the spacelike case, the scaling, Regge
behavior, and phase structure of deeply virtual Compton
scatteringγ∗p → γp have been discussed in the context
of the covariant parton model in Ref. [65]. The inter-
ference of Compton and bremsstrahlung amplitudes gives
an electron-positron asymmetry in thee±p → e±γp cross
section which is proportional to the real part of the Comp-
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Figure 4: Process for measuring the timelike Compton am-
plitudeγ∗ → HHγ.

ton amplitude [65].
To leading order in1/Q, the deeply virtual Compton

scattering amplitudeγ∗p → γp factorizes as the convo-
lution in x of the amplitudetµν for hard Compton scat-
tering on a quark line with the generalized Compton form
factors H(x, t, ζ), E(x, t, ζ), H̃(x, t, ζ), and Ẽ(x, t, ζ)
of the target proton. Herex is the light-cone momen-
tum fraction of the struck quark, andζ = Q2/2P · q
plays the role of the Bjorken variable. The form factor
H(x, t, ζ) describes the proton response when the helic-
ity of the proton is unchanged, andE(x, t, ζ) is for the
case when the proton helicity is flipped. Two additional
functionsH̃(x, t, ζ), andẼ(x, t, ζ) appear, corresponding
to the dependence of the Compton amplitude on quark he-
licity. These “skewed” parton distributions involve non-
zero momentum transfer, so that a probabilistic interpreta-
tion is not possible. However, there are remarkable sum
rules connecting the chiral-conserving and chiral-flip form
factors H(x, t, ζ) and E(x, t, ζ) with the corresponding
spin-conserving and spin-flip electromagnetic form factors
F1(t) andF2(t) and gravitational form factorsAq(t) and
Bq(t) for each quark and anti-quark constituent [57]. Thus
deeply virtual Compton scattering is related to the quark
contribution to the form factors of a proton scattering in a
gravitational field. All of these form factors can be mea-
sured for timelike photons inγ∗ → HHγ for protons as
well as other hadrons.

CHARGE ASYMMETRIES IN TIMELIKE
EXCLUSIVE REACTIONS

The discrepancy between the Rosenbluth and polariza-
tion transfer methods determinations of the proton form
factors has led to a focus on the role of two-photon ex-
change amplitudes inep → ep scattering. In the time-
like case, the interference between the one- and two-photon
exchange amplitudes ine+e− → HH leads to a charge
asymmetry at orderα a difference in the angular distribu-
tion of H vs. H relative to the incident electron direction.
See Fig. 5. This angular asymmetry thus measures the
relative phase of theγ∗γ∗ → HH timelike Compton am-
plitude and the timelike form factorγ∗ → HH. One also
has to take into account the contribution to the asymmetry



due to the interference of amplitudes from soft photon radi-
ation from the lepton and hadron system. One can use the
charge asymmetry ine+e− → µ+µ− as the standard.
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Figure 5: Interference of one and two-photon exchange am-
plitudes fore+e− → HH

The theory of the two-photon exchange amplitude in-
volves all of the complexities of the doubly-virtual timelike
Compton amplitudeγ∗γ∗ → HH. At high virtualities one
expects a quark handbag approximation [37] to be valid.
The hadron asymmetry will then mimic the corresponding
e+e− → µ+µ− asymmetry weighted by the sum of quark
charge squares and the〈 1

x 〉 j = 0 moment characteristic of
a j = 0 fixed pole in Regge theory [66]. A careful mea-
surement of the charge asymmetry in charged meson and
baryon pair production could illuminate the role of two-
photon exchange in exclusive amplitudes.

THE PHOTON-TO-PION TRANSITION
FORM FACTOR AND THE PION

DISTRIBUTION AMPLITUDE

The simplest and perhaps most elegant illustration of an
exclusive reaction in QCD is the evaluation of the photon-
to-pion transition form factorFγ→π(Q2) which is mea-
surable in single-tagged two-photonee → eeπ0 reac-
tions. The form factor is defined via the invariant ampli-
tude Γµ = −ie2Fπγ(Q2)εµνρσpπ

ν ερqσ . As in inclusive
reactions, one must specify a factorization scheme which
divides the integration regions of the loop integrals into
hard and soft momenta, compared to the resolution scale
Q̃. At leading twist, the transition form factor then factor-
izes as a convolution of theγ∗γ → qq amplitude (where
the quarks are collinear with the final state pion) with the

valence light-cone wavefunction of the pion:

FγM (Q2) =
4√
3

∫ 1

0

dxφM (x, Q̃)TH
γ→M (x,Q2). (8)

The hard scattering amplitude forγγ∗ → qq is
TH

γM (x,Q2) = [(1− x)Q2]−1 (1 +O(αs)) . The leading
QCD corrections have been computed by Braaten [67]. The
evaluation of the next-to-leading corrections in the physical
αV scheme is given in Ref. [68]. For the asymptotic distri-
bution amplitudeφasympt

π (x) =
√

3fπx(1−x) one predicts

Q2Fγπ(Q2) = 2fπ

(
1− 5

3
αV (Q∗)

π

)
whereQ∗ = e−3/2Q

is the BLM scale for the pion form factor. The PQCD pre-
dictions have been tested in measurements ofeγ → eπ0

by the CLEO collaboration [69]. The flat scaling of the
Q2Fγπ(Q2) data fromQ2 = 2 to Q2 = 8 GeV2 provides
an important confirmation of the applicability of leading
twist QCD to this process. The magnitude ofQ2Fγπ(Q2)
is remarkably consistent with the predicted form, assum-
ing the asymptotic distribution amplitude and including the
LO QCD radiative correction withαV (e−3/2Q)/π ' 0.12.
One could allow for some broadening of the distribution
amplitude with a corresponding increase in the value of
αV at small scales. Radyushkin [70], Ong [71] and Kroll
[72] have also noted that the scaling and normalization
of the photon-to-pion transition form factor tends to fa-
vor the asymptotic form for the pion distribution amplitude
and rules out broader distributions such as the two-humped
form suggested by QCD sum rules [73].

The photon-to-pion transition form factorFγ→π(q2) is
the simplest hadronic matrix element in QCD and also one
the most fundamental. As noted above, the matrix ele-
ment

〈
π0|jµ(0)|γ〉

transition form factor for spacelike mo-
menta has been measured in the spacelike domainq2 < 0
by scattering electrons on photons:eγ → eπ0. However,
Fγ→π(q2) can also be measured in the timelike domain
q2 = s > 0 usinge+e−γ∗ → π0γ. See Fig. 6. Since the
pion has positiveC, there is no background from radiative
return. Predictions for timelikeq2 van be made by analytic
continuation. It would be very valuable to test the PQCD
predictions in the timelike domain, including the effect of
vector mesons in the approach to scaling. One also can test
predictions for theγ → H0 form factor for anyC = +
meson or hadronic system. A comprehensive discussion of
the transition form factors for spacelike and timelikeq2 is
given in Ref. [74].

EXCLUSIVE TWO-PHOTON
ANNIHILATION INTO HADRON PAIRS

Two-photon reactions,γγ → HH at large s =(k1+k2)2

and fixed θcm, provide a particularly important labora-
tory for testing QCD since these cross-channel Compton
processes are the simplest calculable large-angle exclusive
hadronic scattering reactions involving two hadrons. See
Fig. 7. The helicity structure, and often even the absolute
normalization can be computed for the leading power-law
contribution for each two-photon channel [75].



e+

e–
π°,η,ηc

γ*

γ

11-2003
8680A3

Figure 6: Process for measuring the timelike photon to me-
son transition amplitudeγ∗ → M0γ.

In the case of meson pairs, dimensional counting pre-
dicts that for larges, s4dσ/dt(γγ → MM scales at fixed
t/s or θc.m. up to factors ofln s/Λ2.
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Figure 7: Illustration of two virtual photon annihilation in
lepton-lepton collisions. The final state can be singleC =
+ hadrons, hadron pairs (double virtual Compton), or more
generalC = + systems.

The angular dependence of theγγ → HH ampli-
tudes can be used to determine the shape of the process-
independent distribution amplitudes,φH(x,Q). An impor-
tant feature of theγγ → MM amplitude for meson pairs
is that the contributions of Landshoff pitch singularities are
power-law suppressed at the Born level—even before tak-
ing into account Sudakov form factor suppression. There
are also no anomalous contributions from thex → 1 end-
point integration region. Thus, as in the calculation of the
meson form factors, each fixed-angle helicity amplitude
can be written to leading order in1/Q in the factorized
form [Q2 = p2

T = tu/s; Q̃x = min(xQ, (l − x)Q)]:

Mγγ→MM =
∫ 1

0

dx

∫ 1

0

dyφM (y, Q̃y) (9)

× TH(x, y, s, θc.m.φM (x, Q̃x),

whereTH is the hard-scattering amplitudeγγ → (qq)(qq)
for the production of the valence quarks collinear with each
meson, andφM (x, Q̃) is the amplitude for finding the va-

lenceq andq with light-cone fractions of the meson’s mo-
mentum, integrated over transverse momentak⊥ < Q̃. The
contribution of non-valence Fock states are power-law sup-
pressed. Furthermore, the helicity-selection rules [23] of
perturbative QCD predict that vector mesons are produced
with opposite helicities to leading order in1/Q and all or-
ders inαs. The dependence inx andy of several terms
in Tλ,λ′ is quite similar to that appearing in the meson’s
electromagnetic form factor. Thus much of the dependence
onφM (x,Q) can be eliminated by expressing it in terms of
the meson form factor. In fact, the ratio of theγγ → π+π−

ande+e− → µ+µ− amplitudes at larges and fixedθCM

is nearly insensitive to the running coupling and the shape
of the pion distribution amplitude:

dσ
dt (γγ → π+π−)
dσ
dt (γγ → µ+µ−)

∼ 4|Fπ(s)|2
1− cos2 θc.m.

. (10)

The comparison of the PQCD prediction for the sum
of π+π− plus K+K− channels with CLEO data [76] is
shown in Fig. 8. The CLEO data for charged pion and
kaon pairs show a clear transition to the scaling and angular
distribution predicted by PQCD [75] forW = √

sγγ > 2
GeV.

It is particularly important to measure the magnitude and
angular dependence of the two-photon production of neu-
tral pions andρ+ρ− cross sections in view of the strong
sensitivity of these channels to the shape of meson distri-
bution amplitudes.

Perturbative QCD predicts a strong suppression of the
leading-twist cross section forγγ → π0π0 relative to the
cross section forγγ → π+π−. This suppression is due
to the negative interference between the amplitudes involv-
ing two-quark currents with the single quark current ampli-
tudes. This cancellation does not appear in models based
on the handbag approximation [37] in which the only dia-
gram which appears is a factorized on-shellγγ → qq Born
amplitude. Thus the measurements of this ratio is crucial
for testing the perturbative QCD factorization of exclusive
amplitudes. A similar test can be carried out by measuring
the neutral to charged pion pair ratio ine+e− → ππγ.

QCD also predicts that the production cross section for
chargedρ-pairs (with any helicity) is much larger that
for that of neutralρ pairs, particularly at largeθc.m. an-
gles. Similar predictions are possible for other helicity-zero
mesons.

Baryon pair production in two-photon annihilation is
also an important testing ground for QCD. The only
available data is the cross channel reaction,γp → γp.
The calculation ofTH for Compton scattering requires
the evaluation of 368 helicity-conserving tree diagrams
which contribute toγ(qqq) → γ′(qqq)′ at the Born level
and a careful integration over singular intermediate en-
ergy denominators [77, 78, 59]. Brooks and Dixon [79]
have recently completed a recalculation of the Compton
process at leading order in PQCD, extending and cor-
recting earlier work. It is useful to consider the ra-
tio s6dσ/dt(γp → γp)/t4F 2

1 (ep → ep) whereF1(t) is the
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Figure 8: Comparison of the sum ofγγ → π+π− and
γγ → K+K− meson pair production cross sections with
the scaling and angular distribution of the perturbative
QCD prediction [75]. The data are from the CLEO col-
laboration [76].

elastic helicity-conserving Dirac form factor since the
power-law fall-off, the normalization of the valence wave-
functions, and much of the uncertainty from the scale of
the QCD coupling cancel. The scaling and angular depen-
dence of this ratio is sensitive to the shape of the proton dis-
tribution amplitudes and appears to be consistent with the
distribution amplitudes motivated by QCD sum rules. The
normalization of the ratio at leading order is not predicted
correctly by perturbative QCD. However, it is conceivable
that the QCD loop corrections to the hard scattering ampli-
tude are significantly larger than those of the elastic form
factors in view of the much greater number of Feynman di-
agrams contributing to the Compton amplitude relative to
the proton form factor. The perturbative QCD predictions
for the phase of the Compton amplitude phase can be tested
in virtual Compton scattering by interference with Bethe-
Heitler processes [80].

Berger and Schweiger [81] have recently studied baryon
pair production in two-photon collisions using perturba-
tive QCD factorization treating baryons as quark-diquark
systems. Their approach give a consistent description of
the cross sections for all octet baryon channels, including
most recent large-momentum-transfer data from LEP for
theγγ → ΛΛ. These prediction need to be compared with
the standard QCD analysis based on the three quark struc-
ture of the baryons.

A debate has continued [82, 83, 84, 85] on whether pro-
cesses such as the pion and proton form factors and elas-
tic Compton scatteringγp → γp might be dominated by
higher-twist mechanisms until very large momentum trans-
fer. If one assumes that the light-cone wavefunction of

the pion has the formψsoft(x, k⊥) = A exp(−b
k2
⊥

x(1−x) ),
then the Feynman endpoint contribution to the overlap in-
tegral at smallk⊥ andx ' 1 will dominate the form fac-
tor compared to the hard-scattering contribution until very
largeQ2. However, this ansatz forψsoft(x, k⊥) has no sup-
pression atk⊥ = 0 for any x; i.e., the wavefunction in
the hadron rest frame does not fall-off at all fork⊥ = 0
andkz → −∞. Thus such wavefunctions do not repre-
sent well soft QCD contributions. Endpoint contributions

are also suppressed by the QCD Sudakov form factor, re-
flecting the fact that a near-on-shell quark must radiate if it
absorbs large momentum. One can show [38] that the lead-
ing power dependence of the two-particle light-cone Fock
wavefunction in the endpoint region is1− x, giving a me-
son structure function which falls as(1 − x)2 and thus by
duality a non-leading contribution to the meson form factor
F (Q2) ∝ 1/Q3. Thus the dominant contribution to meson
form factors comes from the hard-scattering regime.

THE DOUBLY-VIRTUAL TIMELIKE
COMPTON AMPLITUDE

One can measure the virtual Compton amplitude
T (γ∗1γ∗2 → HH) as a function of spacelikeq2

1 , q2
2 and

s ≥ 4m2
H in the two-photon reaction:

e+e− → e+e−γ∗1γ∗2 → e+e−HH. (11)

This should be a possible measurement at high luminosity
e+e− colliders, particularly for meson pairs.

Assuming that quark Compton scattering is dominant
(and thej = 0 mechanism is relevant), we can predict the
ratio of the leading power-law contribution to the virtual
Compton amplitude at largeq2

1 andq2
2 to the corresponding

lepton pair production amplitude

Rpp
2γ(q2

1 , q2
2 , s) =

T (γ∗1γ∗2 → HH)
T (γ∗1γ∗2 → µ−µ+)

= (e2
u + e2

d)〈
1
xq
〉FH(s) . (12)

The C = + form factor Fp(s) should be similar to the
proton’s timelike Dirac form factorF1(s).

Thus one can empirically check the theoretical assump-
tions underlying the two-photon exchange amplitude which
we need to describe the radiative correction to elasticep
scattering. It is also an important constraint on the time-
like s ≥ 4M2

H input to the two-photon exchange amplitude
which interferes with the one-photon amplitude to give the
charge asymmetry ine+e− → HH.

PERTURBATIVE QCD CALCULATION OF
BARYON FORM FACTORS

The baryon form factor at large momentum transfer pro-
vides an important example of the application of pertur-
bative QCD to exclusive processes. Away from possible
special points in thexi integrations (which are suppressed
by Sudakov form factors) baryon form factors can be writ-
ten to leading order in1/Q2 as a convolution of a con-
nected hard-scattering amplitudeTH convoluted with the
baryon distribution amplitudes. TheQ2-evolution of the
baryon distribution amplitude can be derived from the op-
erator product expansion of three quark fields or from the
gluon exchange kernel. Taking into account the evolution
of the baryon distribution amplitude, the nucleon magnetic



form factors at largeQ2, has the form [38, 86, 23]

GM (Q2) → α2
s(Q2)
Q4

∑
n,m

bnm

(
log

Q2

Λ2

)γB
n +γB

n

×
[
1 +O

(
αs(Q2),

m2

Q2

)]
. (13)

where theγB
n are computable anomalous dimensions [87]

of the baryon three-quark wave function at short distance,
and thebmn are determined from the value of the distribu-
tion amplitudeφB(x,Q2

0) at a given pointQ2
0 and the nor-

malization ofTH . Asymptotically, the dominant term has
the minimum anomalous dimension. The contribution from
the endpoint regions of integration,x ∼ 1 andy ∼ 1, at fi-
nite k⊥ is Sudakov suppressed [30, 86, 38]; however, the
endpoint region may play a significant role in phenomenol-
ogy.

The proton form factor appears to scale atQ2 >
5 GeV2 according to the PQCD predictions. Nucleon
form factors are approximately described phenomeno-
logically by the well-known dipole formGM (Q2) '
1/(1 + Q2/0.71 GeV2)2 which behaves asymptotically as
GM (Q2) ' (1/Q4)(1− 1.42 GeV2/Q2 + · · ·) . This sug-
gests that the corrections to leading twist in the proton form
factor and similar exclusive processes involving protons
become important in the rangeQ2 < 1.4 GeV2.

Measurements for the timelike proton form factor using
pp → e+e− annihilation are reported in Ref. [7]. The re-
sults are consistent with perturbative QCD scaling. The
ratio of the timelike to spacelike form factor depends in
detail on the analytic continuation of the QCD coupling,
anomalous dimensions [68].

The shape of the distribution amplitude controls the nor-
malization of the leading-twist prediction for the proton
form factor. If one assumes that the proton distribution am-
plitude has the asymptotic form:φN = Cx1x2x3, then the
convolution with the leading order form forTH gives zero!
If one takes a non-relativistic form peaked atxi = 1/3, the
sign is negative, requiring a crossing point zero in the form
factor at some finiteQ2. The broad asymmetric distribution
amplitudes advocated by Chernyak and Zhitnitsky [88, 89]
gives a more satisfactory result. If one assumes a constant
value ofαs = 0.3, andfN = 5.3×10−3GeV2, the leading
order prediction is below the data by a factor of≈ 3. How-
ever, since the form factor is proportional toα2

sf
2
N , one

can obtain agreement with experiment by a simple renor-
malization of the parameters. For example, if one uses the
central value [90]fN = 8 × 10−3GeV2, then good agree-
ment is obtained [91]. The normalization of the proton’s
distribution amplitude is also important for determining the
proton’s lifetime [92, 93].

A useful technique for obtaining the solutions to the
baryon evolution equations is to construct completely an-
tisymmetric representations as a polynomial orthonormal
basis for the distribution amplitude of multi-quark bound
states. In this way one obtain a distinctive classification of

nucleon(N) and Delta(∆) wave functions and the cor-
respondingQ2 dependence which discriminatesN and∆
form factors. More recently Braun and collaborators have
shown how one can use conformal symmetry to classify the
eigensolutions of the baryon distribution amplitude [46].
They identify a new ‘hidden’ quantum number which dis-
tinguishes components in theλ = 3/2 distribution ampli-
tudes with different scale dependence. They are able to find
analytic solution of the evolution equation forλ = 3/2 and
λ = 1/2 baryons where the two lowest anomalous dimen-
sions for theλ = 1/2 operators (one for each parity) are
separated from the rest of the spectrum by a finite ‘mass
gap’. These special states can be interpreted as baryons
with scalar diquarks. Their results may support Carlson’s
solution [94] to the puzzle that the proton to∆ form factor
falls faster [21] than otherp → N∗ amplitudes if the∆
distribution amplitude has a symmetricx1x2x3 form.

SINGLE-SPIN POLARIZATION EFFECTS
AND THE DETERMINATION OF

TIMELIKE PROTON FORM FACTORS

Although the spacelike form factors of a stable hadron
are real, the timelike form factors have a phase structure re-
flecting the final-state interactions of the outgoing hadrons.
In general, form factors are analytic functionsFi(q2) with
a discontinuity for timelike momentum above the physical
thresholdq2 > 4M2. The analytic structure and phases of
the form factors in the timelike regime are thus connected
by dispersion relations to the spacelike regime [95, 96, 97].
The analytic form and phases of the timelike amplitudes
also reflects resonances in the unphysical region0 < q2 <
4M2 below the physical threshold [95] in theJPC = 1−−

channel, including gluonium states and di-baryon struc-
tures.

Any model which fits the spacelike form factor data with
an analytic function can be continued to the timelike re-
gion. Spacelike form factors are usually written in terms
of Q2 = −q2. The correct relation for analytic con-
tinuation can be obtained by examining denominators in
loop calculations in perturbation theory. The connection is
Q2 → q2e−iπ, or

ln Q2 = ln(−q2) → ln q2 − iπ . (14)

If the spacelikeF2/F1 is fit by a rational function ofQ2,
then the form factors will be relatively real in the timelike
region also. However, one in general gets a complex result
from the continuation.

At very large center-of-mass energies, perturbative
QCD factorization predicts diminished final interactions in
e+e− → HH, since the hadrons are initially produced
with small color dipole moments. This principle of QCD
color transparency [98] is also an essential feature [99] of
hard exclusiveB decays [100, 101], and it needs to be
tested experimentally.

There have been a number of explanations and theoreti-
cally motivated fits of the new Jefferson laboratoryF2/F1



data. Belitsky, Ji, and Yuan [102] have shown that factors
of log(Q2) arise from a careful QCD analysis of the form
factors. The perturbative QCD formQ2F2/F1 ∼ log2 Q2,
which has logarithmic factors multiplying the nominal
power-law behavior, fits the large-Q2 spacelike data well.
Others [103, 104] claim to find mechanisms that modify the
traditionally expected power-law behavior with fractional
powers ofQ2, and they also give fits which are in accord
with the data. Asymptotic behaviors of the ratioF2/F1 for
general light-front wave functions are investigated in [52].
Each of the model forms predicts a specific fall-off and
phase structure of the form factors froms ↔ t crossing
to the timelike domain. A fit with the dipole polynomial or
nominal dimensional counting rule behavior would predict
no phases in the timelike regime.

TIMELIKE MEASURES

The center-of-mass angular distribution provides the
analog of the Rosenbluth method for measuring the magni-
tudes of various helicity amplitudes. The differential cross
section fore−e+ → BB whenB is a spin-1/2 baryon is
given in the center-of-mass frame by

dσ

dΩ
=

α2β

4q2
D , (15)

whereβ =
√

1− 4m2
B/q2 andD is given by

D = |GM |2
(
1 + cos2 θ

)
+

1
τ
|GE |2 sin2 θ ; (16)

we have used the Sachs form factors [26]

GM = F1 + F2 ,

GE = F1 + τF2 , (17)

with τ ≡ q2/4m2
B > 1.

As noted by Dubnickova, Dubnicka, and Rekalo, and by
Rock [105], the existence of theT−odd single-spin asym-
metry normal to the scattering plane in baryon pair produc-
tion e−e+ → BB requires a nonzero phase difference be-
tween theGE andGM form factors. The phase of the ratio
of form factorsGE/GM of spin-1/2 baryons in the time-
like region can thus be determined from measurements of
the polarization of one of the produced baryons. In a recent
paper, Carlson, Hiller, and Hwang and I have shown that
measurements of the proton polarization ine+e− → pp
strongly discriminate between the analytic forms of mod-
els which have been suggested to fit the protonGE/GM

data in the spacelike region. Polarization observables can
be used to completely pin down the relative phases of the
timelike form factors. The complex phases of the form fac-
tors in the timelike region make it possible for a single out-
going baryon to be polarized ine−e+ → BB, even without
polarization in the initial state.

There are three polarization observables, corresponding
to polarizations in three directions denotedz, x, andy, re-
spectively. Longitudinal polarization (z) refers to the polar-
ization state parallel to the direction of the outgoing baryon.

Sideways (x) means perpendicular to the direction of the
outgoing baryon but in the scattering plane. Normal (y)
means normal to the scattering plane, in the direction of
~k×~p where~k is the electron momentum and~p is the baryon
momentum, withx, y, andz forming a right-handed coor-
dinate system.

The polarizationPy does not require polarization in the
initial state and is [105]

Py =
sin 2θ ImG∗EGM

D
√

τ
=

(τ − 1) sin 2θ ImF ∗2 F1

D
√

τ
.

(18)
The other two polarizations require initial state polariza-
tion. If the electron has polarizationPe then [105]

Px = −Pe
2 sin θ ReG∗EGM

D
√

τ
, (19)

and

Pz = Pe
2 cos θ|GM |2

D
. (20)

The sign ofPz can be determined from physical princi-
ples. Angular momentum conservation and helicity conser-
vation for the electron and positron determine thatPz/Pe

in the forward direction must be+1, verifying the sign of
the above formula.

The polarization measurement ine+e− → pp will re-
quire a polarimeter for the outgoing protons, perhaps based
on a shell of a material such as carbon which has a good an-
alyzing power. However, timelike baryon-antibaryon pro-
duction can occur for any pair that is energetically allowed.
Baryons such as theΣ andΛ which decay weakly are easier
to study, since their polarization is self-analyzing.

The polarizationPy is a manifestation of the T-odd ob-
servable~k × ~p · ~Sp, with ~Sp the proton polarization. This
observable is zero in the spacelike case, but need not be
zero in the timelike case because final state interactions can
give the form factors a relative phase.

One can also predict [106] the single-spin asymmetryPy

for QED processes such ase+e− → τ+τ− which is sensi-
tive to the imaginary part of the timelike Schwinger correc-
tion to the lepton anomalous moment and Pauli form factor.

Predictions for polarizationPy in various models are
shown in Fig. 9. The predicted polarizations are signifi-
cant and are distinct from a purely polynomial fit to the
spacelike data, which gives zeroPy.

The predictions forPx andPz are shown in Figs. 10
and 11. Both figures are for scattering angle45◦ andPe =
1. The phase difference(δE − δM ) betweenGE andGM

is directly given by thePy/Px ratio,

Py

Px
=

cos θ

Pe

Im G∗MGE

Re G∗MGE
=

cos θ

Pe
tan(δE − δM ) . (21)

The magnetic form factor in the IJL model [107] is very
small in the 10 to 20 GeV2 region (taking the dipole form
for comparison) and has a zero in the complex plane near
q2 = 15 GeV2. This accounts for much of the different
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to those in Fig. 9.

behavior of the IJL model seen in the polarization plots.
The IJL ratio forGE/GM is large compared to the other
three models, and this strongly affects the angular behavior
of the differential cross section as shown in Fig. 12 forq2 =
10 GeV2.

INCLUSIVE SINGLE-SPIN
ASYMMETRIES

Spin correlations provide a remarkably sensitive win-
dow to hadronic structure and basic mechanisms in QCD.
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Among the most interesting polarization effects are single-
spin azimuthal asymmetries (SSAs) in semi-inclusive deep
inelastic scattering, representing the correlation of the spin
of the proton target and the virtual photon to hadron pro-
duction plane:~Sp · ~q × ~pH [108]. Such asymmetries are
time-reversal odd, but they can arise in QCD through phase
differences in different spin amplitudes.

The most common explanation of the pion electropro-
duction asymmetries in semi-inclusive deep inelastic scat-
tering is that they are related to the transversity distribu-
tion of the quarks in the hadronh1 [109, 110, 111] convo-
luted with the transverse momentum dependent fragmen-
tation functionH⊥

1 , the Collins function, which gives the
distribution for a transversely polarized quark to fragment
into an unpolarized hadron with non-zero transverse mo-



mentum [112, 113, 114, 115, 116].
The QCD final-state interactions (gluon exchange) be-

tween the struck quark and the proton spectators in semi-
inclusive deep inelastic lepton scattering can produce
Sivers-type single-spin asymmetries which survive in the
Bjorken limit [117, 118, 119]. The fragmentation of the
quark into hadrons is not necessary, and one has a cor-
relation with the production plane of the quark jet itself
~Sp ·~q×~pq. The required matrix element measures the spin-
orbit correlation~S ·~L within the target hadron’s wave func-
tion, the same matrix element which produces the anoma-
lous magnetic moment of the proton, the Pauli form factor,
and the generalized parton distributionE which is mea-
sured in deeply virtual Compton scattering. Since the same
matrix element controls the Pauli form factor, the contri-
bution of each quark current to the SSA is proportional
to the contributionκq/p of that quark to the proton tar-
get’s anomalous magnetic momentκp =

∑
q eqκq/p [117].

Avakian [108] has shown that the data from HERMES and
Jefferson laboratory could be accounted for by the above
analysis. However, more analyses and measurements, es-
pecially azimuthal angular correlations, will be needed to
unambiguously separate the transversity and Sivers effect
mechanisms.

Physically, the final-state interaction phase arises as
the infrared-finite difference of QCD Coulomb phases for
hadron wave functions with differing orbital angular mo-
mentum. The final-state interaction effects can be iden-
tified with the gauge link which is present in the gauge-
invariant definition of parton distributions [118]. When the
light-cone gauge is chosen, a transverse gauge link is re-
quired. Thus in any gauge the parton amplitudes need to
be augmented by an additional eikonal factor incorporating
the final-state interaction and its phase [119, 120]. The net
effect is that it is possible to define transverse momentum
dependent parton distribution functions which contain the
effect of the QCD final-state interactions. The same final-
state interactions are responsible for the diffractive compo-
nent to deep inelastic scattering, and that they play a critical
role in nuclear shadowing phenomena [121].

Measurements from Jefferson Lab [122] also show sig-
nificant beam single spin asymmetries in deep inelastic
scattering. Afanasev and Carlson [123] have recently
shown that this asymmetry is due to the interference of lon-
gitudinal and transverse photoabsorption amplitudes which
have different phases induced by the final-state interaction
between the struck quark and the target spectators just as in
the calculations of Ref. [117]. Their results are consistent
with the experimentally observed magnitude of this effect.
Thus similar FSI mechanisms involving quark orbital an-
gular momentum appear to be responsible for both target
and beam single-spin asymmetries.

A related analysis shows that the initial-state interac-
tions from gluon exchange between the incoming quark
and the target spectator system will lead to leading-twist
single-spin target spin asymmetries in the Drell-Yan pro-
cessH1H2 → `+`−X [124, 125]. Initial-state interac-

tions also lead to acos 2φ planar correlation in unpolarized
Drell-Yan reactions [126].
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Figure 13: Illustration of the final-state gluon exchange
which produces single-spin asymmetries in inclusive
electron-positron collisions.

We can also consider the SSA ofe+e− annihilation pro-
cesses for any inclusive process producing a polarizable
hadron, such ase+e− → γ∗ → πΛX. TheΛ reveals its
polarization via its decayΛ → pπ−. The final state gluon
exchange mechanism which causesT − odd spin correla-
tions in inclusivee+e− annihilation processes is illustrated
in Fig. 13. The spin of theΛ is normal to the decay plane.
Thus we can look for a SSA through the T-odd correlation
εµνρσSµ

Λpν
Λqρ

γ∗p
σ
π. This is related by crossing to SIDIS on

a Λ target. In addition one can consider single spin asym-
metries in inclusive reactions such ase+e− → γ∗ → πX
involving the incident polarized electron beam.

TESTING SOFT PION THEOREMS IN
THE TIMELIKE DOMAIN

In an important theoretical development, Pobylitsaet
al. [127] have shown how to compute transition form fac-
tors linking the proton to nucleon-pion states which have
minimal invariant massW . A new soft pion theorem for
high momentum transfers allows one to compute the three-
quark distribution amplitudes for the near threshold pion
states from a chiral rotation. The new soft pion results are
in a good agreement with the SLAC electroproduction data
for W 2 < 1.4 GeV2 and7 < Q2 < 30.7 GeV2.

The soft pion analysis can be applied to timelike reac-
tions such ase+e− → pnπ+ in the regime where the pion
is emitted at small relative rapidity with respect to one of



the outgoing nucleons. The fall-off of the cross sections
should be identical to that ofe+e− → pp.

NEAR-THRESHOLD COULOMB
CORRECTIONS

One of the most interesting effects due to QED radia-
tive corrections is the Coulomb correction to production of
charges pairs near threshold. The lowest order Coulomb
exchange is illustrated in Fig. 14. The original theory is
due to Sommerfeld. For example,

σ(e+e− → pp) = σ0(e+e− → pp)
X

1− exp−X
(22)

whereX=πα
β , with β2 = 1− 4M2

p

s . Thus the absolute square
of measured timelike form factors|Gp

M |2 and |Gp
E |2 are

corrected by the factor X
1−exp−X ∼ πα

β for small velocities
β ¿ πα. Thus the Coulomb correction becomes infinite
at zero relative velocityβ → 0! The Coulomb-corrected
cross section is finite at threshold, although the Born cross
section vanishes linearly withβ due to the vanishing phase
space. Observation of the angular distribution ofτ pair
production can provide a measurement of the magnetic mo-
ment of theτ [128].
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γ
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Figure 14: Final state Coulomb correction to charged
hadron pair production

The Coulomb enhancement ine+e− → H+H− is dual
to the presence of CoulombH+H− bound states just be-
low threshold. In the case ofe+e− → µ+µ− ande+e− →
τ+τ− there is an accumulation of Bohr levels from “true
muonium” (µ+µ−) and “true tauonium”(τ+τ−) just be-
low the continuum.

It would be interesting to observe these Coulomb bound-
state atoms. In the case of(pp), (π+π−), (D+D−), etc.,
theS − wave Coulomb states decay hadronically via an-
nihilation, but the nonzero orbital states could be quasi-
stable. It is possible that the threshold enhancements seen
in pp → e+e−, andJ/ψ → γpp is due to the Coulomb
enhancements.

QCD THRESHOLD EFFECTS

One can expect strong effects analogous to the QED
Coulomb effects whenever heavy quarks are produced at

low relative velocity with respect to each other or with
other quarks. The opening of the strangeness and charm
threshold in timelikee+e− andγγ reactions show sensitiv-
ity to this physics. Two distinctly different scales arise as
arguments of the QCD coupling near threshold: the rel-
ative momentum of the quarks governing the soft gluon
exchange responsible for the Coulomb potential, and a
large momentum scale approximately equal to twice the
quark mass for the corrections induced by transverse glu-
ons. One can use the angular Distribution of heavy quarks
to obtains a direct determination of the heavy quark po-
tential. Predictions for the angular distribution of massive
quarks and leptons are presented in Ref. [128], including
the fermionic part of the two-loop corrections to the elec-
tromagnetic form factors using with the BLM scale-fixing
prescription.

EFFECTIVE QCD CHARGES AND
CONFORMAL ASPECTS OF QCD

One can define the couplingαs of QCD from virtually
any physical observable [129, 130]. Such couplings, called
effective charges, are all-order resummations of perturba-
tion theory, so they correspond to the complete theory of
QCD; it is thus guaranteed that they are analytic and non-
singular. An important example is the effective chargeαR

where1 + αR(s)
π is defined from the ratio of the totale+e−

annihilation cross section to the leading order QCD pre-
diction. Unlike theMS coupling, a physical coupling is
analytic across quark flavor thresholds [131, 132]. Fur-
thermore, a physical coupling must stay finite in the in-
frared when the momentum scale goes to zero. In turn,
this means that integrals over the running coupling are
well defined for physical couplings. Once such a phys-
ical couplingαphys(k2) is chosen, other physical quanti-
ties can be expressed as expansions inαphys by eliminat-
ing the MS coupling which now becomes only an inter-
mediary [49]. In such a procedure there are in principle
no further renormalization scale (µ) or scheme ambigui-
ties. The physical couplings satisfy the standard renor-
malization group equation for its logarithmic derivative,
dαphys/d ln k2 = β̂phys[αphys(k2)], where the first two
terms in the perturbative expansion of the Gell-Mann Low
function β̂phys are scheme-independent at leading twist,
whereas the higher order terms have to be calculated for
each observable separately using perturbation theory.

The effective chargeατ (s) can be defined using the high
precision measurements of the hadronic decay channels of
theτ− → ντh−. Let Rτ be the ratio of the hadronic decay
rate to the leptonic one. ThenRτ ≡ R0

τ

[
1 + ατ

π

]
, where

R0
τ is the zeroth order QCD prediction, defines the effec-

tive chargeατ . The data forτ decays is well-understood
channel by channel, thus allowing the calculation of the
hadronic decay rate and the effective charge as a function
of the τ mass below the physical mass [133]. The vector
and axial-vector decay modes which can be studied sepa-
rately.



Using an analysis of theτ data from the OPAL collabora-
tion [134], we have found that the experimental value of the
couplingατ (s) = 0.621±0.008 ats = m2

τ corresponds to
a value ofαMS(M2

Z) = (0.117-0.122) ± 0.002, where the
range corresponds to three different perturbative methods
used in analyzing the data. This result is in good agreement
with the world averageαMS(M2

Z) = 0.117 ± 0.002. How-
ever, from the figure we also see that the effective charge
only reachesατ (s) ∼ 0.9±0.1 ats = 1GeV2, and it even
stays within the same range down tos ∼ 0.5GeV2.

The results forατ (s) are in good agreement with the
estimate of Mattingly and Stevenson [135] for the effec-
tive coupling αR(s) ∼ 0.85 for

√
s < 0.3GeV de-

termined frome+e− annihilation, especially if one takes
into account the perturbative commensurate scale relation,
ατ (m2

τ ′) = αR(s∗) where, for αR = 0.85, we have
s∗ ' 0.10 m2

τ ′ . This behavior is not consistent with the
coupling having a Landau pole, but rather shows that the
physical coupling is close to constant at low scales, sug-
gesting that physical QCD couplings are effectively con-
stant or “frozen” at low scales. It is important to carefully
extend the analysis ofαR using annihilation data of higher
precision and energy.

Figure 15 compares the experimentally determined ef-
fective chargeατ (s) with solutions to the evolution equa-
tion for ατ at two-, three-, and four-loop order normalized
atmτ . At three loops the behavior of the perturbative solu-
tion drastically changes, and instead of diverging, it freezes
to a valueατ ' 2 in the infrared. The reason for this fun-
damental change is, the negative sign ofβτ,2. This result is
not perturbatively stable since the evolution of the coupling
is governed by the highest order term. This is illustrated
by the widely different results obtained for three different
values of the unknown four loop termβτ,3 which are also
shown1 It is interesting to note that the central four-loop so-
lution is in good agreement with the data all the way down
to s ' 1 GeV2.

It has also been argued thatαR(s) freezes perturbatively
to all orders [137]. In fact since all observables are related
by commensurate scale relations, they all should have an
IR fixed point [138]. This result is also consistent with
Dyson-Schwinger equation studies of the physical gluon
propagator in Landau gauge [139, 140].

The near constancy of the effective QCD coupling at
small scales helps explain the empirical success of dimen-
sional counting rules for the power law fall-off of form fac-
tors and fixed angle scaling. One can calculate the hard
scattering amplitudeTH for such processes [38] without
scale ambiguity in terms of the effective chargeατ or αR

using commensurate scale relations [68, 141]. The effec-
tive coupling is evaluated in the regime where the cou-
pling is approximately constant, in contrast to the rapidly
varying behavior from powers ofαs predicted by pertur-
bation theory (the universal two-loop coupling). For ex-

1The values ofβτ,3 used are obtained from the estimate of the four

loop term in the perturbative series ofRτ , KMS
4 = 25± 50 [136].
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ample, the nucleon form factors are proportional at leading
order to two powers ofαs evaluated at low scales in ad-
dition to two powers of1/q2; The pion photoproduction
amplitude at fixed angles is proportional at leading order to
three powers of the QCD coupling. The essential variation
from leading-twist counting-rule behavior then only arises
from the anomalous dimensions of the hadron distribution
amplitudes. The magnitude of the effective charge [68]
αexclusive

s (Q2) = Fπ(Q2)/4πQ2F 2
γπ0(Q2) for exclusive

amplitudes is connected toατ by a commensurate scale re-
lation. Its magnitude:αexclusive

s (Q2) ∼ 0.8 at smallQ2, is
sufficiently large as to explain the observed magnitude of
exclusive amplitudes such as the pion form factor.

There are a number of useful phenomenological con-
sequences of near conformal behavior: the conformal ap-
proximation with zeroβ function can be used as template
for QCD analyses [142, 143] such as the form of the ex-
pansion polynomials for distribution amplitudes [46]. The
near-conformal behavior of QCD is also the basis for com-
mensurate scale relations [49] which relate observables to
each other without renormalization scale or scheme ambi-
guities [144]. In this method the effective charges of ob-
servables are related to each other in conformal gauge the-
ory; the effects of the nonzero QCDβ− function are then
taken into account using the BLM method [145] to set the
scales of the respective couplings. An important example
is the generalized Crewther relation [146] which allow one
to calculate unambiguously without renormalization scale
or scheme ambiguity the effective charges of the polarized
Bjorken and the Gross-Llewellen Smith sum rules from
the experimental value for the effective charge associated



with Re+e−(s). Present data are consistent with the gener-
alized Crewther relations within errors, but measurements
at higher precision ine+e− annihilation are needed to deci-
sively test these fundamental relations in QCD. Such mea-
surements are also crucial for a high precision evaluation of
the hadronic corrections to the muon anomalous magnetic
moment [147]. The discrepancy between the annihilation
cross section in the isospinI = 1 channel and the corre-
sponding isospinI = 1 data fromτ decay also needs to be
resolved [148].
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