[SLAC] [SLAC Pubs and Reports]

Strain-Compensated A1InGaAs-GaAsP Superlattices for Highly-Polarized Electron Emission


Spin-polarized electron emission from the first superlattice photocathodes developed with strain compensation is investigated. An opposite strain in the quantum well and barrier layers is complished using an InAlGaAs/GaAsP superlattice structure. The measured values of maximum polarization and quantum yield for the structure with a 0.18 $\mu$m-thick working layer are close to the best results reported for any strained superlattice photocathode structure, demonstrating the high potential of strain compensation for future photocathode applications. An analysis of the photoemission spectra is used to estimate the parameters responsible for the polarization losses.

(Equations render on Windows, Mac OS, AIX, Linux, Solaris, and IRIX with the techexplorer plug-in.)

Full Text


Compressed PostScript

Not available for this document.

More Information

Full bibliographic data for this document, including its complete author list, is (or soon will be) available from SLAC's SPIRES-HEP Database.

Please report problems with this file to posting@slac.stanford.edu. The SLAC preprint inventory is provided by the SLAC Technical Publications Department.
Page generated 05 Jan 2005 @ 14:08 PST by htmlme.pl