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ABSTRACT 

We discuss the weak interactions from an S-matrix point of view in order 

to make some qualitative statements about high energy behavior. In order to 

separate the weak interactions from others as much as possible, attention is 

focused on the weak interactions of leptons neglecting electromagnetism. We 

examine the consequences of imposing the constraints of unitarity and analyticity 

on weak amplitudes whose low energy behavior is assumed to be correctly given 

by the usual Fermi theory (including the possibility of neutral currents). We 

first study corrections to the low energy limit by using the Mandelstam interation 

to express all lepton-lepton two body scattering amplitudes to third order in the 

Fermi constant in terms of a small number of subtraction constants. We then 

speculate beyond perturbation theory. We discuss some consequences of forward 

dispersion relations and propose a mechanism for providing the necessary 

damping of weak amplitudes at high energies. It is the existence of the inter- 

mediate vector boson coupled weakly to leptons but interacting strongly with itself. 

We examine some consequences of this hypothesis. 

-2- 



1. INTRODUCTION 

The weak interactions as we now know them are without question the 

low energy limit of a class of phenomena of great richness and variety, The 

characteristic center-of-mass energy needed for weak processes to reveal 

this richness is unknown; it is certainly 192 less than 1000 GeV, probably 3,4 

less than 100 GeV, perhaps 5,677 as low as 10 GeV. At present we are in the 

position of trying to guess the nature of the whole given only the small fragment 

available to us at the present superlow energies. 

Such a situation is not unprecedented. Strong interaction phenomena, 

retrospectively viewed from the perspective of the late 1930’s to the early post- 

war period, were quite analogous. The symmetry of the nucleon -nucleon force 

was known, and the Yukawa meson had been postulated to mediate-the force, but 

not yet discovered. However, the theoretical efforts made then to elucidate 

the nature of the hadron phenomena to come were generally unproductive. Quantum 

field theory was the only tool available, and, compared to today, in a relatively 

primitive condition. And, while field theory was generally conceded at that 

time8 not to be llrelevantlf, it still conditioned most attempts to interpret strong 

interactions. 

Much of the progress in hadron physics in the last fifteen years has 

rested on an attitude less ambitious and more descriptive than one based on a 

set of coupled local wave equations. S-matrix phenomenology uses general 

principles to correlate data and exhibit its broad outlines in a qualitatively 

successful manner, It would be a major advance to have a qualitative picture of 

weak processes at 1000 GeV center-of-mass energy such as exists for hadron 

physics. It is reasonable to expect that weak phenomena at such energies will be 
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just as messy as hadron phenomena appear to us today, and that when 1000 GeV 

beams of electrons are made to collide against 1000 GeV neutrino beams, the 

theorist will again fall back on S-matrix concepts and ideas to describe the data. 

In this paper, we try to look at weak interactions from an S-matrix point 

of view, 9 as one might view them were such experiments imminent. Our 

emphasis is more toward the dynamics than toward symmetry principles. 

We consider lepton-lepton elastic scattering processes, assuming the 

low-energy limit is accurately given by the current-current form. We first study 

the corrections to the low-energy limit. We find, given (a) neglect of lepton 

mass, (b) helicity conservation, (c) neglect of electromagnetic corrections, 

(d) p-e universality, and (e) symmetry under the interchange Q - vQ, that 

three invariant amplitudes describe all lepton-lepton two-body scattering pro- 

cesses.. We compute from the Mandelstam iteration utilizing analyticity and 

unitar ity 10 these amplitudes through third order in the Fermi constant in terms 

of 15 subtraction constants. We do this mainly because the calculations are very 

easy. We then speculate beyond perturbation theory. From the point of view 

of S-matrix dynamics, one option with a minimum number of difficulties stands out. 

It is that of the existence 11,12 of the intermediate boson W * coupled weakly to 

leptons but interacting strongly 13 with itself. This option of course includes many 

proposed models 14,15,16 of weak interactions. Given this option, one may 

expect the W * to be members of a large family of new particles which interact 

strongly with each other, which we call garyons; in particular the W should lie 

on a Regge-trajectory. Using this picture, we can make some order-of-magnitude 

estimates of lepton-lepton cross-sections. 

In Section 2, we set up the kinematics. Section 3 is devoted to the 

perturbation theory calculations. We discuss some consequences of forward 
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dispersion relations in Section 4, and Section 5 contains speculations which go 

beyond perturbation theory. 

In Section 6, we estimate some cross-sections for high energy lepton 

and hadron processes using the picture of strongly self-coupled W. 
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2. KINEMATICS AND PRELIMINARIES 

In this section we will establish our notation and list the independent 

amplitudes necessary to describe all two particle to two particle leptonic weak 

interactions . Partial wave expansions will be introduced and crossing and 

unitarity will be discussed. 

We will work in the zero mass limit of all the leptons and neglect the 

effects of electromagnetism. The s-channel is chosen to be that for which the 

total lepton number L=Le+Lp=2 and the t-channel is that for which Le=Lp=O. 

We assume pe universality as formally expressed by the existence of the U(2) 

lepton symmetry in the absence of lepton mass. 17 Assuming in addition the 

discrete symmetry e - u e, p - v discussed by Lee, 18 
I-1 

it is then possible 

to express all lepton-lepton two particle scattering amplitudes in terms of three 

such amplitudes which we take to be: 

A(s, t) : uep -ev 
P 

B(s, t) : vevp -vevp 

C(s, t) : VeP -vel-l 

Since there is only one helicity amplitude in each channel, it is not necessary to 

include helicity indices. We will choose our phases such that A, B and C are 

the helicity amplitudes in each channel. Each amplitude has a kinematic zero 

at s=O and has the same analyticity properites as the invariant amplitude for 

spinless, massless particles. The diagrams corresponding to these amplitudes 

are shown in Figure 1 and we catalogue the other amplitudes in terms of these 

three in Table 1. 
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The amplitudes A, B and C are dimensionless and normalized such 

that the s-channel differential cross section for, say, process A is given by 19 

du A 4~ daA 1 
dt =- S dn= 16n s2 

IA(s,t)l 2 (2-l) 

Under crossing, the same expression holds in the other channels, e.g., in the 

t-channel 

doA 1 

ds = 16rt2 
IAW)l 2 

In the conventional Fermi theory, B=C=O, while 

(2.2) 

A(s, t) = -G- U@,) Y q1- Y5)u 
4-r 

y/p- Y,)U(P/J (2.3) 

where the spinors are normalized such that 

u?,)u(,) = 2E (2.4) 

Then, up to an arbitrary phase, 

A(s,t) = 4fiGs. (2.5) 

The conventional Fermi theory can be at most a low energy approximation 

to the complete dynamical description of A, B and C at all energies. In fact, 

the possibility that the “netural current” amplitudes B and C are comparable to 

A even at low energies has not been ruled out experimentally. Whatever the 

actual behavior of A, B,, C; it is important to point out that the description of all 

two particle leptonic reactions in terms of at most 3 amplitudes (in the zero mass 

approximation) is a consequence of quite general considerations and already leads 
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to several restrictions on these amplitdues. For example, it is clear from 

Table 1 that “diagonal” processes such as vee - vee can differ significantly 

in strength from “non-diagonal” processes such as v e - ,UV 
I-1 e’ This, however, 

can only happen if C(s, t) is appreciable, that is, if “neutral current” reactions 

such as I, e - VCle are large enough to be measured. 
P 

Needless to say, there isn’t a great deal of experimental data on leptonic 

weak reactions. The only reaction which has been directly observed is muon 

decay. The only other reaction for which there are empirical arguments that 

it exists is vee - v,e. Astrophysical arguments 20 

bound on the effective coupling constant GD for this 

GD = loo* 2GF 

give an upper and lower 

reaction: 

where GF is the Fermi coupling constant. An analysis of CERN data by Steiner 21 

gives a better upper limit on the reaction vee - v,e: 

GDs 6.3 GF 

with 90% confidence. In our formalism, these can be interpreted as bounds on 

the amplitude C(s, t) - A(s,u) relative to A(s, t). The best bound on this am- 

plitude is that reported by Reines and Gurr 22 who have looked for the reaction 

Fee - Fee using low energy anti-neutrinos from a fission reactor. They report 

GD< 2GF. 

A reaction which involves only the neutral current amplitude C(s, t) is 

v e-v e. An analysis of CERN data by AlbrightB3 leads to a bound on the 
P P 

effective neutral coupling constant Go: 

Go< 0.6 CF. 
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These bounds on leptonic weak interactions do not yet rule out the 

possibility that the amplitudes B and C are comparable in magnitude to A. It 

is clearly very important to attempt to reduce the upper limits on these re- 

actions. 

It is important to establish phase conventions since we intend to exploit 

the constraints of two particle unitarity on the amplitudes. This can be done in 

terms of the partial wave expansion of the helicity amplitudes according to the 

_ 24 prescription of Jacob and Wick. In the s-channel, the total helicity in the 

center of mass frame is zero and the partial wave expansion is simply the 

Legendre expansion. The center of mass scattering angle 8 s is given by 

cos es= l+F 

and 

co 

A(s, t) = 1677x (2j+l)ajs(s)Pj[l + 5) , 
s>o 

j=O t,u < 0 
P-7) 

In the t-channel, the Jacob-Wick expansion takes the form 

167rc (2j+l)ajt(t)dl,(8t)ei(A-p)’ 

where A&) is the total helicity in the initial (final) state. If the initial direction 

(positive z axis) is taken to be, that of the incoming anti-lepton, then X=1. The 

pbse ewPL) + can be eliminated by choosing the final direction to be that of 

the outgoing anti-lepton . Then p=l, 

cos e 
t 

=l,+L 
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and 

A(s, t) = 16712 (2j+l)ajt(t)diI(I + F) , 
j=l 

In the u-channel, the same considerations lead to 

A(s, t), = 167r 2 (2j+l)aju(u)dil(l + 2: ), 
j=l 

t>o 

s,u<o 
(2.8) 

u>o 
(2.9) 

s,t< 0 

With the above conventions, the amplitudes A, B, and C are the helicity am- 

plitudes in each channel. We list here for future reference the Rodrigues 

formulae and orthogonality properties of the Pj and diI. 

+l 26jjl 
dz diV (z)dzV (z) = - 2j+l 

-1 

(2.10) 

(2.11) 

The unitarity condition can be expressed by the optical theorem for 

B andC, e.g., 

Im B(s,O) = sgyoT (s) (2.12) 

In terms of the partial wave amplitudes, 

Im bjs (s) = I bjs(s)12 + inel. cont. (2.13) 

The two particle unitarity relations for all three amplitudes in all channels will 
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be tabulated and used in the next section. 

It is interesting to consider the consequences of imposing additional 

symmetry among the lepton amplitudes. An appealing way to do this is to 

extend the discrete symmetry e - ve plus /J - v 
I-1 

to complete isotopic spin 

symmetry where (e, ue) and @, vP) are taken to be isotopic doublets. The result 

is that three independent amplitudes are reduced to two corresponding to 

scattering in the I=0 and I=1 channels. One finds that 

A+C=B (2.14) 

and that A and A+2C are the amplitudes for scattering in the I=1 and I=0 channels 

respectively. 

Because of the fact that istopic spin imposes no constraints on A and C 

alone but only relates then to B, it leads to no relations among reactions such 

as v e - ,uv v 
P e’ CL 

e --L vPe and vee -) vee beyond those already mentioned. In 

order to make predictions about these processes‘alone, one must make additional 

assumptions. For instance, if the weak current is assumed to be pure isovector, 

then to lowest order, 

U(V 1 e - v 
I-1 

e) = - U(Y 
I-L 4 v 

e - pve) (2.15) 

u(vee - vee) = $u(v e- 
P We) (2.16) 
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3. PERTURBATION THEORY 

One possible way of constructing a phenomenological field theory of 

weak interactions is to add to the conventional (four fermion or intermediate 

vector boson) Lagrangian an infinite number of interaction terms to remove 

the divergences of the conventional theory. 25 A perturbation expansion in 

G = 10B5m -2’ 
P 

may then be developed for low energies in terms of arbitrary 

parameters which mask our ignorance of the true high energy behavior of the 

theory and which must be determined from experiment. This expansion for, 

say, the amplitudes A, B and C will only be good for s, t, u < h2, where 

certainly the radius of convergence h2 < G -1 since the effective expansion 

parameters are Gs and Gt. The closer one gets to this limit the more orders 

of perturbation theory and hence the more arbitrary constants must be included 

to fit experiment. A simple way of generating this perturbation expansion for 

the two particle scattering amplitudes without explicit reference to Lagrangian 

counter terms is the Mandelstam iteration 10 using analytic ity and unitar ity . 

The general form of the perturbation expansion for A, B and C is 

A(s, t) = c CY nm(Gs)n (Gt)m -I- unitarity 

n, m 

B(s, t) = c p,, (Gs)~ (Gt)” + unitarity 
n, m 

c 6% t) = c Ynm (Gs)~ (Gt)m + unitarity 
n,m 

(3.1) 

The kinematic zero at s=O means that n 5 1 while m 2 0. In the conventional 

Fermi theory, ~,,=r,,=0 and alo- -4& The unitarity contributions which 
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have nonvanishing absorptive parts will be specified iteratively in the approximation 

of keeping only two lepton intermediate states. This will carry us through third 

order in perturbation theory. 

We begin by developing the two particle unitarity relations in terms of 

the partial wave expansion. In the s-channel, the forward two particle un- 

itarity relations are 

Ims A(s,O) = 1 
64~~ 

dQs 2Re A*C 

Ims B(s, 0) = 1 
64~~ 

dQs Id2 

Ims C(s,O) = -&\cIQs [Id2 + 1 Al21 (3.2) 

In the t-channel, it is convenient to write the two particle unitarity relations 

in the backward (u=O) direction. Then 

Imt A(-t, t) = 1 
64~~ / 

dQt 2Re A*(s, t) [A(s, t)-C(s,u)] (3.3) 

Imt B(-t, t) = 1 
64n2 

B*(s,t) [B(s,t)-B(s,u)] + C*(s,t) [C(s,t)-A(s,u)] 
i 

Imt C(-t, t) = -L- 
647r2 

C*(s, t) [B(s, t)-B(s, u)] + B*(s, t) [ C(s, t)-A(s, u)] 

In the u-channel, we take t=O (the forward direction) and 

Imu A(-u, 0) = 1 
64x2 

dQu2Re A*(s, t) B(s, t) 

Imu B(-u, 0) = 1 
64~~ 1 

ImU C(-u, 0) = -JL- 
64~~ 

(3.4) 



The minus signs in Eq. (3.3) are required by Fermi statistics. Introducing 

the partial wave expansions, Eq. (2. 7) to Eq. (2.9), now leads to the unitarity 

relations for the partial wave amplitudes 

Im ajs(s) = 2Re aTs(s)cjS(s) 

Im bjs(S) = Ibjs(S)J 2 

Im ‘js(‘)-’ IcjS(s)12 + lajs (S)12 P-5) 

Im ajt(t) = 2Re aTt(t) [ajt(t) - cju(t)] 

Im bjt(t) = 2Re bjt(t) [ bjt(t) - bju(t) 1 + 2Re cTt(t) [cjt(t) - aju(t)] 

Im cjtf(t) = 2Re bTt,(t) [cjt(t) - aj,ct)l + 2Re CTttt) [bjt(t) - bju(t)l (3.6) 

Im aju(u) = 2Re a;(u) bju(u) 

Im bju@J = lbju(U)12 +,Iaju(u)12 

Im. Cju(U) = lCju(U)12 (3.7) 

With the above apparatus, it is relatively easy to carry out the per- 

turbation expansion to third order. In first order 

A = alOGs B = plOGs C = ylOGs (30 8) 
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and the nonvanishing partial wave amplitudes are 

16~ aOs = alOGs 48nalt = -alOGt 48~ alu = - cvloGu 

167r bOs = Pl(p 48n bit = -/310Gt 48~r blu = -PIOGu 

167r cOs = YIOGs 48n clt = yloGt 48n clu = -YloGu 

(3.9) 

Thus to second order 

(16f121m aOs = 2a10’Y10(G~)2 

(16q21m bOs = P,02(Gs)2 

(16f121m cOs = YI02 + aI02 (Gs)~ 

(48~) 
2 Im alt = 2016(016 - YlO)W 

2 

(48~r) 2 Im bit = 2YJYI6 - alo)( 

(48~) 2 Im clt = 2p,,(YI() - Q)(W2 

(48~) 2 Im alu = 2”10plo(w2 

(48~) 2 Im blu = 
( 
,filo2 + yo2 &W2 

(487r))Im clu = YI02(Gu)2 (3.10) 

The second order amplitudes can now be consturcted using the dispersion re- 

lations and performing the necessary subtractions. An imaginary part of the 

form (Gx)~ corresponds to a function of the form -1/r(Gx)210g(-Gx). The 

- 15 - 



amplitudes through second order in perturbation theory are 

A(s,t) = alOGs + a20(G~)2 + crllGsGt - 
50 YlO 

8,2 (Gs) 2 log (-Gs) 

9o(o10-YlO) GsGt log(-Gt) + 90 YlO 
+ 

24~~ 24~~ 
GsGu log(-Gu) 

B(s, t) = plOGs + P~,(Gs)~ = bllGsGt - 
P 2 

-e-i!- (Gs)~ log(-Gs) 
167r2 

+ Y1o(Y10-50) 

24~~ 
GsGt log(-St) + Yo2 + ho2 

48~~ 
GsGu log(-Gu) 

C(S, t) - ylOGs + Y20(Gs)2 + YllGsGt - 
Yo2 + Y102 

167~~ 
(Gs) 2 log(-Gs) 

%o%o - o10) 
2 

YlO + 
241r~ 

GsGt log(-Gt) + - 
481~~. 

GsGu log (-Gu) (3.11) 

All the parameters must be determined by experiment. From ~1 decay, it is 

known that olo= 4fi and that ozo and al1 are certainly much less than 105. 

As discussed in Section 2, there exist upper limits on PI0 and ylo but they 

could be the same order of magnitude as olo. 

Since the machinery set up here makes these perturbative calculations 

so simple, we can’t resist pushing on to third order. To keep things simple, 

we restrict ourselves to the case of the conventional Fermi theory: 

o!lo= 4fi , P,, = YIO = 0 (3.12) 
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Then the second order results above become 

4 
A(s,t) = 4fiGs + CITY’ + allGsGt + - 

37r2 
GsGt log(-Gt) 

2 
B(s, t) = ~,,(Gs)~ + PllGsGt + - 

3n2 
GsGu log(-Gu) 

2 
C(s,t) = Y20(Gs) + YllGsGt r2 - 2 (Gs) 2 log(-Gs) (3.13) 

We first project out the partial wave amplitudes in each channel, Since only 

terms up to third order will be kept in the unitarity relations (3.5) to (3. 7), the 

only partial wave amplitudes we need are 

16n aos = 

16n bos = 

16n cos = 

16n alt = 

4fiGs-t crzo -+ al1 (Gs)~ - 5 (Gs)~ ; logGs-; 

i pzo - $ pll. (Gs)~ - -?-- (Gs) 2 $ 1ogGs - $ 
,I 3r2 ( 

- -?- (Gs)~ log(-Gs) 
7r2 

(3.14) 

4& 
Gt + 

1 1 2 4 (Gt) 2 
-- 7 a20 - 3 3 -- gT2 log(-Gt) 

16~ bit = -$ P,, -;~ll)(Gt)2+$(Gt)2(-&logGt -g4) 

167r clt = VW 2 (3.15) 

4aGu+1 16n alu = - 3 - 4 

(Gu)~ - +Gu)~ log(-Gu) 
97r2 

(W 2 $logGu - + (3.16) 
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The unitarity relations (3.5) to (3.7) give the absorptive parts of the partial 

wave amplitudes through third order. The amplitudes A, B and C can then be 

constructed as before. In the s-channel, for example, an absorptive part of 

the form (Gs)~ corresponds to the contribution -l/r(gs)nlog(-Gs) to the unitarity 

part of the amplitude. An absorptive part of the form (Gs)?ogGs corresponds 

to a term in the amplitude of the form -1/27r(gs)nlog2(-Gs). The amplitudes 

through third order are 

A(s, t) = 4& Gs + 
c onm(Gs)n(Gt)m + -+- GsGt log(-Gt) 
n+m=2,3 31r2 
m/l 

6 
- - (Gs)~ log(-Gs) yzo - 2?r2 ; ?‘I1 - log(-Gs) 3 

-!- 
?r2 

J;I 
Gs(Gt)2 log(-Gt) L 

2 l 1 
-- _-- 21r2 2 01 20 -F-11-;? ly 20-12y11 8,2 Llog(-Gt) 1 36~~ 

- -=Gs(Guj2 log(-Gu) 
27r2 

$ P,, + +2 P,, - 1 
9x2 

log{-Gu) 1 
B(s,t) = 

c 
pnm(Gs)n(Gt)m + 2 GsGu log (-Gu) 

n+m=2,3 3?r2 

Gs(Gt)2 log(-Gt) $ y20 - ; ylI + -?- - .-?- 
8rr2 4r2 

log(-Gt) 1 

(3.17) 

fi Gs(Gu):! log(-Gu) -- 
27r2 

I3 + 1 
91 - - 108~~ 187r2 

log(-Gu) 1 
(3.18) 
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C(s,t) = c ynmtWntWm - 2 (Gs) 2 log( -Gs) 

n+m=O, 3 7r2 

n>l 

- ---& (Gs)~ log(-Gs) d- 

27r2 
- ; al1 + -km - et- 

37r2 37r2 
log(-Gs) 1 

+ LGs(Gt):: log(-Gt) d-- 
27r2 

;p,, - +/& - 13 + - 
216 7r2 

l log(-Gt) 
36~~ 1 (3.19) 

Thus with the assignments (3.12), there are 15 additional parameters necessary 

to describe all two particle leptonic weak interactions through third order in 

perturbation theory. 

The perturbation expasnion has been developed including only leptonic 

intermediate states. This is not a very good approximation since the values of 

s and t at which higher order terms in the expansion become important are 

probably much greater than typical hadronic masses. Through third order in 

the perturbation expansion, hadronic intermediate states enter only in the 

t-channel unitarity relation where Le=LP=O. They will give absorptive parts 

leading to dispersion integrals which we assume require no more subtractions 

than those arising from lepton-antilepton pair intermediate states. There will 

thus be hadronic contributions to the subtraction constants (Ye, pm, and yD. 

If we ask the perturbation expansion to have a radius of convergence large com- 

pared to 1 GeV, there will also be pole and cut contributions determined by the 

details of the strong interactions. It is to be emphasized that unlike the sub- 

traction constants anm, Pnm and Y,,, these coefficients are in principle 

calculable. 

If some possible intermediate state is not explicitly included, then the 

perturbation expansion will break down as the threshold for the process is 
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approached. Consequently, the subtraction constants will not be of order unity. 

This can be seen by considering the contribution to the process 

ve+p -+e+v 
I-I 

(3.20) 

coming from p-exchange. The contribution has the form 

(3.21) 

where c is a number of order unity. Upon expanding in a power series in t, 

we find, comparing with (3.17), that 

6A = c 60,m(Gs)(Gt)m 
m 

6 
lm= Gm2 m-1 

T7- P 

(3. 22) 

(3. 23) 

This of course results from the small radius of convergence rni for the 

expansion in powers of t. One must keep in mind that the same phenomenon 

will occur if the important range of interaction A -2 for weak processes is 

large compared with the Fermi constant G. 
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4. DISPERSION RELATIONS AND SUM RULES 

In this section we briefly examine some consequences of the assumption 

that the lepton-lepton amplitudes A, B, C satisfy dispersion relations in s for 

fixed t. We shall assume, in analogy with strong interactions, no more than 

two subtractions are necessary at t=O. Our discussion shall be restricted to 

forward-scattering dispersion relations. With further assumptions about the 

existence of dnA(s, t)/dt, at t=O, more can be said, 26 but we shall not go into 

this here. 

We will write down a sequence of dispersion relations sum rules which 

we will use to make some order of magnitude statements about the weak inter- 

action “cutoffl’ h 2 . 

Consider first the amplitude 

D(s,t) = C(s,t) - A(s,u) (4.1) 

for the process pee - v,e. Assuming the validity of the Pomeranchuk theorem 27 

CP 
(s) - (7 (8) log s=o , 

TOT 1 
one may write a once subtracted dispersion relation at t=O. 28 

co 

D(s,O) = +- ds’ 
[ 

o- yTts’) Ye (s’) 
TOT 

-s’-s - s’ + s 

(4.2) 

(4.3) 

Using the low energy theorem coming from first order perturbation theory: 

lim -??f%% = ( ylo - alO)G = L 
S 

s-o 
?T 

(s) - opCT(s) 
I 



Similar sum rules can be written relating the other first order subtraction 

constants ylOG and PIOG to integrals over total cross sections. Since 

Q! = 4& and ylo is not greater than this, we have 

oVe 2 4nG& 7x10 -32cm2 

TOT (4.5) 
0 

This implies a sizeable value for either the vee or Fee total cross section in 

some region of s. 

If the usual charged current picture is correct at low energies 

(ho = 710 << l), the sum rule 

-ve 

uT;, ts) - aT;Tts) 1 (4.6) 

can be used to argue that A2 .< G -1 . In this case the integrand for s 5 A2 is 

dominated by the contribution 

v e -pv 
P e 

CT (s)d- 4&s 2 = ‘fs 
167r2 I I t4* 7) 

Thus 

and since Y.,~ << 1, h 2 << G 
-1 unless the residual high energy part of the 

dispersion integral cancels the low energy part. It is hard on dynamical grounds 

to see why such a cancellation should occur and there is no symmetry principle 
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(such as PCAC or guage invariance) in sight to provide a low energy theorem. 

This argument can be repeated for the u=O dispersion relation in t 

for the C amplitude. For small t 

I 

+a, 

c(-Lt) = -yloGt 
t 
7 -E- Im C (-t.’ , t’) t,2 (4.9) 

Again the contribution to ylo _ form 1 t’ 1 < h2 is 2(Gh2/ $), while the re- 

mainder is related to integrals over the absorptive parts of the charge-exchange 

amplitudes pp + v - e+ + e- and e- + v -+ + e- at u=O. It is especially 
P c1 P 

plausible that these amplitudes are small enough at high energies to make 

(4.9) converge. If unitarity considerations are important asymptotically, the 

charge exchange processes must compete with all other channels open to 

v +v and e- + I/ 
I-1 P P’ 

Just as olo, P 10 and ylo can be related to integrals over total 

cross sections, the higher subtraction constants can also be related to other 

integrals over total cross sections. Consider, for example, the C amplitude. 

From (3. ll), the low energy behavior if 

C ts, 0) = ylOGs + Yap 
2 

- 

2 60 + %o 
167r2 

(Gs)~ log(-Gs) 

+ 0 bs)” 1og2Gs] (4.10) 

To get a sum rule for yzo, we can use this along with the twice subtracted 

dispersion relation Fe 

cts,o) - YloGs = L 

S2 

+ $,Tt”) 
7r s’ + s I 

(4. 11) 

- 23 - 



For small s ( G-l) the logarithmic unitarity contributions in (4.10) can be 

written as dispersion integrals, e. g. , 

2 2 G-l 
90 ‘YlO (Gs)~ log(-Gs) = $ 

ds’ o;“e(s’) 

167~~ 
S’(S - S) (4.12) 

where 

up”e(s) = 1 
16.n-s ~102tGs)2 + ~~~~~~~~~ 1 

ve 
is the contribution to u & ts’) f rom the first order perturbation theory. 

Putting (4.10) and (4.12) into (4.11) and letting s - 0, we have 

G2y =L 
20 7r 1 [ Fe 

ts) - u;pets) + u&~ts, 

(4.13) 

(4.14) 

Similar sum rules can be written for i/,,, but require perturbation theory to 

be carried to the appropriate order of approximation. 

The sum rule (4.14) is on better footing than (4.3) or (4.6) since the 

assumption of convergence is not as strong. Such higher moment sum rules 

are however not as useful for ‘constraining the high energy behavior of the 

cross sections since the extra damping makes them less sensitive to high 

energy behavior and since the higher subtraction constants are not known. If 

it is assumed that y20 5 1, than since the first integral in (4.14) gives a 
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contribution of order G2, a bound of the form 

03 v e 

ds 5sT fs) < G2 

s2 - 
(4.15) 

ve 
can be derived. If oT$I, flattens out (apart from logarithms) to oM beyond 

s=A2, (4.15) leads to 

ve 
uTzT (m) 5 G(GA2) (4.16) 

Pomeranchuk, in a most interesting paper published posthumously by 

his colleagues, 26 has studied such implications of forward dispersion relations 

on the minimum energy s for which the lepton-lepton cross-sections can be- 

come constant and found essentially (4.16). In addition, he found even stronger 

restrictions by studying dispersion-relations for derivatives of the forward 

scattering amplitude. Unless one assumes the stripless approximation discussed 

in Section 5, there is not guarantee the derivatives exist, since there is a 

t-channel cut at t=O coming from neutrino-pair exchange. However, arguments 

can be given 26 that the first derivative should exist. To the extent such dis- 

persion relations for derivatives of the forward amplitude exist, one can also 

extend the sum rules, such as (4.14)) for ymo to other ymn, relating the 

coefficients to absorptive parts which are positive, because dnA(s, t) 
dtn 

t,O’O. 

But in any case, it is clear that just from fixed t=O, u=O, and s=O dispersion 

relations for A, B, and C, the coefficients a!.., P.., yij (i+j<_Z) can all be 11 11 
determined (and in some cases overdetermined) in terms of integrals over 

absorptive parts of physical scattering amplitudes. 
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5. BEYOND PERTURBATION THEORY 

An S-matrix approach to high-energy weak processes should be 

capable of making progress beyond considerations of a perturbation expansion, 

as has been done in hadron physics. We are thinking here of the successful 

use of dispersion relations, of high. energy limiting theorems such as the 

Froissart bound 2g and the work of Martin, 30 of the bootstrap concepts and 

perhaps even of duality. But typically in hadron physics it is difficult to make 

predictions using S-matrix concepts until a great deal of data exists. We too 

cannot claim any better, but we shall, for what they are worth, give a natural 

succession of hypotheses which from the point of view of S-matrix dynamics 

appears to present the path of least resistance and which lead to some general 

consequences: 

Hypothesis 1: The Mandelstam double-spectral function in the strip 

regions (O< t < X2; s arbitrary + permutations s - t - u) may be neglected 

for some h2, where m2 (lepton)<< h2<< G -1 and probably h2>>m2 (hadron). 

This means that asymptotic weak lepton-lepton amplitudes are not controlled by 

lepton-pair exchange but by exchange of heavy objects such as the intermediate 

boson W. The alternative to this stripless approximation has the difficulty that 

one must show that the large spectral-function in the strips does not contribute 

via fixed-t dispersion relations to low-energy weak processes. Such large low- 

energy contributions could ruin the simple current-current picture. 

A major consequence of the stripless approximation is the Froissart 

bound2’: 

F-1) 
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Hypothesis 2: In all parital waves, the partial wave amplitudes 

a J are always small, I a J 1 <C 1, except possibly at positions of some narrow 

resonances. This is suggested, but not required, by Hypothesis 1. It again 

serves to protect reactive effects associated with unitarity requirements from 

affecting the current-current picture at low energy. 

Hypothesis 3: There exist intermediate vector bosons Wf with mass 

Mw l1 smalP , mW<< lo3 GeV, and certainly m W 2 A. This hypothesis, in 

lowest order, is compatible with the preceding ones and of course is strongly 

motivated by the current-current picture. However, as emphasized by Gell-Ma 

6 Goldberger, Kroll and Low, the process 

mn, 

a+a -w++w- (5.2) 
calculated in the OLE (one-lepton-exchange) approximation violates Hypothesis 2 

at sufficiently high energies, and the easiest way out, requiring no miracles, 

is the next hypothesis. 

m There exist strong interactions of W’ with each other 

but not with leptons. This latter proviso ensures again that the low-energy 

current-current picture is not modified by W-lepton rescattering effects such 

as shown in Figure 2. 

The effect of the strong W-W coupling on the reaction (5.2) is to pro- 

vide strong damping of the OLE contribution at high energies. This is most 

convincingly seen by looking at the reaction in the opposite direction: 

w++w- -Q-l-F. The final ‘I a channel competes poorly with many other 

open channels composed of particles in the strongly coupled W family. It is 

likewise very reasonable that still higher order effects remain small. 

The notion of the W strongly interacting with itself is certainly not 
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a new one. 4,13 Among the proposals are W * interacting strongly with or- 

dinary hadrons , 15 of w f interacting strongly (i. e. , nonrenormalizably) 

with photons, 14 and of triplets or octets 16 of W’s with broken Yang-Mills 

coupling to each other. And while attractive from the point of view of S-matrix 

dynamics, the option of strongly coupled W is clearly anything from compelling. 

We can, however, anticipate the following general consequences: 

1. There will be a large family of states of various spin and charge 

coupled to W. This argument-is as good (or bad) as those advanced for the 

ordinary hadron system. 

2. The W probably lies on a Regge trajectory. If it is exchange- 

degenerate, or approximately so, and if J=O is physical, the spinless W f will 

be lighter than J=lW *, 
31 

and one must take heed of the cautions of T. D. Lee 

regarding W-searches via leptonic decay modes. 

3. The slope of the W-trajectory is determined in order of magnitude 

by the lightest particle coupled strongly to the W-system. For example, if the 

W couples strongly to ordinary hadrons, the slope of the W-trajectory should be 

-1 32 
very large, of order (%mw) , as can be seen by comparing the Low equation 

for meson-W scattering with that of meson-nucleon scattering. The mean 

spacing in mass of W f resonances in this case would be of order of meson 

masses. 

4. To resolve the difficulties discussed under Hypothesis 4 and 5, 

one requires a strong damping of J=lW+-W- interactions. From Cutkosky’s 
33 

work on vector -me son bootstraps, an attractive W+-W - force coming 

from a J=lW” exchange might be strong enough to bootstrap the W”. This 

again suggests the relevance of some kine of Yang-Mills multiplets of J=lW’s. 

The whole multiplet should again lie on Regge trajectories. 

- 28 - 



6. HIGH ENERGY LEPTON PROCESSES AND GARYONS 

If there exists W l strongly coupled to a family of particles (which 

we shall call garyons), then one can crudely estimate cross-sections for 

high-energy lepton-lepton processes. 

We here assume that the mass of this garyon family is characteristically 

of order m w. The case of garyon = hadron has difficulties and will be discussed 

separately at the end of this section. At the other extreme, the cases in which 

weak interactions are linked with the electromagnetic interaction, whether by the 

nonrenormalizable quantum electrodynamics of the W as discussed by Lee and 

Yang, or by a symmetry between weak and electromagnetic processes, it may 

well be that the slope of the W trajectory is of order cz, i.e. , rn$ /m w4137 -10, 

and there is not only one mass scale. Therefore we do not expect the analysis 

of this section to necessarily apply to such cases. 

The one-W-exchange (OWE) contribution to lepton-lepton scatter’ing 

damps the high-energy l’elastic” cross section, which eventually approaches 

a constant; for example 

In addition to this, there is the contribution from garyon production as shown 

in Figure 3. If the WW cross-section is helicity independent, then as s -. 03, 

(6.2) 
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Ignoring logarithmic factors, and taking the integrations over tI and t2 to 

yield factors of order unity, we get as s - ~0 
n 

Gmw2 
4 

“QQ” 2T2 i 1 - Uww(S’ -m) (6.3) 

Using the estimate given for the Froissart bound oww ,S 7r/mw2 (assuming 

the lightest garyon state of charge two to be the two-W state) we get 

G2mw2 

“aQ - 4,3 (6.4) 

Thus for both the elastic and inelastic lepton-lepton cross-sections, the smooth 

linear rise of the cross section with s given by the Fermi theory is cut off at 
2 s-m 

W’ 

However, careful distinction must be made between lepton-lepton 

processes and those lepton-antilepton processes which can proceed via the 

single W 
+ , as in Figure 4. This can be estimated as follows: For s >>mw2 

but s 2 G-l, the cross section for, say Fe + e - garyons is bounded above 

by unitarity : u < const/s. Because this is the only contribution to the dis- 

persion relation (4.8) of order G, we must have 

M 

4&G=L Ge 
7r 

/ 

$ UT&S’) (6.5) 
0 

Assuming that o - (const) s -1 for s > mw2 gives us the rough upper bound 

P-6) 

These contributions are schematically shown in Figure 5; they should 
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certainly not be taken more seriously than to a factor of 10. 

If we try to return closer to reality and discuss lepton-hadron or 

hadron-hadron collisions, we may try using the parton model as a crude 

qualitative guide as to what to expect. The semileptonic lepton-hadron 

processes will be analogous to the lepton-lepton process, where no annihilation 

channel is present. Thus the observed linearly rising v-N total cross-section 

should, in this picture, but cut off at s Lmw2. The neutrino-production of 

garyons from hadrons should be within two orders of magnitude of the ordinary 

non-garyon production for s>>mw2: 

u (l+n - l+garyons + hadrons) N constant 
cT(l+n - all) (6.7) 

However, for hadron-hadron (or photon-hadron) collisions, the 

anninilation channel is always open, and the cross-section should be more like 

the Q T estimate, but probably suppressed considerably (1-2 orders of magnitude ?), 

because only a small fraction of the available center-of-mass energy will on 

the average be in the parton-antiparton pair which annihilates into the single W. 

Before leaving this subject, we must emphasize that in many cases, 

mixed electromagnetic and weak processes will result in larger garyon pro- 

duction cross-sections than stated herein However, these considerations 

fall outside the purview of this paper. 

We close this section by considering the possiblity that the W boson 

has strong pairwise interactions with ordinary hadrons. If this is the case, 

there are many constraints 34,35 from experiment on its properties. We will 

examine those coming from inelastic neutrino scattering. We take the cross 
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section for v + N - p + anything (Figure 6) to be 

d"VN 
dt ds’ 

and put it into the forward vN dispersion relation 

co 
T(s,O) =; 

J [ 
ds’ u;& (St) _ st _ s 

0 

Neglecting logarithmic factors, we get at low energies (in order of magnitude 

(6.8) 

upm (ST) 

s’ -I- s 1 (6.9) 
“Mw2 1 

T(s,O)- 4 - uW-N(St)] 

+ 
GMW2 

7r3 
S2 uW-@‘) + JW -N(“) 1 (6.10) 

This gives 

T - * <u~+~ - uwmN) 
7r3 

s2 (6.11) 
ave 

which will be much larger than experiment allows unless (+ are 
36 W*N 

identical. 

To see this in detail,we note that the process in Figure 6 is much 

larger than conventional neutrino interactions, For s Z, MW2, 

uVN - garyons N G”w2 uWN uWN NY 
U UN - hadrons G2Mw2 G (6. 12) 
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For a geometrical W-N cross-section, this ratio is -10 5&t and can be shown 36,37 

to be inconsistent with the low muon fluxed found in the deep mine experiments 

for Mw N < 10 GeV. But then the estimate of (6.11) for the low energy UN elastic 

scattering amplitude is greater than the conventional theory 38 by -2 orders of 

magnitude, unless (+ + WN ““w-N. Even if u 
W”P 

differ only by electromagnetic 

effects, one may have difficulty with the existing experiments at low energies. 

Finally, even if the first term in (6.10) can be neglected, the second rises 

rapidly with energy, giving - 

o-- - 
UN - UN 

U- - [constant O(l)] [suwN12 
VP - p+n 

(6. 13) 

independent of mW. For the inelastic cross-sections this ratio is also probably 

similar. We conclude that either (rWN is much less than geometrical or the 

hypothesis W=hadron, despite its very large mass, is either ruled out or can 

soon be decided by experiment. 
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Table 1 

Two particle lepton-lepton s-channel amplitudes in terms 

of A, B, C 

Reactions 

‘ep - eu 
P 

ue 
P 

- we 

‘evp -v lJ 
ep 

e/J - e/J 

v p-v e ep 

ev - ev 
I-1 P 

v e ---ev e e 

“if 
- wJp 

v v - veEle ee 
-v v 

vPvP c1 P 

ee - ee 

P/J - PP 
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Amplitude 

A@, t) 

B(s,t) 

C(% t) 

A(s, t) - C(s,u) 

B(s,t) - B(s,u) 



FIGURE CAPTIONS 

1. Invariant amplitudes for weak lepton- lepton scattering 

2. W-lepton rescattering effects in graphs for lepton-lepton scattering 

3. Garyon production in lepton-lepton collisions 

4. Garyon production via lepton-antilepton annihilation 

5. Possible behavior of lepton-lepton and lepton-antilepton total cross-sections 

if garyons exist 

6. Diagram for inelastic neutrino-nucleon scattering 

- 39 - 



I 
* 

A (sJ> B (s, t) 

Fig. 1 

c (s, 0 
1944Al 

E 

c 



1944A2 

Fig. 2 



Fig. 3 

1944A3 



I 
* ” 

Garyons 

1944A4 

Fig. 4 



-l c 
* 

log G 

log Grn; 

log rn$ 

/ 
Glashow Resonance fl t-$-W 

<IO 
<IO2 

Fig. 5 

*. 

4 

log G-’ 



c 

Fig. 6 


