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We investigate the contribution of a pole at a! = 0 to forward 

Compton scattering using finite energy sum rules. We conclude that an 

experiment measuring the total photoabsorption cross section from 

- 1 to lo-15 BeV with an accuracy of 5% will detect a contribution from 

such a pole whose magnitude is larger than 30% of the Thomson limit. 
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Finite energy sum rules relate the low energy behavior of 

individual two particle transition amplitudes with their high energy behavior. 

Such a connection of high and low energy behaviors is accomplished as a 

result of the analyticity restrictions of Regge theory. In this paper we 

inquire into the relation between the exact low energy theorems for 

Compton scattering of a photon from protons and the high energy asymptotic 

limit. In particular, we concentrate on the forward scattering amplitude 

in order to introduce experimentally measurable total photoabsorption 

cross sections for the imaginary parts. 

Similar analyses have been made for the pion nucleon amplitudes.’ 

Because of the peculiar possibilities of fixed poles and/or singular residues, 

the Compton amplitude requires a separate discussion. First of all there 

is as yet no persuasive evidence for Regge behavior in amplitudes involving 

even one external photon line. Charged pion photoproduction over a broad 

range of momentum transfers, t, has an energy dependence from w 2 GeV to 

16 GeV mysteriously compatible with fixed J = 0 poles playing the dominant 

role in the t channel.2 Furthermore, the dip in TO photoproduction at the 

“nonsense” zero in the w exchange contribution recedes in prominence at 

the highest measured energies and no simpIe Regge parametrization can 

explain the observations within the framework of vector dominence. 
3 

The pure simple Regge hypothesis also fails to fill the bill for 

the elastic Compton scattering from a proton as first discussed by Mur 
4 

and subsequently in more detail by others. In the forward direction we 

expect, in complete analogy with np and pp elastic scattering, 
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that we will find a forward diffraction peak corresponding to Pomeron 

exchange. However, a Pomeron leading to a constant total cross section, 

(TV, at high energies must have a Regge trajectory intersecting at 

o,(O) = 1 and thus behaving under three dimensional rotations as a vector. 

In the forward direction the photon cannot flip helicity and an incident 

right circularly polarized y (rhy) must emerge as a rhy simply by 

angular momentum conservation. Upon crossing to the t channel and the 

process y + y - p +y, the emerging rhy crosses to a thy incident and 

the two incoming y’s form a system with two units of helicity. This 

cannot however be deposited upon a Pomeron of unit spin if op (0) = 1. 

If the Pomeron does not couple or if we must contrive to make 

oP(0) < 1, we do not predict a constant aT at high energies and we lose 

in an instant the motivating charm of the Pomeron trajectory in Reggeism. 

Originally it was designed to reproduce in hadron physics the classical 

diffraction picture in the classical problem of light scattering. To restore 

the constant cross section limit for very high energies we must either 

introduce a fixed pole at J = 1 or else resort to a singular residue to 

cancel the vanishing coupling described above when o,(O) = 1. This need 

not disturb us because the usual arguments against and about fixed poles 

are based on non-linear unitarity and thus are not applicable to the 

Compton amplitude when the photons are treated to lowest order in e2. 

Recognizing this we may ask whether the appearance of a pole 

at (;Y = 0 in the high energy behavior of the Compton amplitude might lead 

to experimentally identifiable contributions to the analysis with finite 

energy sum rules. We conclude that an answer can be found provided 
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that we know the total photoabsorption cross-section to an accuracy of 

5% for laboratory energies ranging up to lo-15 BeV. 

The amplitude for forward Compton scattering from a proton, 

5 
or arbitrary spin & particle, is written 

f(v) = f,(Y)e’** e + ivfZ(“)g l e ‘“x e _ 

where v is the laboratory energy of the photon, and 2 and e’ are the 

transverse polarization vectors of the incident and scattered photon. We 

shall be interested in the spin independent amplitude fi(v) which satisfies 

a low energy theorem (the Thomson limit) 

e2 fl(0) = - - 47rm 

where m is the proton mass, and which is related to the total spin 

averaged cross section through the optical theorem 

Imfl(v) = z; cT (‘) 

We assume that the high energy behavior of fl(v) can be written as a 

Regge expansion of the form6 

fl(U) = c p,vo! 
( 

- l_ e- i7ra 

CYr1 47T sin 77-o 1 ’ 

(1) 

(2) 

(3) 

Eq. (4) determines the asymptotic form of the real and imaginary parts 

of the amplitude. When Q! is an even integer we demand that pa/sin ~T(Y be 

finite.7 Then the imaginary part vanishes and only the real part survives, 

giving a contribution from the even integers of the form 

C+D/v2+.... 
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Since we are concerned with high energy limiting behavior we shall 

consider only the possibility of C f 0 corresponding to a real term being 

added to Eq. (4) with (Y = 0. For odd integer values of a! the contribution 

to Refl(v) vanishes according to Eq. (4) and such poles contribute only 

in the imaginary part. In particular Q = 1 is the usual Pomeron or 

diffraction term. The specific question we want to get at is this: Is 

there in fact a real constant C to be added so that Eq. (4) becomes 

P va! fp) = c -Y& ( 
-l-emincr + c 

CYSl sin 7rcy ) 
(5) 

and where C in a loose sense tells us how much of the Thomson limit, 

Eq. (2), survives as an o!(O) = 0 pole in the asymptotic behavior ? 

To answer this we use the following two sum rules8 

N 

J 
cT(v)dv = c 

pcvN(Y e2 2*2 PaNQ 
- - - - - 2n2C + - 

a>0 O! 4n m c CY (6) 
a<0 

P 

N 

/ 
%YN 

a+2 

v2rT(v)dv = c (r+2 
+ c 

paNCU + 2 

o!+2 (7) 
o!>o a!<0 

I-1 

In the analysis we include the P, P’, and the A2 trajectories along with 

the pole at (Y = 0 giving rise to C. Furthermore, we assume one 

effective trajectory for both the P’ and A2 with Z! M 3. By choosing N 

large enough we hope that poles with CI! < 0 are negligible. 

We are thus left with three parameters, p, the residue 

function for the Pomeron, /?, for the effective P’, A2 trajectory, and the 
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constant C. Eqs. (3) and (5) combine for v - 00 to tell us that P, = o,(m) 

and the remaining two parameters are determined by Eqs. (6) and (7). We 

solve these using recent DESY dadup to 5.3 BeV obtaining 

a,(“) = 110 rt 30 pb 

pz = 10 f 50 hb (BeV); 

C= -7 f 4pbBeV 

In the absence of strong interactions and to lowest order in e2, we expect 

only the Thomson term to survive so that 

2 1 C=-e--= 
47~ m - 3.0 pb BeV 

but the above limits of error are too large to be significant. Indeed, if one 

allows the common intercept of the P’ and A2 trajectory to be treated as 

an independent parameter any value of .3 5 E d .7 is compatible with the 

above values of C and aT(m). The interesting question to consider is what 

accuracy of future experiments is required to put more stringent bounds 

on C. If the errors of the DESY experiment are reduced from % 10% to 

it 3% one could determine C to an accuracy of -1 pb BeV. Extending the 

measurements to higher energies lo-15 BeV improves the results. It is 

then necessary only to do the measurements to a * 5% accuracy with energy 

bins of 1 BeV or less in order to limit C to this accuracy of -1 pb BeV. 

These conclusions necessarily rely on the assumption that our simple 

parametrization dominates the high energy region and provides, within the 

present knowledge, a working hypothesis in searching for fixed poles. 

A recent paper by Costa, Savoy, and Shaw 10 deals with the 

determination of the Regge parameters through FESR, but they do not 
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consider the possibility of a pole at Q! = 0. Our analysis shows that such 

a pole could be large and greatly modify their results. An experiment 

of the accuracy described above will be important in determining if such 

a pole is necessary. 
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