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ARSTRACT 

The interaction between conduction electrons with energies 

from .25 to 7.5 eV and longitudinal optical phonons in alkali 

halides is studied in detail by time dependent perturbation theory. 

Expressions for the rate and angular distribution of scattering are 

obtained. The electron transport problem is then solved with the 

exact quantum mechanical scattering results by a direct simulation 

Monte Carlo method. Probabilities of escape and average energy 

losses for electrons generated isotropically at a certain depth in 

the material, with a given initial energy, are computed for CsI, 

KCl, NaF, and LiF. A simple theory shows the effective mass and 

temperature dependence. The effect of including scattering to angles 

other than forward is quite apparent in the results. 



I. INTRODUCTION 

The interaction between electrons and the optical modes of the lattice vi- 

brations has long been recognized to be the predominant interaction controlling 

the transport of low energy (a few ev) electrons in pure ionic crystals. In 1937, 

Frijhlich’ was able to compute the high field breakdown of ionic crystals, with 

reasonable agreement with experimental results, by considering the collisions 

between free conduction electrons and the longitudinal optical mode lattice vibra- 

tions. In 1939, the same author2 improved on his previous work by showing that 

it is possible to solve the same problem without having to compute the reduced 

masses and vibration frequencies of the lattice. Instead, experimentally determined 

dielectric constants and infrared absorption frequencies can be used, and these may 

easily be determined even for crystals which are not fully ionic in character. 

Dekker3’ 4 has developed a simplified one-dimensional random walk model, based 

on the electron-phonon interaction theory of Fr’dhlich, which predicts the temper- 

ature dependence of the secondary emission coefficient 6 for ionic crystals, and 

in particular for MgO. For two temperatures TI and T2, the ratio of the yields 

is 

61 
3 

l/2 
= 1)/(2nT1+ 1) (1) 

F2 

where 

nTi= l/ [ exp @o/lfl.J - l]- (2) 

is the average nllmber of phonons in one mode at temperature Ti, and o is 

the angular frequency of the longitudinal optical vibrations of the lattice. The 

agreement with experiment. has been further investigated by Stuchinskii” at 

temperatures ranging from lOOoK to GOO’K and found to be quite good for Xl&O, 
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although the experimental temperature dependence was slightly stronger than 

the one predicted by Dekker. Khokley and van Vliet have continued to investi- 

gate the escape mechanism of secondary electrons in polar crystals in the 

absence of an electric field, 6 and with field enhancement, 7 by setting up a 

Boltzmann transport equation based on( the following simplifying assumptions: 

1. The spatial dependence of the internal secondary electron distribution 

is one dimensional. 

2. The secondary electrons can be characterized by a sing1.e isotropic 

effective mass m*, with energy E= -fi2k2/2m* measured with re- 

spect to the bottom of the conduction band. 

3. The electrons interact with lattice vibrations (longitudinal optical 

modes) which cause only forward scattering for E>Miw (the phonon 

energy). 

It is the purpose of this paper to examine more carefully the third of 

these assumptions and to show that a detailed calculation of the transport of low- 

energy electrons (secondary or photo-excited) requires a more complete charac- 

terization of the electron-phonon scattering than the one used by Khokley and 

van Vliet. After obtaining expressions for the rate and angle of scattering from 

time dependent perturbation theory, the transport problem is solved by a Monte 

Carlo method. Numerical results for the escape probabilities and energy losses 

of electrons generated internally are obtained for CsI, KCl, NaF, and LiF, 

selected to span the range of alkali-halide compounds from highest to lowest 

atomic number. Particularly detailed results are presented for CsI to illustrate 

the main points of this paper. Only the case with no applied external field has 

been considered. 
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II. THE ELECTRON PIIONON INTERACTION 

Frohlich first calculated the scattering rate for electrons interacting with 

the optical modes of an ionic lattice by time-dependent perturbation theory. 172 

In that approach the adiabatic principle is used: the electronic states are 

largely independent of the lattice vibrational states; the unperturbed wavefunctions 

are products of the lattice and electronic wavefunctions; and the perturbing 

Hamiltonian operates on the product wavefunctions. The transition rates are 

proportional to the square of the matrix elements of the perturbing Hamiltonian. 

This paper uses perturbation theory to calculate the electron-phonon interaction 

for electron:: with energies characteristic of secondary- and photo-emission; 

i. e., from the first fundamental absorption in the alkali-halides (5.5 to 11 eV) 

down to an energy about 10 times the phonon energy (0.1 to 1 ev). The validity 

of such an approach is borne out both by the good quantitative results obtained 

by Friihlich, and by the theoretical expectation that in this energy range the 

electron-lattice coupling wi.11 be much weaker than for electrons n-ear the 

bottom of the conduction band in which case perturbation theory is, of course, 

not applicable. (See the articles by II. Frijhlich and D. Pines in Ref. 8.) 

The unperturbed electronic i7avefunctions have been taken to be plane 

waves 

\k> = (l/Vf’2) exp(ik-• rJ (3) 

with energy E 
k 

= 62k2/2m* where m+ is the effective mass of the electron. 

The unperturbed wavefunctions for the lattice vibrations corresponding to a 

given mode and branch are represented by q) obeying a IIamiltonian 

H=+ C htiq (a+qaq4-aqaG) 
q hr---rU 
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in which q is a vector in wavenumber space within the Brillouin zone. The 

phonon creation and annihilation operators are represented by a* and a, 

respectively. By considering the lattice to be a continuum with a polarization 

field due to the relative displacement of the ions in the longitudinal optical 

vibrational modes, Ziman’ and Frohlich 10 obtain an interaction Hamiltonian 

H inter 
=4fi - 

( ) 
2$v “‘C ~~~emi~Z-aqei$L), z$O 

2. 
(5) 

where y is a constant containing the part of the dielectric constant which is 

due to lattice polarization, and is defined by 

In this expression E is the static dielectric constant, ~,is the square of re- 

fractive index, and w is the vibrational frequency of the longitudinal optical 

modes of the lattice. This frequency o is approximately related to the 

observable residual ray or .reststrahl absorption frequency wr by 
11 

o= E 
( J 

l/2 

EC0 
0 

r ’ 

(6) 

(7) 

The assumption of a single value of o for all q (flat longitudinal optical ry 

branch) is made throughout. The limitation of q $ 0 is discussed by Frohlich. 
10 

The q = 0 term corresponds to a dc polarization which cannot exist by the re- ‘c 

quirement of charge neutrality. 

The m:Arix element for the transition of one electron in state k to & 

with the loss of one phonon of wavenumber q is S.d 

m 

M-&k’) = 47ri 
1 
s “s, J- for l&f=&+% . (8) 

-5- 



Similarly, for transitions with the gain of one phonon, 

M+ p&T’, = -4d - 
( ) 

e% 1’2 
2yov f JF for k=k,‘+qN . (9) 

N 

For the problem under study, n 
rc 

is a constant depending only on the material 

and temperature. The vector notation at the subscript will be dropped. 

RI. RATE AND ANGLE OF SCATTERING 

The transition rate for electrons from a state k> to a state g> is 

given by the standard result of perturbation theory 

where 

wkkL = - Mg.g i2 I 1 2 $ sin2& 

P2 

for the case in which electrons gain energy (phonon annihilation). 

For this case, the rate will be 

+2&f Ln a sin2Pt 
w&g Q 

2 qat fl2 

(10) 

(11) 

(12) 

The total scattering rate from a state k to all the other available states 

K can be found by sun-mm, * c over all l$, but it is more convenient to do the 

sum as an integral over q with the angular relationshi.ps as defined in Fig. la. 

Wi= pax /““i + iY$?f$. $ nq $. !?i!f$& f$ q2 dq sin@ de* d+ 

q’qmin +=o e*=o 
(13) 
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I 

In terms of q, kand 0*, 

X 2 h 
P=4m* q -= kqcosQ* -f . 

The integration over 0* can than be converted to an integral over p which , 

when carried out, results in the conservation of energy requirement (p = O), 

leaving 

I 

4ne2m*n 
w- = 

k 
-+;dq 

Ji2yw 
Ymin 

To find the total transition rate, the integral is carried out over all possible 

q, with the limits of inte;:ration set by the conservation of energy to insure the 

existence of a 19* which satisfies /3 = 0 (Ziman, 9 Sect. 10.5). 
- 

From Eq. (14), setting p = 0, solving for q, and allowing cos 8* to range from 

-1 to 1, tie obtain the minimum and maximum positive values of q possible 

k[l+ j$‘2-l]< q .,[(l+$$/2r-l] 

(14) 

(15) 

(16) 
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Integrating Eq. (15) over these limits we obtain 

For transitions between electronic states . I &> and k’) with the creation N 

of one phonon of wavevector q, Fig. lb shows the angular relationships of N 

interest. For this case 

p=L ?2L.- 4m* q 2m+c ks ~0s o* + ; 

qmax 

w; = 
/ 

47re2m*(n f 1) 

-H2YW 
++dq . 

The limits of integration are somewhat different: 

k[l - (1-$$‘2]<q <k [l+ (1 

. 

lending to a total scattering rate 

w+ = 
4m2m*(nq f 1) 

k 2 A y” 

(17) 

, 

(18) 

(19) 

(20) 
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Figure 2 shows a plot of Wi and Ws computed for CsI and 1X1, using values 
w k 

6, E, and or published by Bak,12 The wavelength of the longitudinal waves, A, 

is obtained from the reststrahl frequency, wr, by use of Eq. (7). 

The logarithmic terms in Eqs. (17) and (2 1) are practically identical to each 

other for a given 6, with increasing magnitude from 6= .25 eV to &= 6 eV by . 

approximately a fat tor of 2. 

The mean-free path between collisions 

< x> = j2&h*P2 
w-+w; 

5 - 
(22) 

has been plotted in Fig. 3 as a function of electron energy for several alkali 

halides . 

One characteristic of the results for < A) which becomes apparent at the 

lower electron energies, is that the mean-free path is comparable to the lattice 

constant. The effect is most severe for low atomic number materials such as 

NaF and LiF. The applicability of the theory under discussion, based on a 

macroscopic polarization field and on plane wave electron states, seems quite 

questionable under such circumstances. The results presented in this paper 

should therefore be interpreted with caution at the lower energy end. 

The angular distribution of the scattering can be obtained readily from the 

integrands of Eqs. (15) and (19). For the ca.se of phonon annihilation, 

4ne2m*n 

T12yw 
q;;dq - (23) 

is the rate of scattering into a ring of area 27rk’ 2 sin0 dO , with. the relationships 

q2 = k2+k12 - 2kk cos 0 
(24) 

qdq = kl? sin0 dB . 
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Substituting Eq. (24) into (23) shows that the probability of scattering into a 

ring between 8 and 0 + de is proportional to 

k’ sin0 d0 

k2+kf2 - 2kkl cos e 

where 
kt2=k2+?! 

(25) 

(26) 

The plus sign in Eq. (26) corresponds to the case of phonon annihilation, the 

minus sign to phonon creation. A graph of the function corresponding to ex- 

pressions (25) and (26), normalized to unit area, as shown in Fig. 4a for CsI. 

Figure 4b shows a similar calculation for LiF. Arrows indicate the angles 8 

at which the probability of an electron being scattered to 0 < $ is 0.5 . Although 

it is clear that the scattering is predominantly forward, there is significant wide 

angle scattering which,coupled with multiple scattering in thick films, renders 

the assumption of only forward scattering (Khokley and van Vliet 697 ) inappropriate 

for this study. In particular such an assumption would offer no explanation for 

the quantum yields above 0.5 observed in photoemission experiments with alkali 

halides. 13 

IV. MONTE CARLO SOLUTION 

A Boltzmann transport equation based on the scattering characteristic de- 

scribed above has been developed, but is not susceptible of solution either 

analytical.ly or by numerical integration. The problem is ideally suited to solu- 

tion by a Monte Carlo method of direct simulation, which consists in computing 

the path of a particle from its generation with a particular initial position, 

direction, and energy until its rrdeath” by absorption or escape to a different 
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medium. Given a mean-free time between collisions t, the probability that 

a particle be scattered during any interval of time At of its life is approxi- 

mately At/t, for At << t. 

For an electron which at some time has an energy 6 , Eqs. (17) and (21) 

determine the mean-free times t- (& and t’ (6)) between collisions. Choosing 

an interval At << t- or tf, the probability that the electron suffers a collision 

in that interval of time is (At/t-) -t (At/t’). Let 4’s be numbers from a set 

of uniformly distributed random numbers between 0 and 1. For every interval 

of time At of the life of the electron, we draw one random number. If 

OS [<At/t-, the electron suffers a collision with the annihilation of one phonon. 

If At/t-5 5 < (At/t’) -t (At/t+), the el.ectron suffers a collision with phonon cre- 

ation. If (At/t-) + (At/t+) < 4 < 1, there is no collision and the electron follows 

with the same ener,T and direction for a time At. 

Whenever there is a collision, the electron is assumed t,o emerge instan- 

taneously with a new energy ,$? rt 6, depending on the type of collision. The 

change in 8 with respect to the old direction is computed by properly weighting 

random numbers so that their distributio:i becomes the one given by Eqs. (25) 

and (26). This is done by inversion of the distribution. 14 Let 0’ be the 

random angle with distribution given by Eq. (25), while 5 is uniformly dis- 

tributed between 0 and 1. After obtaining a random number e, we require 

” tl” sin 6 do 
/ o &- 6’ - 2(&~)I’“cos R = 5 

T 

/ 

c$‘1’2 sin 8 dH 

0 
E+ p - 2(&91’%os 6 

(27) 
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(log t? + E’ + 2(&‘)1’2 
= log 

e+ E’ - 2(&91’2 coy 6’ 

E + E’ - 2(&?)1’L 4?+ 6’ - 2(&~‘)l/2 
(28) 

Solving for cos 8’) we obtain 

cos 8’ :- &+tf? 
269 1’2 

(l-B’)+B5 

where 

(29) 

The computations for cos 0’ are carried out in double precision on the IBM 

360/Z computer; otherwise the short computer llwordlT results in high scatter- 

ing angles never being reached. 

The change in $ with respect to the old direction is computed by sampling 

a distribution function which is uniform between 0 and 27r. 

A laboratory set of coordinates is defined with the z direction perpendicular 

to the crystal exit surface, and an appropriate coordinate transformation is used 

’ at each collision point to keep track of the z coordinate and momentum p, of 

the particle. 

In order to determine the number of Monte Carlo trajectories required to 

establish the result with a desired certainty, the-following method described 

by Cashwell and Everett 17 has been used. Let 1’p’7 be the true probability that 

electrons generated with certain characteristics will escape from a crystal. 

After carryin, cr out N trials, it is found that M electrons escaped. Then, the 

ratio of the number of sequences of N trials resulting in a ratio M/N satisfying 
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the inequality 

M I I N -PCE 

to the totality of all possible sequences of N trials is, approximately, 

f(t) = erf (t/J?) (32) 

where 

and 

t = c(N/P(~-P$‘~ 

X 
erf (x) = -$ 

d 
-x2 e dx 

(33) 

(34) 

Enough electron trajectories have been computed so that escape probabilities 

could be determi::cd with a value of c in the inequality (31)of .03, with 95% 

certainty. Depending on mt,terial and initial characteristics of the electrons, 

this varied from 200 to 800 trajectories. 

The next question to be considered is the behavior of an electron reaching 

the surface of the crystal. The customary approach is that of assuming a 

potential barrier at the surface which acts on the normal component of velocity. 

This is considerably more reasonable for the treatment of electron emission 

from single crystals than for the case of evaporated films consisting of many 

small randomly oriented crystals, for which a simpler form of barrier seems 

justifiable. From UV absorption, photoemission and/or photoconduction in 

alkali halide films, one can obtain reasonably good information about the loca- 

tion of the bottom of the conduction band for a number of materials. From 

photoemission data, one can obtain the approximate location of the vacuum level, 

although the disturbances associated with excitons make accurate determinations 

difficult. 
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A survey of the relevant literature on the subject 13,15,16 indicates that 

the electron affinity of alkali halides is quite small. For those materials 

which have been better studied (KF, NaCl, KCl, CsCl, CsI) values of electron 

affinity given are between -. 1 and +. 1 eV. 

For the purposes of these calculations, a value for the surface barrier 

6 min = 0.1 eV will be assumed for all four selected materials. If the energy 

of any electron during its trajectory falls below emin, it will be considered 

absorbed, and will not contribute to secondary emission. It will become ap- 

parent that the results do not strongly depend on emin, for any reasonable 

choice thereof. 

IV, RESULTS OF COMPUTATIONS 

Computations for escape probabilities and energy losses have been carried 

out for electrons moving in films of thickness equal to 250 x . As shown in Fig. 5, a 

metallic substrate is assumed to exist at x = 0 acting as a sink for electrons, 

and the exit surface is located at x = 250 14 . Electrons are assumed generated 

with initial angle 8 with respect to the forward direction. 

For these computations, the film is divided into a 3-dimensional mesh with 

5 initial locations of the generated electrons: x = 25, 75, 125, 1’75, and 225 %; 

8 initial energies between go = .25 and PO= 7.5 eV, and 7 initial angles: 8 = 0, 

30, 60, 90, 120, 150, and 180’. This results in 280 calculations, each with 

several hundred trajectories. With the IBM 360/75 computer, the amount of 

computer time required is approximately 1 hour per material investigated, using 

a Fortran H code, Optimization 2. The choice of 250 % for film thickness was 

dictated as a necessary compromise between computation time and accuracy of 

results, as discussed in Sect. IV a., below. \ 
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a. Results for Cesium Iodide, m*/m = 1, T = 300’K 

Figure 6, a through g, shows the probabilities of escape P(Eo, x, f3) 

through the forward exit surface of electrons generated with an ener,gy Eo, 

at a position x, with a direction 0 with respect to the forward direction. 

The range of errors shown is for 95% certainty in each computation, as dis- 

cussed above. The effect of scattering other than forward is very marked, 

particularly at the lower energies where the probability of escape for electrons 

generated at 6 > 9o” is very substantial. 

When the electrons are generated isotropically, the escape probability 

averaged over all angles can be obtained from 

P “(go, x,0) sin8 de 
0 

(35) 

Having divided 8 into six sections of 30’ each, the above integral can be 

evaluated approximately by a summation. The results are shown in Fig. 7; 

the estimated statistical errors are approximately + .035. 

The escape probability for . 25 eV electrons has an exponential character. 

When plotted versus x on a semilogarithmic plot, the result is a straight line 

corresponding to a characteristic exponential escape length Ls N 62 a, except 

for small x (near the substrate), where the escape probability is smaller than 

that given by the exponential. This reflects the fact that the substrate con- 

stitutes a sink for electrons arrivin g at x = 0 with negative components of 

velocity. If there were more alkali halide material for x < 0, such electrons 

would have a chance of being scattered into the forward direction and of con- 

tributing to secondary emission. For electrons of energ 0.5 eV and higher, 

the escape probabilities are best fitted by straight lines in the linear plot of 

Fig. 7 , which result is attributed agai.n to the presence of the sink for electrons 
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at x = 0. The effect becomes important when the thickness of the film is 

comparable to the exponential length characteristic of a semi-infinite medium. 

For example, for go = .5 eV, the exponential length, Ls, obtained,from the 

results of the calculation for a 250 A) film by fitting to the two points of largest 

x is L s z 220 1 . This value of characteristic escape length Ls coincides 

quite well with the results of computations carried out for 500 2 films. Equally 

good agreements are obtained at higher energies. 

Neglecting the effects of the sink for electrons at the substrate, i. e. for film 

thickness considerably more than 250 8, one can define escape probabilities of the 

form 
P(tYo93 = Po(fo) exp II -W-x)/Ls(~o) 1 (36) 

where T is the thickness of the film. Table 1 gives values of Po(,$o) and Ls 

so computed for CsI and for the three other materials selected. 

The energy distribution of emitted electrons has a very characteristic 

shape. Figure 8 shows P(fi; F= 1 eV, 6 = 0, x) , the probability that one 

electron with initial energy of 1 eV, generated in the forward direction from a 

source at x will emerge with energy ti . The analysis of energies has been 

carried out in channels with a width of .05 eV. The approximate error in each 

channel is t. 03 to .05 for 95% certainty. Normalization of Fig. 8 is to the 

actual probability of escape. In general, P(Ei) becomes less peaked when the 

initial angle t9 departs from zero and when the energy is made lower because 

of an increased number of collisions. 

A quantity of interest in studies of electron emission is the mean energy 

loss of those electrons which do escape the film. Figure 9a shows the mean 

energy loss in CsI for electrons of initial energy go generated isotropically 

at a position x within the film. Two details must be pointed out regarding the 
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results: (1) The channel width for the analysis of energy is .05 eV. Therefore, 

if most of the electrons fall in the channel adjacent to the one corresponding to 

the initial energy (e. g. , for to = 4.5 ev), the mean energy loss will be l/2 

channel by design of the computer program. Thus, when the losses are low 

and the energy distribution becomes narrow, the mean energy loss converges 

to .025 eV instead of going towards zero. (2) When the initial energy r$o is 

low, the electrons which are able to escape from the film can only have lost a 

small amount of energy, because of the proximity between e. and Fmin, the 

threshold energy for absorption. Thus the curve of energy loss for co = .25 eV 

appears below the one for PO = .5 eV in Fig. 9a. In the case of CsI, the choice 

Of ‘min affects only the results for to = .25 in any significant way. The 

standard deviation of the energy spectrum, giving a measure of the spread of 

energies is shown in Fig. 9b. 

The correlation between the energy and angle for electrons escaping from 

the film can be studied approximately by defining a correlation coefficient X 

as 

where the summation is over all outgoing electrons; P(&, “3 is a normalized 

probability that electrons which started isotropically from a given ‘W and 

energy will reach the surface in a channel corresponding to (E’, 03. The 

means F and e, and the standard deviations q 
6 

and o0 have the 

customary definitions. When calcl:lated in this way, X only has a definite 

physical meaning when the distributions are Gaussian. This is not the case here, 

but “(pi, and P( Oi) are well behaved and roughly symmetrical. Therefore X 

should be a useful measure of correlation. 
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I 

For 250 2 films of CsI and NaF,electron generation at a few selected 

initial energies and positions has been analyzed, The largest correlation 

(X-0.1) occurs for low energy electrons generated far from the exit surface. 

The effect of scattering to directions other than purely forward 

has the effect of randomizing the electron distribution, destroying the definite 

energy-angular relationship obtained by Khokley and van Vliet. 6 

b. Results for KCl, NaF, and LiF, m*/m = 1, T = 3OO’K 

Table 1 gives the values of Po(to) and Ls for the escape of electrons 

generated isotropically in KCl, NaF, LiF, and CsI. 

Progressing from alkali halides with high Z towards those with low Z, 

the phonon energy increases and n q decreases. Since the rate of collisions 

with electron energy gain is proportional to n 
q 

and the rate with energy loss is 

proportional to nq+ 1, collisions with energy loss are most predominant for the 

lighter ions. Also&he energy loss per collision increases for the lighter ions. 

These qualitative considerations predict a decreasing value of Ls, for a given 

initial energy, in going from CsI to LiF, as is reflected in the results of the 

table. The randomizing effect due to non-forward collisions becomes very strong 

for the lighter ions, particularly at low Fo, as is seen by comparing PO (co) for 

a given initial energy, for the different materials. 

Figures 10, 11, and 12 show mean energy loss and standard deviation for 

electrons generated isotropically at position x, with energy to in KCl, NaF, and LiF 

films, respectively. Although the mean energy losses were of the order of 0.1 eV 

in a 250 1 film of CsI, they become of the order of 1 eV for NaF, and even larger 

for LiF. The distribution of energies broadens as the losses increase. 
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V. DEPENDENCE ON .&X?FIXTIVE MASS AND TEMPERATURE 

‘,. 

Equations (I 5) and (19) indicate that, for a given energy c’= Z2k2/2m*, 

the scattering rate is proportional to (m*) l/2 . The velocity is proportional to 

(m*) 
-l/2 , so it follows that the mean-free path is proportional to (m*) -1 . For 

a film, with thickness large compared to the characteristic escape length of the 

electrons under study, the effect on the escape probabilities and energy losses 

can easily be seen. Consider the follo-b:ing Monte Carlo experiment: Take one 

electron generated in son1e particular direction at a depth lYdY1 from the exit 

surface. Take a sequence of random numbers prescribing a trajectory for 

the electron ending with its escape into the vacuum, for m* = m. Next consider 

the same sequence of random numbers for the same initial conditions but wit11 

m*/m = am. As the experiment progresses, the length of each straight section 

in the trajc lory will be the original length divided by am. At the end of the 

sequence the electron will have travelled l/an1 of its way to the exit surface, 

or d/am towards the va.cuum. It follows that its probability of escape and 

exit energy would be the same as if the electron 11ad m* = m but had been 

generated at a depth czmd. 

The mean-free path is proportional to l/(2nq -I- l), and the temperature 

dependence enters through n q, as given in Eq, (2). Analogously to tl1e m* case 

above, this leads to a length-modifying factor: 

a!T = (2nq(T) + 1) / (2nq(3000K) -I- 1) . 

In gcncrnl, tl1e dependence of the escape probability on c~ is given by 

~q. (36) wit.h a modified cscspe length, IJs/a 

p(~o’x) - poitQ -v(- (T-X) a&$) (39) 
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VII. CONCLUSION 

The results of the Monte Carlo calculations presented above give an ac- 

curate account of the electron transport phenomenon due to the electron-phonon 

interaction, as computed from perturbation theory. Qualitatively, the results 

seem quite plausible. The companion paper provides a quantitative experi- 

mental verification by the study of transmission secondary emission from thin 

films of alkali halides. 
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TABLE 1 

II’ = 300°K, m*/m = 1 

:s1, ?iw long. =.0105 eV, n 
q 

= 1.987 ‘I %NaF, -KU 
long. = .0513 eV, nq = .159 

Xl, nw long. 
=.026 eV, n 

Y 
=.557 

ZSI 

- ($otw PO@()) Ls(b, 

.25 . 9 62 

.5 .83 220 

1.0 .81 260 

1.75 .76 295 

2.5 . 71 375 

3.5 .68 395 

4.5 .63 540 

5.5 .62 650 

NaF 

FoW) po’c$o, Ls(8, 

.5 Zl <12i 

1.0 .98 22 

1.75 .8 77 

2.5 . 78 130 

3.5 .77 240 

4.5 .76 2G5 

5.5 .77 290 

6.5 .77 330 

7.5 .7 380 

,LiF, -lGti long. = .0822 eV, nq = .0435 

KC1 

-$(ew 

.25 

pot EoJ L$) 

%l. 0 <lO;i 

.5 .9 29 

1.0 .8 121 

1. 75 .8 240 

2.5 .76 280 

3.5 .71 330 

4.5 .69 360 

5.5 .68 370 

1 =l < 12K 

1.75 . 9 29 

2.5 .86 57 

3.5 .75 128 

4.5 .75 185 

5.5 .76 240 

6.5 .75 270 

7.5 .76 285 

Values of Po(Eo) a.nd Ls for CsI, KCl, NaF and LiF as a function of 

initial energy co for elcctro~~s generated isotropically. 
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