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ABSTRACT 

A solution for the problem of expressing the four electromagnetic 

form factors of the nucleon in terms of the p”, w and @ resonances is pro- 

posed. The asymptotic behavior and analyticity properties of the solution 

are determined. The agreement with experiment is excellent. 
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It is the main purpose of this work to propose a solution to the 

problem of expressing the electromagnetic form factors of the nucleon in 

terms of only the p”, w and #I resonances’. 

The general properties which we require the solution to have are: 

a) it is the sum of three terms representing the contribution of 

the p”, w and @ resonances respectively, 

b) analyticity, 

c) the coupling coefficient of each term should be a slowly varying 

function of the square of the four momentum transfer t in the 

space-like region t < 0 and which tends to a constant for 

The simplest expression satisfying the requirements a), b), and c) 

is then the following: 
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GMp tt) is the proton magnetic and GEp(t) is the proton electric 

form factor2. GMN(t) and G&t) will indicate in the following the neutron 

magnetic and neutron electric form factors respectively. 

The rest of our notation is the following: ak, yk, tk are the square 

of the resonance’s masses, widths and threshold values respectively. The 

value k=l corresponds to the p”, k = 2 to the w, and k=3 to the + resonance. 

The values of t quoted in our work will always be in (GeV)2; masses, widths 

and thresholds will be given in GeV. Their values, taken from experiment, 

are: 

ak 

0.585 

0.608 

1.040 

k 

0.12 

0.012 

0.003 

tk 
0.078 

0.176 

0.980 

Table 1 

The additivity condition a) together with the isotopic spin structure 

of the nucleon electromagnetic for?1 factors imply that the expression for 

GMN(t) and GEN(t) corresponding to (1) and (2) can be obtained by simply 

changing the sign of the p” term: 

GM@) = - El(t) f#) + e2(t) f‘#) -t-c3(t) f3W 

G&t) = - P,(t) f,ct) + P2@) f2F) + P,(t) f3W 

(3) 

(4) 
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where we have put 

fktt) = 1 

t- ak- yk v 

We are faced with the problem of determining twelve parameters, 

six Ek ‘s and six p k ‘s, from experimental and theoretical boundary conditions. 

The well-known relations: 

Flv2 ft) = 8 [ F[ 2 (0 - Fc2 (I)] 2 
t5a) 

F,P(t) = [GEp(t) - 7GMPtt)]/ (1 - 7) 

F;(t) = [GE,#) - TGnlN(t)]/ (1 - 7) 

F;(t) = [Ghlp(t) - GEptt)]/ 0 - 7) 

F,n(t) = [($& - GENW]/ 0 - 7) 

W) 

(T = t/4M2, M is th e mass of the proton) for the Dirac and Pauli form 

factors Flp’2n (*) and for the isovector and isoscalar form factors F v,s 
, 1,2 ’ 

impose three linear relations among the twelve parameters. Indeed in order 

(*) Normalized as F:(O) = 1; F;(O) = 0; F2p(0) = 1.79; F2n(0) = - 1.91. 



- 5- 

that the F’s do not have a singularity at t = 4M2 we must impose the conditions: 

‘k” = (Ei- 

With these conditions we find: 

Flv(t) = (pl’ + cl0 t) f;(t) 

F,Vtt) = (~11 - P:, f12 (t) 

F;(t) = (P,l + c2’ t) f22(t) -I- (P,l + E 3° t) f32(t) 

F,Stt) = 62 - /j;) fi” (t) + (E 3’ - P;) f3” (t) 

R = 1,2,3 (4 

(6) 

The normalization conditions at t = 0: 

Flv(0) = 4 ; F2v(0) = 1.85; F;(O) = 4 ; F,‘(O) = - 0.06 0% 

and the experimentally determined values of the derivatives of the form 

factors at t = 0: 3 

= 7.98; 
t-o 

= 2.95; 
t=o 

c-2 
= 0.497 

t=o 
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give eight further linear relations among the twelve parameters; however, 

explicit calculation shows that the eleven conditions (A), (B), and (C) permit 

one to eliminate only ten of the twelve parameters (*). We choose c2” and 

c3’ as the two remaining independent parameters. Let us consider their 

physical meaning. 

According to the usual definition of coupling constants it seems 

reasonable to define: 

(pl+ E O 1 1 t, fl(t) = gyp @) gpNN(t) 

(P; + cz” t, f,(t> = gyw tt) g,,,@) P) 

(P,l + '3' t, f,(t) = 8,@) g@#) 

where the left hand side of (D) are just the coupling functions of FIV(t) and 

of the w and C/J terms of Fl’(t) respectively, and g 
yP @) 

. . . . g@,(t) represent 

the coupling functions of the vector mesons to the photon and to the nucleon 

respectively. 

It now seems reasonable to assume the following asymptotic con- 

ditions: 

(*) c: and pll are already determined by (6) and therefore the value of F2’(0) 

predicted. Condition (C) for d F2V/dt is satisfied within 15%. 
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(11) ‘13 = , $zrn 

= 2.63 

= 1.63 

Condition (I) and (II) are equivalent to the requirement of the asymp- 

totic validity of SU3 symmetry, the values of r12 and r13 being those predicted 

by SU3 and a definite w-$I mixture of unitary singlet and octet4. 

With these assumptions we can determine c2’ and e3’ - except 

possibly for their sign - and therefore all the parameters appearing in the 

form factors. Investigating all the four possible solutions with + c2’, + c3’ 

we find that the comparison with experiments favors E O>O, EO>O. 2 3 
The values of the parameters obtained are therefore: 

‘k” ‘k” 

1 - 0.487 0.900 - 0.286 0.192 

2 0.185 -0.117 0.151 0.003 

3 0.299 0.817 0.379 0.535 

Table 2 

DISCUSSION OF THE RESULTS 

We compare to exlperiment the prediction of our solution Eqs. (l), 

(2)) (3)) and (4) with the values of the parameters given in Table 2. 5 Figs. 

l), 2), 3), and 4) show that there is a generally good agreement between our 

results and the experimental data available in the space-like region t < 0. 
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In the time-like region the form factors become complex for t > 5, since 

the expression under the square root in the first term of (1), (2), (3), and 

(4) becomes negative6. The only experimental measurement in this region 

is an upper limit for the cross-section of the annihilation process 

p+P-e+-l-e- at t = 6.8, which gives a value of I GMp l/2.79 2 0.04. 7 

In Fig. 5 we have plotted I GMp (t) I /2.79 for 0 5 tl 10. A dis- 

cussion of the analyticity properties of the form factors can be found in the 

Appendix. We shall prove there the expressions (l), (2), (3), and (4) satisfy 

a dispersion relation. 

A few comments are in order at this point: 

a) Our solution is not a fit to the experimental data, since we have 

predetermined all our parameters from theoretical and experimental boundary 

conditions and then compared our prediction to experiment. 

b) Our results give strong support to the vector dominance hypothesis 128 . 

c) Just the p”, w and $I resonances are sufficient in order to explain 

the known experimental facts about the electromagnetic form factors. In par- 

ticular, no p t isovector resonance is necessary. 

d) It can be seen directly from (l), (2), (3), (4) and Table 2 that the 

proposed form factors have the following asymptotic behavior: for I t I - ~0 

v,s all the form factors G as well as Fl” n and Fl tend to zero as t -1 , while 

the form factors F2p’ n and F2” ’ tend to zero as tm2. 

e) The solution we propose shows that the electromagnetic form 

factors, as a consequence of their analyticity properties and of their asymp- 

totic behavior obey unsubtracted dispersion relations. 
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f) Our solution does not satisfy an exact *r scaling lawfl 

GEptt) = GM~ (t)/2.79 = GMN(t)/- 1.91, but suggest that these relations 

have only an approximate, empirical validity, 

g) The behavior of the coupling functions g 
ydt) gvNN(t) is quite 

different in the space-like and in the time-like regions. For t < 0 they are 

real and vary slowly, while for t > \ they become complex and show a be- 

havior similar to that of the index of refraction in optics. 

h) If we assume that the coupling g,,,(t) is approximately constant 

for small, negative t values and if we take its value to be z 5 we have an 

estimate of g 
YP 

for t < 0: I g yp I = 0.06. This value of g 
YP 

is smaller 

but not in disagreement with other estimates 10 , which give g 2 0.1 with a 
YP 

30-40s error, 

i) It can be seen from Table 2 that there is a tendency for cancel- 

lation between the isovector and isoscalar parts in GMp and a little also in 

GEP at large t values, while the same effect occurs in GEN and G 
MN at 

small t. 

j) The presence in our solution of poles of second order (*I suggests 

the following physical interpretation of the photon nucleon interaction. The 

unitarity condition 

Im< NRI j:” lO>=X 
n 

< NflITln><nljEmlO> 

shows that the 2n, 3n, e intermediate states contribute to the form factor 

via first an electromagnetic interaction which creates them and then via a 

strong interaction which converts them into NR. The vector dominance 

(*) In the unphysical Riemann sheet. 
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hypothesis then su,, Do-ests that the fi.rst step takes place mainly through a 

vector meson resonance. However, the strong interaction amplitude to 

has a pole at the vector meson mass. For example, if we consider the iso- 

vector contribution to Im G, one pole may be associated with the pion form 

factor and another with the pion-nucleon scattering amplitude. 
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APPEhDIX 

The proof that our solution satisfies a dispersion relation consists 

in showing that an expression such as (l) does not have singularities in the 

upper half-plane of the complex variable t. Since it decreases sufficiently 

fast for I t I - m it then satisfies Cauchy’s theorem from which follows 

that it also satisfies a dispersion relation. 

To prove the analyticity we write for any one of the form factors: 

G(t) = c (ak’t +a;) 
1 

k (t - ak - Yk ?/ttFiJ2 

= c 
k 

= c 
k 

2 

where k yk a+ = ak - 2 -- 

Xk = ak- tk 

The only singularity G(t) may have in the upper plane is therefore at t = CY:. 

Let us write: 
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G(t) = c (6$ + 6;) 
k (t - at)2 

Our choice of sign of the width term 12 in expression (1). . . . (4) 

guarantees that G(t) is finite at t = CY!. Indeed if t moves in the upper half- 

plane from a point on the real axis at t < tk to a point on the same axis at 

t > tk (i. e. 6 = 7~ goes into 0 = 0) we see that we must choose the analytic. 

continuation 

-$ip-- iq- 

since for 0 = T we have chosen the + sign of the square root. 

If we use the identity: 

WC find 

limk G(t) = 

t-o! + 

This proves that G(ol$) is finite. Similarly one can verify that g 
I 

is also finite. 
t = CY’: 
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FIGURE CAPTIONS 

Figure la - lb 

Figure 2 

Figure 3 

Figure 4 

Figure 5a - 5b 

The solid line is our theoretical solution for 

GI,,Ip(t); the experimental data are taken from 

Ref. (5). 

The solid line is our theoretical solution for 

GEP(t); the experimental data are taken from 

Ref. (5). 

The solid line is our theoretical solution for 

GNIN(t); the experimental data are taken from 

Ref. (5). 

The solid line is our theoretical solution for 

GEN(t); the experimental data are taken from 

Ref. (5). 

The solid line is our theoretical solution for 

GMN(t) in the time-like region t 0; the upper 

limit is taken from Ref. (7). 
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