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Introduction 

A term is an individual constant or variable or an n-adic function 

letter followed by n terms. An atomic formula is an n-adic predicate 

letter followed by n terms. A literal is an atomic formula or the negation 

thereof. A clause is a set of literals and is thought of as representing 

the universally-quantified disjunction of its members. It will sometimes 

be notationally convenient' to distinguish between the empty clause Cl , 

viewed as a clause, and 'other' empty sets such as the empty set of clauses 

even though all these empty sets are the same set-theoretic object $. A 

ground clause (term, literal) is one with no variables. A clause C' 

(literal, term) is an instance of another clause C (literal, term) if there 

is a uniform replacement of the variables in C by terms that transforms C 

into C'. 

The Herbrand universe Hs of a set S of clauses is the set of all terms 

that can be formed from the function letters and individual constants 

occurring in S (with the proviso that if S contains no individual constant, 

the constant 'a' is used). An interpretation I of a set S of clauses is a 

set of literals such that for each atomic formula F that can be formed from 

an n-adic predicate letter occurring in S and n terms from HS exactly one 

of the literals F or F (the negation of F) is in I. 

For any set J of literals, ? is the set of negations of members of J. 

The set J satisfies a ground clause C if J(I C # fi and condemns C if C - ? = $. 

L Note, for example, that the empty set is a satisfiable set of clauses 

but at the same time is an unsatisfiable clause. 
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J satisfies a non-ground clause C if it satisfies every instance of C and 

condemns C if it condemns some instance of C. A clause (possibly ground) 

that is neither satisfied nor condemned by J is said to be undefined for J; 

otherwise it is defined for J. J satisfies a set S of clauses if it 

satisfies every clause in S and condemns S if it condemns some clause in S. 

An R-interpretation of a set S of clauses is an interpretation I of S 

having the following properties: Let a, @, and y be any terms in Hs and 

L any literal in I. Then 

1. @=a) E I 

2. If (a= @) E I then (S = a) E I 

3. If (a = @) E I and (S = 7) E I, then (CX = 7) e I. 

4. If L' is the result of replacing some one occurrence of cx in L 

by S and (a = B) E I, then L' E I. 

An (R-)model of S is an (R-)interpretation of S that satisfies S. 

A set S of clauses is (R-)satisfiable if there is an (R-)model of S; 

otherwise it is (R-)unsatisfiable. 

If S is a set of clauses or a single clause and T is a set of clauses 

or a single clause,S (R-)impfies.T(abbreviation S f" T or SbR T) if no 

(R-)model of S condemns T. 

A deductive system W is (R-) deduction-complete if Skw T (T is 

deducible from S in the system W) whenever S&z T (SgR T). W is (R-) 

refutation-complete if Skw@ whenever S is (R-) unsatisfiable. 

Equality in Automatic Theorem-Proving 

The methods for dealing with the concept of equality in theorem proving 

can be grouped roughly into three classes: (1) those which employ a set of 
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first-order axioms for equality, for example, the following set (which we 

shall callE(K), where K is the set of first-order sentences under study): 

(5) (x1) (x1 = x1) 

(ii) (x,)...(xn)(xo) (xj # xoVkl...x....xn V Px,...xo...xn) (j=l,...,n) 

(iii) (~~)~..(x~)(x~) (xj # x0 V f(xl..J"j...xn) = f(x,...xo...xn),)) (j=l,*..,n) 

where n axioms of the form (ii) are included for each n-adic (n>O) predicate letter 

P occurring in K and n axioms of the form (iii) 

function letter in K2; (2) those which employ a 

axioms for equality; and (3) those which employ 

as a rule of inference. 

are included for each n-adic (n >O) 

smaller set of second-order 

a substitution rule for equals 

Some Desirable Properties for Theorem-proving Algorithms 

In addition to the logical properties of soundness and completeness, 

two sets of somewhat more elusive properties are of interest in judging the 

usefulness of the inference apparatus for autcmatic theorem proving, 

The first set of properties (efficiency, brevity, and naturalness) 

are global properties in that they deal with the entire proof or proof-search 

and are of interest in themselves. Efficiency refers to the ease or dispatch 

with which the search procedure locates a proof, Brevity refers-to the lengths 

of proofs found, Naturalness refers to being in the spirit of what a human 

mathematician might write in a proof. Other factors being equal, a briefer 

proof might be considered more natural, but naturalness goes beyond this. 

For example, among proofs of roughly the same length, a unit resolution 

proof 3 might be considered more natural than a non-unit proof. 

2 Note that an interpretation I of K is a R-interpretation of K iff it satisfies E(K). 

3 In effect one that is free from simultaneous case-analysis type reasoning 
and which prefers modus ponens to syllogism -- formally, one in which non- 
unit clauses are never resolved against each other. 
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The second set of properties (immediacy, convergence, and generality) 

axe local properties in that they focus on only a small part of the proof 

or proof-search and are of interest primarily because they contribute to 

other properties such as efficiency. 

Immediacy is rather easily grasped. Ck2e inference apparatus Q is 

said to be more immediate than another apparatus t!% at least for the case in 

question) when & enables one to deduce a given conclusion from a given set 

of hypotheses in fewer steps than as . For example (see Figure 1) if to infer 

F from D and E by 8 one first had to infer G from D and only then infer F 

from E and G while a allowed the inference of F directly from D and E in 

one step without recourse to G, then a would (for this case) be more 

immediate than 8 O 

Convergence is a slightly subtler but, for automatic theorem-proving, 

perhaps more important property. Consider the clause G in the example 

above. Often such sn intermediate result will seriously detract from 

proof search efficiency by interacting with other clauses to produce 

unnecessary "noise" in the proof search space, either by generating 

successive generations of less than helpful clauses, or somewhat less 

seriously, by requiring additional machine time to determine that no 

interesting clauses can be inferred from G. Freedom from this generation of 

"side-effect" clauses we call convergence. Thus in the example, a is both 

more immediate and more convergent than 43 . 

-4- 



D 
d 

a 
i 
F 

D 

8 

1 
G 
4 

1 
B 

F 

Figure1 

-5- 



Generality refers to choosing to infer a clause C rather than a proper 

instance of C when either inference could be made from the premises without 

loss of soundness. For example, inferring from f(xa) = g(x) and Qf(xa) the 

conclusion Qg(b), although sound, would be less general than inferring Qg(x). 

It is not difficult to see the advantage of inferring a clause rather 

than a proper instance of that clause, since the more general clause, being 

stronger, has greater potential for future inferences, Perhaps even easier 

to see is the problem of deciding which proper instance to select if a proper 

instance were to be preferred to the more general clause, Usually there is 

an infinite set of proper instances. For example, from h(xyy) = g(x) and 

Qn(zww)a, we can infer Qg(x)a by substitution, There is, however, an infinite 

set of proper instances of Qdx)a which could also be legitimately inferred, 

Among these are Qg(a)a, Qg(g(a))a, Qg(g(g(a)))a..o . We shall .apply the 

phrase most general to a clause (or term) C with respect to some given condition 

when C satisfies the condition and no clause (term) which satisfies the 

condition has C as a proper instance. 

of the approaches to equality given earlier, approach 1 has three obvious 

disadvantages. One has to do with length of deduction chains in the proof. 

In order to infer from 

(1) &a and 

(2) a=b 

the result 

(3) Qb 

one must first infer from the axiom 

(4) X#Y v -3 v QY 

and, say (l), the intermediate result 

(5) a#Y v Qy 
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before passing from (5) and (2) to (3). By contrast, approach 3 would allow 

us to go directly from (1) and (2) to (3) without ever inferring the inter- 

mediate result (5). Thus approach 3 contributes to brevity of proofs. More - 

important for proof search, it contributes (by means of immediacy) to brevity 

of deduction chains within proofs. - 

A second, and perhaps more serious disadvantage of approach 1 as 

compared to approach 3, is that the intermediate debris such as step (5) 

tends to spawn increasingly larger generations of generally useless offspring, 

polluting the search space badly. We describe this difference by saying that 

approach 3 tends to be more convergent than approach 1. (Presence of various 

subsidiary strategies such as set of support may possibly in some cases tend 

to mitigate the severity of such non-convergence effects.) 

The third disadvantage of approach 1 is perhaps the least important 

although superficially the most obvious: the equality axioms E(K) must be 

present. The clerical chore of writing them all down could be eliminated 

merely by incorporating into the theorem-prover a program to generate them. 

Alternatively they may be specified by means of a schema (we shall call this 

variation approach lb), or in approach 2 by means of a few second-order 

axioms. We feel that this third disadvantage is so superficial and trivial 

(since one can simply place E(K) outside the set of support as is done in 

the standard set of support variant of approach 1) as to be quite spurious. 

The method given by Darlington(l968)whether it be classed as approach 

lb or as approach 2 can be taken as typical of methods which avoid the third 

disadvantage (greater number of explicit axioms) but fail to dent the 

first and second disadvantages (longer deduction chains and non-convergence). 

In effect Darlington infers (5) from (1) and 

(4') x # Y 'v cp(x> LJ V(Y) 
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which is thought of either as a schema defining a set of first-order axioms 

including (4) or as a single second-order axiom having (4) as an instance, 

Parsmodulation 

Since our automatic theorem-proving environment consists exclusively 

of clauses, we should like our rule of inference for equality to operate on 

two clauses and yield a clause, Furthermore we should like it to apply to 

units and non-units alike 4 and to yield a most general clause that can be 

R-soundly inferred. We shall now describe the inference rule for para- 

modulation, which is asserted to have these properties. Examples of paramodula- 

tion are given in Figure 2.5 

Paramodulation: Given clauses A and a'=@~ B (or @'rix' V B) having no 

variable in common and such that A contains a term 6 with 6 and a' having a most 

general common instance a identical to af[si/ui] identical to 8[tj/wjl, 

where A' is obtained by replacing in A[tj/wj] some single occurrence of (3 

(resulting from an occurrence of S)6 by pt[si/uil, infer A’ V B[s~/u~].~ 

4 Consider for example the set S = {c=d v ?$c, dc)#dd) v 2% 
a=b v Qc, da)#db) v Qc, x=x) 0 If the rule applied only to units, it 
would not be possible to refute this R-unsatisfiable set. 

5 These examples are primarily to give an intuitive idea of how parsmodulation 
works. A comparison of the length and complexity of parsmodulation proofs 
vs. resolution proofs can be obtained by considering the proofs of the 
theorem from group theory to the effect that x3=e implies ((x,y),y)=e. 
The resolution proof is 136 steps long while the paramodulation proof 
is 47 steps long. These proofs appear in the appendix, 

6 Without this restriction one could infer from a=b and QxavPx the clause 
Qab V Pa(a proper instance of the paramodulant QjxbvPx),resulting in a 
loss of generality. 

7 Since every non-trivial immediate modular& (see Wos et.al, (1967b)) of a -- 
clause is a paramodulant, any clause obtained by demodulation can be obtained 
by repeated parsmodulation. 
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From a superficial point of view, parsmodulation might be described as 

"a substitution rule for equality". Indeed, the motivation given above for 

studying the rule has dwelt principally on that aspect of parsmodulation. 

But to consider it as only substitution of equals for equals would be to make 

a mistake analogous to characterizing resolution as merely a syllogistic 

inference akin to that employed by Davis and Putnam (1960). The property of 

maximum generality provided by paramodulation must not be overlooked if the 

process is to be fully understood. Consider the following example: 

From f(xg(x))= e v &x and Pyf(g(y)z)z v Wz one can infer 

Pyddd> v Q&Y) v Wg(g(y)) by parsmodulating with 

f(xg(x)) as a' and f(g(y)z) as SO 
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Exmple 1: Example 2: Example 3: Example 4: 

10 a= b 10 a= b 1. &= b 1. a=b 
2. Qa 2. w 2. QK v Px 20 Qx vh 
30 :. Qb 3. :. Qb 3. :. Qb VPa 3. :. &a v m 

Example 5: 

1, x = h(x) 
20 &g(Y) 
3. :. QBMYY) 

Example 6: 

1, a= 
.:- Q$h(j(a)))) 

. . . QJ(dh(jb)))) 

Example 7: 

1, f(xg(x)) = e 
2. PyfMY)4Z 
3. :. Pyeddd 1 

Examle 8: 
L 

If x2 = e for all x in a group, the group is commutative, 

1, f(ex) = x 
2. f(xe) = x 
30 f(Xf(YZ)) = f(fbdz 

4* xi = e 5. a =c 
6. c + fb) 
70 fb4 = fWw)d 
8. x = f(f(XY)Y) 

a = f(cb) 
1:: f(yf(yz)) = f(ez) 

> 

4 into 3 with 6: f(yz) 
2 into 7 on f(xe) 
5 into 8 on f(xy) 
4 into 3 on f(xy) 
1 into 10 on f(ez) 
9 into 11 on f(yz) 
12 into 8 on f(xy) 
13 resolved with 6 ' 

Figure 2, 
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Completeness of Parsmodulation for Basic Group Theory 

Consider the following clauses from the first-order theory of groups: 

Al 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

Al0 

All 

Al2 

AJ.3 

Al4 

-Fxyu v -F$zv v Fuzw v Pxvw 

-Ecyz v -5yu v z=u 

zfuiexyz VPxyu 

z # u v Fxzy v Pxuy 

z+uvFzxydPuxy 

x=x 

x+y \I y=x 

x#y L/ y#z vx=z 

x # y v f(xz) = f(yz) 

x + y v f(zx) = f(zy) 

x B Y v g(x) = dY> 

closure 

left identity 

left inverse 

associativity (case 1) 

uniqueness of product 

substitution (3rd position) 

substitution (2nd position) 

substitution (1st position) 

reflexivity 

symmetry 

transitivity 

f-substitution (1st position) 

f-substitution (2nd position) 

g-substitution 

Let us define a basic set S of clauses of group theory to be a set 

over the vocabulary of Al-Al4 and such that Sk {Al,.0.,A5] O We then have 

the following completeness result for the special case of basic sets. 

Theorem: If S is a satisf&ble fully paramodulated fully factored 

basic set of clauses of group theory, then S is R-satisfiable. 

Proof: Let M be a maximal model 8 of s. Suppose thata=S and p1/m are 

both in M. By the maximality of M, there must be clauses A and B in S having 

instances A': a=@ v KandB': PySa V L with Kfl M = fl= L fi M. Then factors 

of A and B can be parsmodulated on the arguments corresponding to a to give a clause 

in S having Py6BvKVL as an instance, Since M satisfies S, (PY@vKvL)n M # $ 

8 The concept of maximal model is defined and the pertinent existence theorem 
proved in Wos and Robinson(l968a). For the present purpose a maximal model of S 
may be thought of as a model M such that for each positive literal x in M 
there is an instance C' ofsomeCinSwithC'flM= x . L 3 
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But (KvL)n M =-$8. Hence Pr@ E M. Thus M satisfies A6. It can be shown ' 

that Al-A6 k A7-A14. Hence M satisfies A~-AJ-~ and is therefore an R-model 

of s. 

This result is generalized to the case of what will be called 

functionally-reflexive systems in the next section. 

Completeness of Parsmodulation for Functionally-Reflexive Systems 

Parsmodulation is intended to be utilized, along with resolution, for 
10 

theorem proving in first-order theories with equality. 

We first give an algorithm for generating a refutation (of a finite 

set of clauses) employing paramodulation and resolution if such a refutation 

exists. 

Full Search Algorithm (FSA): Let So be the set of all factors of the 

given set S of clauses. For odd i > 0 let Si be formed from Si lby adding 

all clauses that can be obtained by parsmodulating two clauses in Si 1Q 

For even i > 0 let Si be formed from Si 1 by adding all factors of clauses 

that can be obtained by resolving two clauses in Si l. Since each deduction 

from S is contained in Sn for some n, each refutation of S must be contained 

in Sn for some n. Each Sj is finite. If Sj contains i7, a refutation has 

been found, so stop. Otherwise form S j-+1' 

9 Robinson and Wos (1967~) 

10 
The earliest formulations of parsmodulation were designed to operate without 
resolution and could be shown to subsume resolution as a special case. 
It is felt, however, that the processes can be better understood if the 
inference apparatus not involving equality is isolated from the apparatus 
for equality, even if this means that some of the completeness theorems 
cannot be stated in quite as pat a fashion. 

11 
Every aJ.ause is a factor sf itself as in G. Robinson et,al. (1964b). For -v 
further definitions of factoring an& resolution see Was et.al.(1964a) and CL 
J. Robinson (1965)- 
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Now, to prove that parsmodulation and resolution are complete for 

theorem-proving in first-order theories with equality, we would like to show 

that FSA is a semi-decision procedure for R-unsatisfiability. The difficult 

part is to show that, for R-unsatisfiable sets of clauses, there exists a 

refutation, i.e,, that parsmodulation plus resolution is R-refutation complete. 

It will suffice to show that an unsatisfiable set can be deduced from an 

R-unsatisfiable set, since (due to the refutation7ccmpleteness of resolution) 

FSA will generate a refutation if it ever generates an unsatisfiable set. 

For functionally-reflexive systems S (theories such that Sj-a = a for 

a 2 x1 and for a = fh, .0.,X n) f or each n-adic function letter occurring 

in S -- there are h-+1 such unit clauses where h is the number of function 
12 

letters in the vocabulary of S), we prove refutation completeness in (1968~) . 

Frcm that result we csn obtain the following corollary: If S is a finite 

functionally-reflexive set of clauses, FSA is a semidecision procedure for 

R-unsatisfiability. 

Even for theories that do not happen to be functionally reflexive, this 

result shows that adding the h+l functional-reflexivity units before applying 

FSA gives a general semi-decision procedure for RLunsatisfiability. 

Further Completeness Results for Parsmodulation 

Since first-order theories sre not usually functionally-reflexive when 

the only rules are resolution and parsmodulation, and since adding the 

functional-reflexivity units to the theory may detract somewhat from proof- 

search efficiency, we should like if possible to show that some weaker 

assumption than functional-reflexivity will suffice for ccmpleteness. It seems 

that at least S /- x = x will be needed. (Consider the case where S = [a f a), 

12 
A weaker version of this result was given in the earlier (1968b) paper. 
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S is R-unsatisfiable but cannot be refuted without some sort of help from 

reflexivity,) This is not surprising, since the standard texts on logic 

that use 

supply a 

But 

proof of 

the substitution rule or schema approach to equality consistently 

separate reflexivity axiom, l3 

is simple reflexivity (x = x) 

this is not yet available. 

14 
enough? We think so, although a 

To see where the difficulty arises in generalizing the proof given in 

Wos and Robinson (1968~) beyond the functionally-reflexive case, we examine 

the relation between deductions and refutations based on a given set S and 

those based on proper instances of clauses from S. 

Capturing lemma: 15 

set of clauses such that S 

A and B in S and let C' be 

into an occurrence so of a 

Strong subterm form: 

Let S by a fully paramodulated and fully resolved 

i- x = X) and let A' and B' be instances of clauses 

the result of parsmodulating from a term a' in A' 

term in B' . Then 

there is a clause C in S with C' as an instance. 

Restricted subterm form: If B has a term in the same position as that of 

so in B' , then there is a clause C in S with C' as an instance. 

(Occurrences of terms in two literals are said to be in the same position 

if each is the i,- st argument of the i2-nd argument of ..O of the 

in-th argument of its literal,) 

Argument form: If 6 is an argument of B' (as opposed to a proper 

subterm of an argument), then there is a clause C in S with C' as an 

instance, 

l3 See, e.g., Church (1956) or wine (1963). 

14 In the two years that paratncdulation has been under study, no counterexample 
has been found to the R-refutation completeness of paremodulation and resolu- 
tion for simply-reflexive systems. 

1-5 The analogue of this capturing lemma for resolution alone plays a basic 
role in proving the refutation-completeness of resolution (see J. Robinson;li?b$ 
and Slagle (1967)) and of set-of-support (Wos, et.al, (1965)). -v 
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When the strong subtkrm form of the capturing lemma holds and 

s I- x = x, every maximal (with respect to positive Eterals) model of S is 

an R-model, and since every satisfiable set S has a maximal model, it follows 

that either I3 E S or S is R-satisfiable. Thus the strong subterm form of the 

capturing lemma and simple reflexivity imply R-refutation completeness. The 

line of proof given for R-refutation-ccmpleteness in functionally-reflexive 

systems in (1968~) depends (at least indirectly) on the strong subterm form, 
16 

which happens to hold in such systems. The following example will suffice 

to show however that the strong subterm form is not universally true: 

s: c x=x,a=b,b=a,a=a,b=b, Qdx), Qada), Qbdb), Qadb), Q&da)) 

A: a=b 

A'; a& 

B: Qdx) 

B': Q.&Mg(a)) 

c . 1. Qdbhdda)) 

S is fully-parsmodulated and (vacuously) fully-resolved. A' and B' 

paramcdulate on a into the first occurrence of a in B' to give C'. But C' 

is an instance of no clause in S. (The restricted subterm form of the lemma is not 

violated since B has no term in the same position as the first occurrence of a in 

B'. Neither is the argument form of the lemma, since a is not an argument of B'.) 

Functional-reflexivity of S, if present, would dispose of the difficulty 

since if g(x)=g(x) were in S, so would g(a)=g(b) be in S if it were fully 

parsmodulated; and hence the result Q,g(b)g(g(a)) of psrsmodulating g(a)=g(b) 

and Qxg(x) would be in S and serve as C!. 

Weakening the strong subterm capturing lemma in a different fashion 

leads to the 

16 Alternatively, one can view the difficulty as resulting from the fact that it is 
not always possible to satisfy the hypotheses of the restricted sub-term form. 
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Refutation capturing lemma: If there exists a refutation of a set of 

instances of clauses in a set S by means of paramodulation and resolution, 

then there exists a refutation of S itself by means of paramodulation and 

resolution. 

For functionally-reflexive S, this lemma may be proved by noting that 

the refutability of a set of instances of S and R-soundness of paramodulation 

and resolution yield the R-unsatisfiability of S; so that the refutation- 

completeness of paramodulation and resolution for functionally-reflexive 

systems establishes the refutability of S itself. 

Given the refutation capturing lemma one could prove the following: 

General refutation-completeness: If S is a fully-paramodulated and 

fully resolved R-unsatisfiable set and if S+x=x, then DE S. 

Corollary: FSA is a semi-decision procedure for R-unsatisfiability 

for finite sets S of clauses such that St-x=x. 

Conversely, given general refutation-completeness, one can prove the 

refutation capturing lemma (at least for systems S such that S+x=x). In 

view of this equivalence, p roof of the refutation capturing lemma can be 

considered the most pressing unsolved problem in the theory of paramodulation. 

Alternatively, one might seek a proof of general refutation completeness 

based on the restricted subterm form of the capturing lemma, which holds even 

when the assumption of functional reflexivity is suppressed. 
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APPENDIX 

PARAMODULATION VERSUS RESOLUTION 

Problem: x3 = e implies ((x,y),y) = e. 

Reference: Group Theory by Marshall Hall, page 322, 18.2.8. 

Refutation by Paramodulation 

1. f(ex) = x 

2. f(xe) = x 

3. f(g(x)x) = e 

4. f(xg(x)) = e 

5. f(xf(yz)) = f(fkYM 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

x=x 

f(f(xx)x) = e 

h(w) = f(f~fbykdx) k(y) > 

h(h(ab)b) # e 

f(xe) = f(f(xy)g(y)), f(xg(x)) of 4 into f(yz) of 5 

x = f(f(xy)g(y)), f(xe) of 2 into f(xe) of 10 

x = f('eg(g(x))), f(xg(x)) of 4 into f(xy) of 11 

x = g(g(x)), f(ex) of 1 into f(eg(g(x))) of 12 

14. f(f(xX)f(XZ)) = f(ez), f(f(xx)x) of 7 into f(xy) of 5 

15. f(f(xx)f(xz)) = z, f(ex) of 1 into f(ez> of 14 

16. f(f(xx)e) = g(x), f(xe(x)) of 4 into f(xz) 0-f 15 

17. f(xx) = g(x), f(xe> of 2 into f(f(xx)e) of 16 

18. f(f(xy)f(g(y)z)) = f(xz), f(f(xy)g(y)) of 11 into f(xy) of 5 

19. f(f(w)f(g(y)g(x)) > = e, f(xg(x)) of 4 into f(xz) of 18 

20. f(we) = f(f(wf(xy))f(g(y)g(x))), f(f(xy)f(g(y)g(x))) of 19 into f(yz) of 5 

21. w = f(f(wf(xy)f('g(y)g(x))), f(xe) of 2 into f(we) of 20 
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,’ 

22. 

23. 

24. 

25. 

26. 

27. 

20. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. f(f(f(f(ab)a)f(f(ab)a))f(f(g(b)g(a))g(b))) # e, f(f(xy)z) of 5 into 

g(f(xy)) = f(ef(g(y)g(x))), f(g(x)x) of 3 into f(wf(xy)) of 21 

g(f(xy)) = f(g(y)g(x)), f(ex) of 1 into f(ef(g(y)g(x))) of 22 

g(h(xy)) = f(g(g(y))g(f(f(xy)g(x)))), f(f(f(xy)g(x))g(y)) of 8 into f(xy) of 23 

g(hbd) = f(yg(f(f(xy)g(x)))), g(g(x)) of 13 into g(g(y)) of 24 

g(h(xy)) = f(yf(g(g(x))g(f(xy)))), g(f(xy)) of 23 into g(f(f(xY)g(x))) of 25 

g(h(xy)) = f(yf(xg(f(xy)))), g(g(x)) of 13 into &g(x)) of 26 

g(h(xy)) = f(yf(xf(g(y)g(x)))), g(f(xy)) of 23 into g(f(xy)) of 27 

f(f(f(h(ab)b)g(h(ab)))g(b)) # e, h(xy) of 8 into h(h(ab)b) of 9 

f(f(f(f(f(f(ab)g(a))g(b))b)g(h(ab)))g(b)) # e, h(q) of 8 into h(ab) of 29 

f(f(f(f(f(ab)g(a))f(g(b)b))g(h(ab)))g(b)) # e, f(f(xy)z) of 5 into 

f(f(f(f(ab)g(a))g(b))b) of 30 

f(f(f(f(f(ab)g(a))e)g(h(ab)))g(b))'i e, f(g(x)x) of 3 into f(g(b)b) of 31 

f(f(f(f(ab)g(a))g(h(ab)))g(b)) + e, f(xe) of 2 into f(f(f(ab)g(a))e) of 32 

f(f(f(f(ab)g(a))f(bf(af(g(b)g(a)))))g(b)) # e, g(h(xy)) of 28 into g(h(ab)) of 33 

f(f(f(f(ab)f(aa))f(bf(af(g(b)g(a)))))g(b)) # e, g(x) of 17 into g(a) of 34 

f(f(f(f(f(ab)f(aa))b)f(af(g(b)g(a))))g(b)) # e, f(xf(yz)) of 5 into 

f(f(f(ab)f(aa))f(bf(af(g(b)g(a))))) of 35 

f(f(f('f(f(f(ab>f(aa))b)a)f(g(b)g(a)))g(b)) # e, f(xf(yz)) of 5 into 

f(f(f(f(ab)f(aa))b)f(af(gibjgIa)))) of 36 

h(f(f(f(f(f(f(ab)a)a)b)a)f(g(b)g(a)))g(b)) # e, f(xf(yz)) of 5 into 

f(f(ab)f(aa)) of 37 

f(f(f(f(f(f(ab)a)f(ab))a)f(g(b)g(a)))g(b)) f_ e, f(f(xy))z) of 5 into 

f(f(f(f(ab)a)a)b) of 38 

f(f(f(f(f(ab)a)f(f(ab)a))f(g(b)g(a)))g(b)) # e, f(f(xy)z) of 5 into 

f(f(f(f(ab)a)f(ab))a) of 39 

f(f(f(f(f(ab)a)f(f(ab)a))f(g(b)g(a)))g(b)) of 40 
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I 

4i. f(f(f(f(ab)a)f(f(ab)a))f(g(f(ab)))g(b)) $: e, f(g(y)g(x)) of 23 into 

f(g(b)g(a)) of 41 

43. fff(f(f(ab)a)f(f(ab)a))f(f(f(ab)f(ab))g(b))) + e, g(x) of 17 into g(f(ab)) of 42 

44. f(f(f(f(ab)a)f(f(ab)a))f(f(f(f(ab)a)b)g(b))) + e, f(xf(yz)) of 5 into 

f(f(ab)f(ab)) of 43 

45. f(f(f(f(ab)a>f(f(ab)a))f(f(f(ab)a)f(bg(b)))) $ e,, f(f(xy)z) of 5 into 

f(f(f(f(ab)a)b)g(b)) of 44 
4 

46. f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)a)e)) f f(xg(x)) e, of 4 into f(bg(b)) of 45 

47. f(f(f(f(ab)a)f(f(ab)a))f(f(ab)a)) f e, f(xe) of 2 into 

f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)a)e)) of 46 

7 contradicts 47. 
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PARAHODULATION VERSUS RESOLUTION ' 

Problem: x3 -1 -1 = e implies ((x,y),y) = e where (x,y)= xyx y 

Refutation by Resolution 

1. f(ex) = x 

2. f(xe) = x 

3. f(e(x)x) = e 

4. f(xgW) = e 

5. f(xf(yz)) = f(f(xy)z) 

6. x=x . 

7, x#y y=x 

8. x#y Y#Z x=z 

9. u f w f(ux) = f(wx) 

10. u f w f(xu) = f(xw) 

11. u # w g(u) = g(w) 

12. f(fGx)x> = e 

13. h(xy) = f(f(f(xy)g(x))g(y)) 

14. h(h(ab)b) f e 

15. x # f(ew) x = w, 1 and g2 

16. f(f(xg(x))w) = f(ew), 4 and gl 

17. f(f(xy)z) + w f(xf(yz)) = w, 5 and g1 

18. f(xf(g(x)z)) = f(ez), 16 and 171 

19. f(xf(g(x)z)) = z, 18 and 151 

20. f(uf(yg(y))) = f(ue), 4 and lo1 
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21. f(ue> = f(uf(yg(y))), 20 and 71 , 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38, 

39'. 

40. 

41. 

42. 

43. 

44. 

45. 

f(uf(yg(y))) # z f(ue) = z, 21 and gl 

f (x4 = g(g(x)), 19 and 221 

x = f(xe), 2 and 7l 

f(xe) # z x = z, 24 and gl 

x = g(g(x)), 23 and 251 

f(f(f(uu)u)y) = f(ey), 12 and gl 

f(f(f(uu)u)y) = y, 27 and 151 

f(f(xx)f(xy)) = y, 28 and 171 

f(f(xx)e) = g(x), 29 and 221 

f(xx) = g(.x), 30 and 251 

f(xe) = f(f(xy)g(y)), 5 and 221 

x = f(f(xy)g(y)), 32 and 251 

f (xz> = f(f(f(xy)g(y))z), 33 and gl 

f(f(f(xy)g(y))z) = f(xz), 34 and 71 

f(f(xy)f(g(y)z)) = f(xz), 35 and 171 

x f. f(ug(u)) x = e, 4 and g2 

f(f(%y)f(g(y)g(x))) - e, 36 and 371 

e = f(f(xy)f(g(y)g(x))), 38 and 71 

f(we) ='f(wf(f(xy)f(g(y>g(x)))), 39 and lo1 

u # f(xf(yz)) u = f(f(xy)z), 5 and g2 

f(ue> = f(f(uf(xy>>f(g(y)g(x))), 40 and 411 

u = f(f(uf(xy))f(g(y)g(x))), 42 and 2!j1 

f(f(g(x)x)u) = f(eu), 3 and gl 

z # f(f(gWxh> z = f(eu>, 44 and g2 
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46. g(f(xy)) = f(ef(g(y)g(x))), 43 and 451 

47. 

48. . 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59, 

60. 

61. 

62. 

63. 

64. 

65. 

g(f(xy)) = f(g(y)g(x)), 46 and 15; 

g(h(xy)) = g(f(f(f(xy)g(x>)g(y))), 13 and ill 

u # g(f(xy)) u = f(g(y)g(x)), 47 and g2 

g(h(xy)) = f(g(g(y))g(f(f(xy)g(x)))), 48 and 4gl 

g(g(x)) = x, 26 and 7l 

f(g(g(u))z) = f(uz), 51 and gl 

x f f(g(g(u))z) = f(uz), 52 and g2 

g(h(xy)) = f(yg(f(f(xy)g(x)))), 50 and 531 

f(zg(f(xy))) = f(zf(g(y)g(x))), 47 and gl 

u # f(zg(f(qw u = f(zf(g(y)g(x))), 55 and 82 

g(h(xy)) =.f(yf(g(g(x))g(f(xy)))), 54 and 561 

f(yf(g(gWllz)) = f(yf(uz)), 52 alId lo1 

x # f(yf(g(g(u))z))' x = f(yf(uz)), 58 and 82 

g(h(xy)) - f(yf(xg(f(xy)))), 57 and 5gl 

f(uf(zg(f(xy)))) = f(uf(zf(g(y)g(x)))), 55 and lo1 

w # f(uf(zg(f(xy)))) w = f(uf(zf(g(y)g(x)))), 61 and 82 

g(h(ky)) = f(yf(xf(g(y)g(x)))), 60 and 621 

f(zgMxy))) = f(zf(yf(xf(g(y)g(x)>))), 60 and 621 

f(wf(zg(h(xy)))) = f(wf(zf(yf(xf(g(y)g(x)))))), 64 and lo1 

66. f(uf(wf(zg(h(xy))))) = f(uf(wf(zf(yf(xf(g(y)g(x))))))), 65 and lo1 

67. f(uf(wf(zg(ll(xy))))) = f(f(uw)f(zf(yf(xf(g(y)g(x)))))), 66 and 411 

68. f(uf(wf(zg(h(xy))))) = f(f(f(uw)z>f(yf(xf(g(y)g(x))))), 67 and 411 

69. f(f(xy)z) = f(xf(yz)), 5 and 7l 

70. f(xf(yz)) # u f(f(xy)z) = u, 69 and gl 

71. f(f(uw)f (zg(h(xy)))) = f(f(f(uw)z)f(yf(xf(g(y)g(x))) )), 68 and 701 
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72. 

73. 

74 : 

75. 

76. 

77. 

78. 

79. 

80. 

81. 

82. 

83. 

84. 

85. 

86. 

87. 

88. 

89. 

9Q. 

91. 

92. 

93. 

94. 

95. 

96. 

97. 

f(f(f(uw)z)g(h(xy))) = f(f(f(uw)z)f(yf(xf(g(y)g(x)))))), 71 and 701 

f(f(f(f(xy)z)g(h(xy)))u) = f(f(fif(xy)z)f(yf(xf(g(y)g(x)))))uL 72 and g1 

f(h(xy)z) = f(f(f(f(xy>g(x))g(y))z), 13 and gl 

u + f(f(xy)z) u = f(xf(yz)), 69 and g2 

f(h(xy)z) = f(f(f(xy)g(x))f(g(y)z)), 74 and 751 

f(uf(g(x)x)) = f(ue), 3 and lo1 

z # f(uf(g(x)x)) z = f(ue), 77 and g2 

'f(h(xy)y) = f(f(f(xy)g(x)je), 76 and 7gl 

u # f(xe) u = x, 2 and g2 

f(h(xy)y) = f(f(xy)g(x)), 79 and 801 

f(f(h(xy)y)z) = f(f(f(xy>g(x))z>, 81 and g1 

f(f(f(h(x$)y)z)w) = f(f(f(f(xy)g(x))z)w), 82 and gl 

h(h(ab)b) # y y # e, 14 and g2 

f(f(f(h(ab)b)g(h(ab)))g(b)) # e, 13 and 841 

f(f(f(h(ab)b)g(h(ab)))g(b)) # Y y f e, 85 and 83 

f(f(f(f(ab>g(a)>g(h(ab)))g(b)I # e, 83 and 861 

f(f(f(f(ab)b(a>)b(h(ab)))g(b)) # y y # e, 87 and 83 

f(f(f(f(ab>g(a)>f(bf(af(g(b)g(a))))g(b)) + e, 73 and 8g1 

g(x) = f(xx), 31 and 71 

f(wg(x)) = f(wf(xx)), 90 and lo1 

f(uf(wgW)) = f(uf(wf(xx))), 91 and lo1 

f (uf (wg (4 > > = f(f(uw)f(xx)), 92 and 411- 

f(f(uw)g(x)) = f(f(uw)f(xx)), 93 and 701 

f(f(f(uw)g(x))y) = f(f(f(uw)f(xx))y), 94 and gl 

f(f(f(f(uw)g(x))y)z) = f(f(f(f(uw)f(xx))y)z), 95 and gl 

f(f(f(f(ab)g(a))f(bf(af(g(b)g(a)))))g(b)) # y y # e, 89 and 83 
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98. f(f(f(f(ab>f(aa>>f(bf(af(g(b)g(a)))))g(b)) J- e, 96 and 971 

99. 

100. 

101. 

102. 

103. 

104. 

105. 

106. 

107. 

108. 

109. 

110. 

111. 

112. 

113. 

114. 

115. 

116. 

117. 

118. 

119. 

120. 

121. 

122. 

123. 

f(f(f(f(ab)f(aa>)f(bf(af(g(b)g(a))))) # y y # e, 98 and 83 

f(f(xf(yz))u) = f(f(f(xyjz)u), 5 and g1 

f(f(f(f(f(ab>f(aa>>b>f(af(g(b)g(a)~~~g(b~~ # e, 100 and 9g1 

f(f(f(f(f(ab>f(aa>>b)f(af(g(b)g(a))))g(b)) # y y # e, 101 and 83 

f(f(f(f(f(f(ab>f(aa>>b)a)f(g(b)g(a))g(b~~ f e, 1.00 and 105 

f(f(f(xf(yz))ujv) = f(f(f(f(xy)z)u)v), 100 and gl 

f(f(f(f(xf(yzj>ujv>wj = f(f(f(f(f(xy>z>u)v)w>, 104 and gl 

f(f(f(f(f(xf(yzjjujv>w)t) = f(f(f(f(f(f(xy)z)u>v)w)t), 105 and gl 

f(f(f(f(f(f(ab>f(aa>>b)a)f(g(b)g(a))Ig(bII # y y # e, 103 and 83 

f(f(f(f(f(f(f(ab)a)a>b)a)f(g(b)g(a)))g(b)) # e, 106 and lO7l 

f(f(f(f(f(xy>zhjv>wj = f(f(f(f(xf(yzj)u)v>w), 105 and 71 
. 

f(f(f(f(f(f(f(ab)a)a)b)a)f(g(b)g(a)))g(b)) # y y # e, 108 and 83 

f(f(f(f(f(f(ab>a>f(ab~)a)f(g(b)go))g(b~~ # e, 109 and 1lO1 

fCf(f(f(xy)zhh) = f(f(f(xf(yz))u)v), 104 and 71 

f(f(f(f(f(f(ab>a>f(ab))a)f(g(b)g(a)J)g(b)I # Y Y # e, 111 and 83 

f(f(f(f(f(ab>a>f(f(ab)a))f(g(b)g(a)))g(bI) # e, 112 and 1131 

fSf(f(f(ab>a>f(f(ab>a))f(f(g(b)g(a))g(b)) # e, 114 and 702 

f(f(f(f(ab)a>f(f(ab>a))f(f(g(bjg(gj)g(b)) # y y + e, 115 and Qs 

f(g(y)g(xjjg(f(xyj), 47 and 7l 

f(f(g(y)gWM = f(g(f(xy))z), 117 and gl 

f(uf(f(g(y)g(x))z)) = f(uf(g(f(xy))z)j, 118 and 101 

f(f(f(f(ab)a)f(f(ab)ajjf(g(f(ab))g(b)))- # e, 119 and 116,. 

f(g(x)z) = f(f(xx>z>, 90 and gl 

f(uf(g(x)z)) = f(uf(f(xx)z)), 121 and lo1 

f(f(f(f(ab>a>f(f(ab>a))f(g(f(ab))g(b))) # y y # e, 120 and 83 
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124. f(f(f(f(ab)a)f(f(ab)a))fif(f(ab)f(ab))g(b))) f e, 122 and 1231 

125. f(wf(f(xf(yz))u)) = f(wf(f(f(xy)z)u)), 100 and lo1 

126.. 

127. 

128. 

129. 

130. 

131. 

132. 

133. 

134. 

135. 

,136. 

f(f(f(f(ab>a>f(f(ab)a))f(f(f(ab)f(ab))g(b))) # y y # e, 124 and 83 

f(f(f(f(ab)a)f(f(ab)a))f(f(f(f(ab)a)b)g(b))) J e, 125 and 1261 

f(uf(f(xy)z)) = f(uf(xf(yz))), 69 and lo1 

f(f(f(f(ab>a>f(f(ab>a))f(f(f(f(ab)a)b)g(b))) ic y y + e, 127 and 83 

f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)a)f(bg(b)))) # e, 128 and 12gl 

f(zf(uf(yg(y)))) = f(zf(ue>>, 20 and lo1 

f(f(f(f(ab)a)f(f(ab>a))f(f(f(ab)a)f(bg(b)))) # y y # e, 130 and g3 

f(f(f(f(ab)a)f(f(ab)a))f(f(f(a)b)a)e)) # e, 131 and 1321 

f(uf(xe)) = f(ux), 2 and lo1 

. 

f(f(f(f(qb)a)f(f(ab>a))f(f(f(a)b)a)e)) # y y # e, 133 and g3 

f(f(f(f(ab>a)f(f(ab>a))f(f(ab)a)) # e, 134 and 1351 

12 contradicts 136 
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