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Introduction

A term is an individual constant or variable or an n-adic function

letter followed by n terms. An atomic formula is an n-adic predicate

letter followed by n terms. A literal is an atomic formula or the negation
thereof. A clause 1s a set of literals and is thought of as representing
the universally-quantified disjunction of its members. It will sometimes
be notationally convenientl to distinguish between the empty clause O ,
viewed as a clause, and "other" empty sets such as the empty set of clauses
even though all these empty sets are the same set-theoretic object ¢. A
ground clause (term, literal) is one with no variables. A clause C'
(literal, term) is an instance of another clause C (literal, term) if there
is a uniform replacement of the variables in C by terms that transforms C
into C'.

The Herbrand universe HS of a set S of clauses is the set of all terms

that can be formed from the function letters and individual constants

occurring in S (with the proviso that if S contains no individual constant,
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the constant

a' is used). An interpretation I of a set S of clauses is a

set of literals such that for each atomic formula F that can be formed from
an n-adic predicate letter occurring in S and n terms from HS exactly one
of the literals F or F (the negation of F) is in I.

For any set J of literals, E is the set of negations of members of J.

The set J satisfies a ground clause C if JN C # f and condemns C if C - J = 8.

1 Note, for example, that the empty set i1s a satisfiable set of clauses

but at the same time is an unsatisfiable clause.



J satisfies a non-ground clause C if it satisfies every instance of C and
condemns C if it condemns some instance of C. A‘clause (possibly ground)
that is neither satisfied nor condemned by J is said to be undefined for J;
otherwise it is defined for J. J satisfies a set S of clauses if it
satisfies every clause in S and condemns S if it condemns some clause in S.

An R-interpretation of a set S of clauses is an interpretation I of S

having the following properties: ILet @, B, and y be any terms in HS and
L any literal in I. Then

1. (a=0a) ¢ I

2. If (@=p) e Ithen (B=a) eI
3. If(x=B8) eIand (B=7v) ¢TI, then (¢ =7y) € I.
b, If L' is the result of replacing some one occurrence of & in L

by B and (& = B) € I, then L' € I.
An (R-)model of S is an (R-)interpretation of S that satisfies S.
A set S of clauses is (R-)satisfiable if there is an (R-)model of S;

otherwise it is (R-)unsatisfiable.

If S is a set of clauses or a single clause and T is a set of clauses
or a single clause, S (R—)imgliesAT(abbreviation SE T or S;:R_T) if no
(R-)model of S condemns T.

A deductive system W is (R-) deduction-complete if Sy T (T is

deducible from S in the system W) whenever Siy= T (Sg:R_T). W is (R-)

refutation-complete if S%»w43 whenever S is (R-) unsatisfiable.

Equality in Automatic Theorem-Proving

The methods for dealing with the concept of equality in theorem proving

can be grouped roughly into three classes: (1) those which employ a set of



first-order axioms for equality, for example, the following set (which we
shall call E(K), where K is the set of first-order sentences under study) s

(1) (xp) (xp =x)

(ii) (xl)...(xn)(xo) (xj # XO\/fxl...Xj...Xn V’le---xo...xn) (3=1yeee,n)
(1ii) (Xl>°'°(xn)(xo) (xj # X V'f(X1~°-Xj---Xn) = f(xl...xo...xn» (3=1,ee.,n)
where n axioms of the form (ii) are included for each n-adic (n> 0) predicate letter
P occurring in K and n axioés of the form (iii) are included for each n-adic (n >0)
function letter in K2; (2) those which employ a smaller set of second-order
axioms for equality; and (3) those which employ a substitution rule for equals

as a rule of inference.

Some Desirable Properties for Theorem-proving Algorithms

In addition to the logical properties of soundness and completeness,
two sets of somewhat more elusive properties are of interest in judging the
usefulness of the inference gpparatus for automatic theorem proving.

The first set of properties (efficiency, brevity, and naturalness)

are global properties in that they deal with the entire proof or procf-search
and are of interest in themselves. Efficiency refers to the ease or dispatch
with which the search procedure locates a proof. Brevity refers-to the lengths
of proofs found. UNaturalness refers to being in the spirit of what a humen
mathematician might write in a proof. Other factors being equal, a briefer
proof might be considered more natural, but naturalness goes beyond this.

For example, among proofs of roughly the same length, a unit resolution

proof3 might be considered more natural than a non-unit proof.

2 Note that an interpretation I of K is a R-interpretation of K iff it satisfies E(X).
3 In effect one that is free from simultaneous case-analysis type reasoning
and which prefers modud ponens to syllogism -- formally, one in which non-
unit clauses are never resolved against each other.



The second set of properties (immediacy, coﬁvergence, and generality)

are local properties in that they focus on only a small part of the proof
or proof-search and are of interest primarily because they contribute to
other properties such as efficiency.

Immediacy is rather easily grasped. One inference apparatus CZ is
said to be more immediate than another apparatus f?(at least for the case in
question) when {? enables one to deduce a given conclusion from a given set
of hypotheses in fewer steps than ég . For example (see Figure 1) if to infer
F from D and E by é?cx@ first had to infer G from D and only then infer F
from B and G’while CZ allowed the inference of F directly from D and E in
one step without recourse to G, then CZ would (for this case) be more

immediate than &5 .

Convergence is a slightly subtler but, for automatic theorem-proving,
perhaps more important property. Consider the clause G in the example
above. Often such an intermediate result will seriously detract from
proof search efficiency by interacting with other clauses to produce
unnecessary '"'noise" in the proof search space, either by generating
successive generations of less than helpful clauseé, or somewhat less
seriously, by requiring additional machine time to determine that no
interesting clauses can be inferred from G. Freedom from this generation of
"side-effect" clauses we call convergence, Thus in the example, C?'is both

more immediate and more convergent than 8 .

T



. Figure 1




Generality refers to choosing to infer a clause C rather than a proper
instance of C when either inference could be made from the premises without
loss of soundness. For example, inferring from f(xa) = g(x) and Qf(xa) the
conclusion Qg(b), although sound, would be less general than inferring Qg(x).

Tt is not difficult to see the advantage of inferring a clause rather
than a proper instance of that clause, since the more general clause, being
stronger, has greater potential for future inferences. Perhaps even easlier
to see is the problem of deciding which proper instance to select if a proper
instance were to be preferred to the more general clause. Usually there is
an infinite set of proper instances. For example, from h(xyy) = g(x) and
oh(zww)a, we can infer Qg(x)a by substitution. There is, however, an infinite
set of proper instances of Qg(x)a which could also be legitimately inferred.
Among these are Qg(a)a, Qg(g(a))a, Qg(g(g(a)))aess .« We shall .apply the

phrase most general to a clause (or term) C with respect to some given condition

when C satisfies the condition and no elause (term) which satisfies the

condition hag C as a proper instance.

Of the approaches to equality given earlier, approach 1 has three obvious
disadvantages. One has to do with length of deduction chains in the proof.

In order to infer from

(1) @Qa and
(2) a=1%

the result
(3) @b

one must first infer from the axiom
L) x¢y v & v &
and, say (1), the intermediate result

(5) afy v @
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before passing from (5) and (2) to (3). By contrast, approach 3 would allow
us to go directly from (1) and (2) to (3) without ever inferring the inter-

mediate result (5). Thus approach 3 contributes to brevity of proofs. More

important for proof search, it contributes (by means of immediacy) to brevity

of deduction chains within proofs.

A second, and perhaps more serious disadvantage of approach 1 as
compared to approach 3, is that the intermediate debris such as step (5)
tends to spawn increasingly larger generations of generally useless offspring,
polluting the search space badly. We describe this difference by saying that
approach 3 tends to be more convergent than approach 1. (Presence of various
subsidiary strategies such as set of support may possibly in some cases tend
to mitigate the severity of such non-convergence effects.)

The third disadvantage of approach 1 is perhaps the least important
although superficially the most obvious: the equality axioms E(K) must be
present. The clerical chore of writing them all down could be eliminated
merely by incorporating into the theorem-prover a program to generate them.
Alternatively they may be specified by means of a schema (we shall call this
variation approach 1b), or in approach 2 by means of a few second-order
axioms. We feel that this third disadvantage is so superficial and trivial
(since one can simply place E(K) outside the set of support as is done in
the standard set of support variant of approach 1) as to be quite spurious.

The method given by Darlington(l968)whether it be classed as approach
1b or as approach 2 can be taken as %ypical of methods which avoid the third
disadvantage (greater number of explicit axioms) but fail to dent the
first and second disadvantages (longer deduction chains and non-convergence) .

In effect Darlington infers (5) from (1) and

(%) x#yv o(x) v oly)



which is thought of either as a schema defining a set of first-order axioms

including (4) or as a single second-order axiom having (4) as an instance.

Paramodulation

Since our automatic theorem—éroving environment consists exclusively
of clauses, we should like our rule of inference for equality to operate on
two clauses and yield a claus:e° Furthermore we should like it to apply to
units and non-units aLlik;eLL and to yield a most general clause that can be
R-soundly inferred. We shall now describe the inference rule for para-
modulation, which is asserted to have these properties. Examples of paramodula-
)

tion are given in Figure 2.

Paramodulation: Given clauses A and a'=p'v B (or B'=x' Vv B) having no

variable in common and such that A contains a term 3 with & and @' having a most
general common instance ¢ identical to a'[si/ui] identical to 6[tj/wj],
where A' i1s obtained by replacing in A[tj/wj] some single occurrence of

(resulting from an occurrence of &) by B'[si/ui], infer A' vV B[si/ui].7

Consider for example the set S = {c=d v Qe, g(c)feg(d) v TQe,
a=b v Qec, g(a)feg(d) v Qe, =x=x} . If the rule applied only to units, it
would not be possible to refute this R-unsatisfiable set.

These examples are primerily to give an intuitive idea of how paramodulation
works. A comparison of the length and complexity of paramodulation proofs
vs. resolution proofs can be cobtained by considering the proofs of the
theorem from group theory to the effect that x3=e implies ((x,¥),y)=e.

The resolution proof is 136 steps long while the paramodulation proof

is 47 steps long. These proofs appear in the appendix.

Without this restriction one could infer from a=b and Qxa v Px the clause
Qab v Pa(a proper instance of the paramodulant Qxb vPx), resulting in a
loss of generality.

Since every non-trivial immediate modulant (see Wos et.al. (1967b)) of a
clause is a paramodulant, any clause obtained by demodulation can be obtained
by repeated paramodulation.

8-



From a superficial point of view, paramodulation might be described as
"a substitution rule for equality". Indeed, the motivation given above for
studying the rule has dwelt principally on that aspect of paramodulation.
But to consider it as only substitution of equals for equals would be to make
a mistake analogous to characterizing resolution as merely a syllogistic
inference akin to that employed by Davis and Putnam (1960). The property of
maximum generality provided by paramodulation must not be overlooked if the

process is to be fully understood. Consider the following example:

From f(xg(x))=e v Qx and Pyf(g(y)z)z v Wz one can infer

Pyeg(g(y)) v @Qg(y) v We(g(y)) by paramodulating with

fxg(x)) as o' and £(g(y)z) as 8.



Example 1: Example 2: Example 3: Example 4:

le a="5> l. a=2>» le a=>=> le a=5%

2. Qa 2. Ox 2. Qx v Px 2. Qx v Px

3. Qb 3. J.Qb 3. S, @b VvV Pa 3. r.Qa vPb
Example 5: Example 6: Example T:

1. x = h(x) l. a=5b 1. fxg(x)) =e

2. qg(y) 2. qf(g(h(3(a)))) 2. Pyf(e(y)z)z

3. .ae(e(y) 3. . af(e(n(i(p)))) 3. ... Pyeg(e(y))

2
Example 8: If x = e for all x in a group, the group is commutative.

1o flex) =x

2. f(xe) =x -

3. f(xf(yz)) = £(£(xy)z)

L, f(xx) = e

5. f(ab) = ¢

6. ¢ # £(oa)

7o f(xe) = £(£(xy)y) L into 3 with 8: f(yz)

8. x = £(£{xy)y) 2 into 7 on f(xe)

9. a = f(cb) 5 into 8 on f(xy)
10, f£(yf(yz)) = £(ez) 4 into 3 on f{xy)
11. f£(yf(yz)) = z 1 into 10 on f(ez)
12, f(ca) = 9 into 11 on f(yz)
13. ¢ = f(ba) 12 into 8 on f(xy)
i, O 13 resolved with 6

Figure 2.
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Completeness of Paramodulation for Basic Group Theory

Consider the following clauses from the first-order theory of groups:

Al Pxyf (xy) closure

A2 Pexx left identity

A3 Pg(x)xe left inverse

Al Pxyu y DPyzv V Puzw v Pxvw associativity (case 1)

25 —lsxyz v 'fxyu vV z =1 uniqueness of product

A6 z £#u VvV Pxyz v Pxyu substitution (3rd position)
AT z # u v Pxzy v Pxuy substitution (2nd positicn)
A8 z #u v Pzxy Vv Puxy substitution (lst position)
AQ X =X reflexivity

MO x#y VvV y=x symmetry

Al x#y Vv y#z Vv x=2z transitivity

M2 x4y v £(xz) = f(yz) f-substitution (lst position)
M3 x#y v £(zx) = £(zy) f-substitution (2nd position)
Ak x £y v glx) =gly) g-substitution

Let us define a basic set 8§ of clauses of group theory to be a set
over the vocabulary of Al-Alk and such that S {Al,oo-,A5} . We then have
the following completeness result for the special case of basic sets.
Theorem: If S is a satisfiable fully paramodulated fully factored
basic set of clauses of group theory, then 8 is R-satisfiable.
Proof: Let M be a maximal model 8 of 8. Suppose that o=p and P73 are
both in M. By the maximality of M, there must be clauses A and B in S having
instances A': 0=B v K and B': P8¢V L with KM M= p =1L [ M. Then factors
of A and B can be paramodulated on the arguments corresponding to & to give a clause
in S having PYSBvK vL as an instance. Since M satisfies 8, (PYSBvKvI)[1M# §
The concept of maximal model is defined and the pertinent existence theorem
proved in Wos and Robinson(1968a). For the present purpose a maximal model of S
may be thought of as a model M such that for each positive literal x in M

there is an instance C' of some C in S with C'MN M = (x} .

-11-



But (KvL)) M = @. Hence Py®B € M. Thus M satisfies A6. It can be shown ?
that A1-A6 F A7-A1k. Hence M satisfies A6-AllL and is therefore an R-model

of S.
This result is generalized to the case of what will be called

functionally-reflexive systems in the next section.

Completeness of Paramodulation for Functionally-Reflexive Systems

Paramodulation is intended to be utilized, along with resolution, for
theorem proving in first-order theories with equality. 10

We first give an algorithm for generating a refutation (of a finite
set of clauses) employing paramodulation and resolution if such a refutation

exists.

Full Search Algorithm (FSA): ILet SO be the set of all factors of the

11
given set S of clauses. For odd 1 > 0 let Si be formed from Si by adding

-1

all clauses that can be obtained by paramodulating two clauses in Si-l°

For even i > 0 let Si be formed from Si by adding all factors of clauses

-1

that can be obtained by resolving two clauses in Si—l’ Since each deduction
from S is contained in Sn for some n, each refutation of S must be contained
in 8 for some n. Fach Sj is finite. If Sj contains O, a refutation has

been found, so stop. Otherwise form Sj+l'

7 Robinson and Wos (1967c)

10
The earliest formulations of paramodulation were designed to operate without

resolution and could be shown to subsume resolution as a special case.
It is felt, however, that the processes can be better understood if the
inference apparatus not involving equality is isolated from the apparatus
for equality, even if this means that some of the completeness theorems
cannot be stated in quite as pat a fashion.

ll Every elause is a factor ef itself as in G. Robinson ete.al. (1964b). Fer
further definitioms of factoring and resolution see Wos et.al.(196ka) and
J. Robinson (1965). -

~12-



Now, to prove that paramodulation and resolution are complete for
theorem-proving in first-order theories with equality, we Wguld like to show
that FSA is a semi-decision procedure for R-unsatisfiability. The difficult
part is to show that, for R-unsatisfiable sets of clauses, there exists a
refutation, i.e., that paramodulation plus resolution is R-refutation complete.
Tt will suffice to show that an unsatisfiable set can be deduced from an
R-unsatisfiable set, since (due to the refutation-completeness of resolution)
FSA will generate a refutation if it ever generates an unsatisfiable set.

For functionally-reflexive systems S (theories such that SO = o for
o= x, and for o = f(Xl;-o-:Xn) for each n-adic function letter occurring
in § -- there are h+l such unit clauses where h is the number of function
letters in the vocabulary of S), we prove refutation completeness in (l968c)12.
From that result we can obtain the following corollary: If S is a finite
functionally-reflexive set of clauses, FSA is a semidecision procedure for
R-unsatisfiability.

Even for theories that do not happen to be functionally reflexive, this
result shows that adding the h+l functiomal-reflexivity units before applying

FSA gives a general semi-decision procedure for Reunsatisfiability.

Further Completeness Results for Paramodulation

Since first-order theories are not usually functionally-reflexive when
the only rules are resolution and paramodulation, and since adding the
functional-reflexivity units to the theory may detract somewhat from proof-
search efficiency, we should like if possible to show that some weaker
assumpbion than functional-reflexivity will suffice for campleteness. It seems
that at least S F x = x will be needed. (Consider the case where S = {a # ak

12
A weaker version of this result was given in the earlier (1968b) paper.

-13-



8 ig R-~unsatisfiable but cannot be refuted without some sort.of help from
reflexivity.) This is not surprising, since the standard texts on logic
that use the substitution rule or schema approachrto equality consistently
supply a separate refléxivity axiomo13

But is simple reflexivity (x = x) enough? We think so, L although a
proof of this is not yet available.

To see where the diffiéulty ariges in generalizing the proof glven in
Wos and Robinson (1968¢) beyond the functionally-reflexive case, we examine

the relation between deductions and refutations based on a given set § and

those based on proper instances of clauses from S.

1
Capturing lemma: 2 Iet S by a fully paramodulated and fully resolved

set of clauses such that St x = x, and let A' and B' be instances of clauses

A and B in S and let C' be the result of paramodulating from a term @' in A'
into an occurrence 80 of a term in B' . Then

Strong subterm form: there is a clause C in S with C' as an instance.

Restricted subterm form: If B has a term in the same position as that of

60 in B' , then there is a clause C in S with C' as an instance.

(Occurrences of terms in two literals are said to be in the same position

if each is the i;-st argument of the is-nd argument of ... of the
i -th argument of its literal.)

Argument form: If ® is an argument of B' (as opposed to a proper

subterm of an argument), then there is a clause C in 8 with C! as an

instance.

13 gee, e.g., Church (1956) or Quine (1963).
14

In the two years that paramodulation has been under study, no counterexample
has been found to the R-refutation completeness of paramodulstion and resolu-

tion for simply-reflexive systems.

22 The analogue of this capturing lemms for resolution alone plays a basic

role in proving the refutation-completeness of resolution (see J. Robinson{

and Slagle (1967)) and of set-of-support (Wos, et.al. (1965)).

-1
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When the strong subbtérm form of the capturing lemma holds and

St x = x, every maximal (with respect to positive literals) model of § is

an R-model, and since every satisfiable set S has a maximal model, it follows
that either O € S or S is R-satisfiable. Thus the strong subterm form of the
capturing lemma and simple reflexivity imply R-refutation completeness. The
line of proof given for R-refutation-completeness in functionally-reflexive
systems in (1968c) depends (at least indirectly) on the strong subterm form,
which happens to hold in such systems.l6 The following example will suffice

to show however that the strong subterm form is not universally true:

s:  {x=x,a=b,b=a,a=a,b=b, Qxg(x), Qag(a), Ppg(b), Qag(b), Pbg(a)}

A: a=b
At a=b
B:  axg(x)

B':  qg(a)gls(a))

ct: ag(blele(a))
S is fully-paramodulated and (vacuously) fully-resolved. A' and B'
paramodulate on a into the first occurrence of a in B' to give C'. But C'
is an instance of no clause in S. (The restricted subterm form of the lemma is not
violated since B has no term in the same position as the first occurrence of a in
B'. Neither is the argument form of the lemma, sinée a is not an argument of B'.)
Functional-reflexivity of S, if present, would dispose of the difficulty
since if g(x)=g(x) were in S, so would g(a)=g(b) be in S if it were fully
paramodulated; and hence the result Qg(b)g(g(a)) of paramodulating g(a)=g(b)
and Qxg(x) would be in S and serve as C.

Weakening the strong subterm capturing lemma in a different fashion
leads to the
16

Alternatively, one can view the difficulty as resulting from the fact that it is
not always possible to satisfy the hypotheses of the restricted subterm form.

~15-



Refutation capturing lemma: If there exists a refutation of a set of
instances of clauses in a set S by means of parémodulation and resolution,
then there exists a refutation of 8 itself by means of paramodulation and
resolution.

For functionally-reflexive S, this lemma may be proved by noting that
the refutability of a set_of instances of S and R-soundness of paramodulation
and resolution yield the R-unsatisfiability of S; so that the refutation-
completeness of paramodulation and resolution for functionally-reflexive
systems establishes the refutability of S itself.

Given the refutation capturing lemma one could prove the following:

General refutation-completeness: If S is a fully-paramodulated and

fully resolved R-unsatisfiable set and if Srx=x, then Qe S.

Corollary: FSA is a semi-decision procedure for R-unsatisfiability
for finite sets S of clauses such that S} x=x.

Conversely, given general refutation-completeness, one can prove the
refutation capturing lemma (at least for systems S such that Stx=x). In
view of this equivalence, proof of the refutation capturing lemma can be
considered the most pressing unsolved problem in the theory of paramodulation.
Alternatively, one might seek a proof of general refutation completeness
based on the restricted subterm form of the capturing lemma, which holds even

when the assumption of functional reflexivity is suppressed.

_.16_
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PARAMODULATION VERSUS RESOLUTION

APPENDIX

Problem: X =e implies ((x,y),y) = e.

Reference:

10.
11,
12,
13.
1k,
15.
16.
1T.
18.
19.
20.

21.

f(ex)

1
»

f(xe) = x

flglx)x)

I
o]

=
>
0q
5
p—
il
o

f(f(xx)x) = e

hixy) = £(£(£(xy)e(x))gly))

h(h(ab)b) # e

Group Theory by Marshall Hall, page 322, 18.2.8.

Refutation by Paramodulation

t(xe) = £(£(xy)ely)), £lxg(x)) of 4 into f(yz) of 5

x = £(f(xy)ely)), f{xe) of 2 into f{xe) of 10

x = fleg(g(x))), f(xeg(x)) of 4 into f(xy) of 11

P(r(xx)r{xz))

x = glg(x)), f£lex) of 1 into flegl(g(x))) of 12

flez), £(f(xx)x) of 7 into f(xy) of 5

F(f{xx)f(xz)) = z, flex) of 1 into f(ez) of 1L

fr(xx)e) = g(x), flxe(x)) of 4 into f(xz) of 15

f(xx) = g(x), f(xe) of 2 into f(f(xx)e) of 16

t(e(xy)elgly)z)) = £(xz), £(f(xy)g(y)) of 11 into f(xy) of S

Flr(xy)elg(y)glx))) = e, flxg(x)) of 4 into f(xz) of 18

flwe) = r(e(wi(xy))f(aly)e(x))), £lelxy)e(gly)e(x))) of 19 into £(yz) of 5

w o= f(f(wf(xy)f(g(y)g(x))), f(xe) of 2 into f(we) of 20
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22,
23.
2k,
25.
26.
27,
28,
29.
30.

" 31,
32,
33,
3L,

35.
36.

37.

38.

39.

Lo,

b1,

il

glf(xy)) = fler(agly)a(x))), £lg(x)x) of 3 into f(wf(xy)) of 21

g(r(xy)) = £lgly)glx)), flex) of 1 into flef(gly)g(x))) of 22

il

glnh(xy)) = flglely))el(s(£(xy)g(x)))), £lr(e(xy)g(x))ely)) of 8 into f£(xy) of 23

1

g(n(xy)) = flygle(s(xyla(x)))), glg(x)) of 13 into glgly)) of 2k

I

glh(xy)) = £lyr(glglx))e(lxy)))), g(flxy)) of 23 into g(£(f(xy)e(x))) of 25

glhi(xy)) = flyf(xg(f(xy)))), glg(x)) of 13 into glg(x)) of 26

g(h(xy)) = £(yr(xf(g(y)e(x)))), alf(xy)) of 23 into g(f(xy)) of 27
£(£(2(n(ab)b)g(n(ab)))g(b)) # e, hlxy) of 8 into h(n(ab)b) of 9
rle(e(£(£(£(ab)gla))g(v))b)g(n(ab)))g(v)) # e, hixy) of 8 into h(ab) of 29
r(£(£(e(r(ab)gla))£(g(p)b))glh(ab)))e(v)) # e, £(f(xy)z) of 5 into
£(r(£(r(ablgla))g(b))b) of 30
£(£(£(£(£(ab)gla))e)g(nl(ab)))g(d)) # e, £lg(x)x) of 3 into £(g(b)b) of 31
r(£(£(f(ab)g(a))g(n(an)))eg(p)) # e, £(xe) of 2 into £(£(f(ab)gla))e) of 32
r(2(£(f(ab)gla))f(vr(ar(g(b)egl(a)))))g(b)) # e, glhl(xy)) of 28 into g(h(ab)) of 33
£(£(£(r(ab)f(aa))r(vr(ar(g(v)gla)))))e(d)) # e, g(x) of 17 into gla) of 3k
r(r(£(r(f(ab)f(aa))b)f(ar(g(blgla))))e(v)) # e, £{xf(yz)) of 5 into
£(£(£(ab)r(aa))f(br(ar(g(blgla))))) of 35
£(£(£(e(£(£(ab)r(aa))b)a)f(g(blgla)))ag(b)) # e, £(xf(yz)) of 5 into
(r(r(f(ab)f(aa))bv)f(ar(glv)gla)))) of 36 |
£(e(e(s(2(£(£(ab)a)a)b)a)t(g(d)el2)))e(d)) # e, £(x£(yz)) of 5 into

f(f(ab)f(aa)) of 37

(e(e(r(e((ab)a)£(ab))a) 2g(b)e(e))g(®)) # e, f(2(xy))a) of 5 into

f(r(s(f(ab)a)a)d) of 38
£(e(e(£(£(ab)a)r(£(abla))f(glb)gla)))e(®)) # e, £(f(xy)z) of 5 into

£(£(£(f(ab)a)r(ab))a) of 39
£(£(£(£(ab)a)r(£(ab)a))r(f(g(blegla))g(o))) # e, £(£(xy)z) of 5 into

£(r(e(r(f(ab)a)r(f(abla))f{g(v)g(a)))gld)) of LO
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k2, £(r(£(f(ab)a)r(£(ab)a))f{g(f(ab)))g(d)) # e, £lgly)alx)) of 23 into
f(g(b)gla)) of b1

43, f(r(e(r(ab)a)r(f(av)a))r(£(£(ab)f(ab))g(b))) # e, g(x) of 1% into g(f(ab)) of L2

by, f(e(f(f(ab)a)r(r(ab)a))r(f(£(f(ab)a)o)g(v))) # e, f(xf(yz)) of 5 into
£(£(ab)f(ab)) of 43 .

45, fr(e(r(f(ab)a)r(f(ab)a))f(r(f(abla)r(vg(v)))) # e, £(f(xy)z) of 5 into
£(r(f(£(ab)a)b)g(b)) of Lk

T f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)é)e)) # e, f(xg(x)) of & into f(bg(b)) of L5

b7, £(e(e(r(ab)a)f(flab)a))r((ab)a)) # e, f(xe) of 2 into

£(r(f(r(av)a)r(f(ab)a))f(r(f(abla)e)) of 46

T contradicts hL7.
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PARAMODULATION VERSUS RESOLUTION

Problem: x3 = e implies ((x,y),y) = e where (x,y)= xyx“ly~l

Refutation by Resolution

lo
2.

3.

10,
11.

12.

13

14,
15.
16.
17.
18.
19.

20.

it

f(ex) X

f(xe)

X

fle(x)x)

e

f(xg(x))

e

f(xf(yz)) = £(£(xy)z)

X = X
xty y=x
x#ty y#z

u# w flux)

u#w f(xu) =

=z'
f (wx)

f(xw)

u#w gl = g(w)

F(f(xx)x) = e

h(h(ab)b) # e

x # flew) x

I

fF(£(xg(x))w)

f(f(xy)z) # w

f(xf(g(x)z))

f(xf(g(x)z))

1

f(uf(yg(y)))

. h(x&) = f(E(£(xy)g(x))g(y))

w, 1 and 82

flew), 4 and 9l

f(xf(yz)) = w, 5 and 8

f(ez), 16 and 1

z, 18 and lSl

f(ue), 4 and 10

7

1

1

22~
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21.

22

23,
24,
25.
26.
27.
28,
29.
30.
31.
32,
33.
34,
35,
36.
37.
38.
39,
40.
41.
42,
43.
4s.,

45,

flue) = f(uf(yg(y))), 20 and 7l )

f(xe) = g(g(x)), 19 and 22l
x = f(xe), 2 and 7l
f(xe) # z x = z, 24 and 8l

x = g(g(x)), 23 and 25

1
f(£(f(uu)u)y) = f(ey), 12 and 9l
fE(f(uu)u)y) = v, 27 and 15l
F(f(xx)f(xy)) = y, 28 and l7l

£(£(xx)e) = g(x), 29 and 22,
£(xx) = g(x), 30 and 25,
f(xe) = £(£(xy)g(y)), 5 and 22,
x = £(£(xy)g(y)), 32 and 25,

f(xz) = f(£(f(xy)g(y))z), 33 and 91

fF(f(Exy)gly))z) f(xz), 34 and 7l

f(E(xy)£(g(y)2)) = £(xz), 35 and 17,

x # f(ug(u)) x = e, 4 and 82
£F(E(xy) (g (g (x))) = e, 36 and 37,
e = F(E(xy)f(g(y)g(x))), 38 and 71

f£(we) = £(wi(£(xy)£(g(y)g(x)))), 39 and 10,

. f(uf(yg(y))) # z f(ue) = z, 21 and 8l

u # f(xf(yz)) u= £f(f(xy)z), 5 and 82

f(ue) = £(£(uf(xy))£(g(y)g(x))), 40 and 41,

u = f(f(uf(xy))f(gy)gx))), 42 and 25l

f(f(gx)x)u) = f(eu), 3 and 91

z # f(£f(g(x)x)u) 2z = f(eu), 44 and 8

-23-
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46,
47,
48,
49,
50.
51.
52,
53.
54,
55,
56.
57.
58,
59.
60.
61.
62,

63.

64

65.
66,
67.
68,
69.
70.

71.

g(f(xy)) = f(ef(g(y)g(x))), 43 and 45,
g(f(xy)) = £(g(y)g(x)), 46 and lSi
cghixy)) = g(f(£(f(xy)g(x))g(y))), 13 and 11

1
u # g(f(xy)) u = £(g(y)g(x)), 47 and 8,

g(h(xy)) = £(g(g(y))g(£(f(xy)g(x)))), 48 and 49,
glg(x)) = x, 26 and 7l

f(g(g(uw))z) = £(uz), 51 and 9l

x # £(g(g(w)z) = £(uz), 52 and 8,

g(hGy)) = F(yg(£(£Gy)g()))), 50 and 53
£(zg(£(xy))) = £(2f(g(y)g(x))), 47 and 9,

u # £(zg(£(xy))) u = £(zf(g(y)g(x))), 55 and 8,
g(h(xy)) = £(yf(g(g(x))g(f(xy)))), 54 and 56;
£(yf(g(g(u))z)) = £(y£(uz)), 52 and 10,

x # £(yE(g(g(w)z)) x = £(y£(uz)), 58 and 8,
g(h(xy)) = £(yf(xg(£(xy)))), 57 and 59;
f(uf(zg(£(xy)))) = £(uf(z£(g(y)g(x)))), 55 and 10,
w # £(uf(2g(£(xy)))) w = £(uf(z£(g(y)g(x)))), 61 and 8,

g(h(xy)) = £(y£(xf(g(y)g(x)))), 60 and 62;

. flzgh(xy))) = £(zE(yE(xE(g(y)g(x))))), 60 and 62,

f(wi(zg(h(xy)))) = £(wi(zf (yE(x£(g(y)g(x)))))), 64 and 10;

f(uf (wf(zg(h(xy))))) = £(uf(wf(z£(yE(xE£(g(y)g(x))))))), 65 and 10

f(uf (wf(zgh(xy))))) f(f (uw) f(zf (yE(xf(g(y)g(x)))))), 66 and 411

fluf(wi(zg(h(xy)))))

FOE(E(un)2) £(yE(xE(g(y)g(x))))), 67 and 41,
fF(f(xy)z) = £f(xf(yz)), 5 and 7l
f(xf(yz)) # u f(f(xy)z) = u, 69 and 8l

£(£ (uw) £(zg(h(xy)))) = £(£(£(uw)2) £(yf(x£(g(y)g(x))))), 68 and 70,

2L



72,
73.
74,
75.
76.
77.
78.
79.
80.
81.
82,
83.
84.
85.
86.
87.
88.
89.
90.
91.
92,
93.
94,
95.
96.

97.

£(E(£(uw)2)g(h(xy))) = £(E(£(uw)2) £(yE(xf(g(y)g(x)))))), 71 and 70,
f(E(E(f(xy)z)g(h(xy))u) = f(f(fkf(xy)z)f(yf(xf(g(y)g(x)))))u), 72 and 91
f(hixy)z) = £(£(£(£(xy)gx))g(y))z), 13 and 9,

u# £(£(xy)z) u = £(xf(yz)), 69 and 8,

f(h(xy)z) = £(£(£(xy)g(x))f(g(y)2z)), 74 and 75,

f(uf(g(x)x)) = £(ue), 3 and 10,

z # f(uf(g(x)x)) z = f£(ue), 77 and 8,

f(hixy)y) = f(f(f(xy)g(x))e), 76 and 78,

u# f(xe) u=x, 2 and 8,

£(h(xy)y) = £(f(xy)g(x)), 79 and 80,

£(£(h(xy)y)z) = £(£(£(xy)g(x))2), 81 and 9,

E(EE )Y 2)w) = E(E(E(£(xy)g(x))2)w), 82 and 9

h(h(ab)b) #y y # e, 14 and 8,

f(f(f(h(ab)b)g(h(aﬁ)))g(b)) # e, 13 and 841
£(£(£(h(ab)b)g(h(ab)))g(d)) # vy y # e, 85 and 8,
£(£(£(£(ab)g(a))g(h(ab)))g(b)) # e, 83 and 86,
£(£(£(£(ab)b(a))b(h(ab)))g(d)) #y vy # e, 87 and 8,
f(f(f(f(ab)g(a))f(bf(af(g(b)g(a))))g(b)) # e, 73 and 88,

g(x) = £(xx), 31 and 7;

f(wg(x)) = fwf(xx)), 90 and lOl

f(uf(wg(x))) = f(uf(wif(xx))), 91 and 10,
f(uf(wg(x))) = £(f(uw)f(xx)), 92 and 411‘
fF(f(uw)g(x)) = £(f(uw)f(xx)), 93 and 70

1
f(E(E(uw)g(x))y) = £(E(E(uw) £(xx))y), 94 and 9,

FEEEw)g(x))y)z) = £(EEE@w) E(xx))y)z), 95 and 9l

£(£(£(£(ab)g(a))£(bE(af(g(b)g(a)))))g(d)) #y y # e, 89 and 8,

_25 -



D
o
.

100.
101.
102,

103.

)
D
I~

105,
106,
107,
108.
109.
110.
111.
112,
113.
114,
115,
11e6.
117.
118,
119,
120.
121,
122,

123,

f(f(f(£(ab)f(aa)) £ (bf(af(g(blg(a)))))g(b)) +

\/

f(f(f(f(ab)f(aa))f(bf(af(g(b)g(g))))) #y y#e, 98 and 8
£(£(x£(yz))u) = £(£(£Cxy)z)u), 5 and 9;
£(E(£(£(£(ab)£(aa))b) £(af(g(b)g(a))))g(b)) # e, 100 and 99,
f(E(£(£(£(ab)£(aa))b) £(af(g(b)g(a))))g(b)) #y y # e, 101 and 8,

f(f(f(f(f(f(ab)f(aa))b)a)f(g(b)g(a)))g(b)) # e, 100 and 102l

rf AN \ Fag gio

FE(F(xE(yz))u)v) = £(f Yz 1

(£(£(xy)z)u)v), 100 and 9,
f(E(F(EE(Gyz))wvIw) = £EEEE(xy)z)u)vIw), 104 and 9l
£CE(E(ECE(xE(y2))wVIW)E) = £(E(ECE(E(E(xy)2)u)v)w)t), 105 and 9
f(f(f(f(f(f(ab)f(aa))b)a)f(g(b)g(a)))g(b)) #y y+#e, 103 and 8,
fFE(E(E(E(£(f(ab)a)a)b)a)f(g(b)g(a)))g(b)) # e, 106 and 107l
fFEEEE ) 2)W)vIw) = FEEEEE(yz))u)v)w), 105 and 7l
f(f(f(f(%(f(f(ab)a)a)b)a)f(g(b)g(a)))g(b)) #y y+#e, 108 and 8,
£(£(£(£(£(£(ab)a)f(ab))a)£(g(b)g(a)))g(b)) # e, 109 and 110,
£CE(E(E(xy)2)u)v) = £(£(£(xf(yz))u)v), 104 and 7,
F(E(E(£(£(f(ab)a)f(ab))a)f(g(b)g(a)))g(d)) # vy y # e, 111 and 83
f(£(f(f(f(ab)a)f(f(ab)a))f(g(b)g(a)))g)) # e, 112 and 113l
£(£(£(f(ab)a)f(£(ab)a)) £(f(g(b)g(a))g(b)) # e, 114 and 70,
£(£(£(£(ab)a)f(£(ab)a)) £(L(g(b)5(a))g(d)) #y vy # e, 115 and %,
f(g(y)g(x))g(f(xy)), 47 and 7,

£(£(g(y)g(x))z) = £(g(f(xy))z), 117 and 9,
f(uf(£(g(y)g(x))z)) = £(uf(g(f(xy))z)), 118 and 10
F(F(E(f(ab)a)f(f(ab)a)) £(g(f(ab))g(b))) # e, 119 and 116,
f(g(x)z) = £(£(xx)z), 90 and 9l
£(uf(g(x)2)) = £(uf(f(xx)2)), 121 and 10,
f(£(£(£(ab)a)£(£(ab)a))f(g(£(ab))g(P))) # vy y # e, 120 and 8,

26~



l 124, f(f(f(f(ab)a)f(f(ab)a))f(f(f(ab)f(ab))g(b))) # e, 122 and 123l

125.  £(wE(£(xE(y2))u)) = £(wE(E(E(xy)z)u)), 100 and 10,

126, f(f(f(f(ab)a)f(f(ab)a))f(£(£(ab)f(ab))g(b))) 'y yv# é, 124 and 83
127, £(£(£(£(ab)a)f(£(ab)a)) £(£(E(£(ab)a)b)g(b))) # e, 125 and 126,

128, f(uf(f(xy)z)) = f(uf(xf(yz))), 69 and 10l
129. f(f(f(f(ab)a)f(f(ab)a))f(f(f(f(ab)a)b)g(b)))_# y y # e, 127 and 83
130. f£(f(f(f(ab)a)f(f(ab)a))f(£(f(ab)a)f(bg(b)))) # e, 128 and 129l
131, £(z£(uf(yg(y)))) = £(z£(ue)), 20 and 10,

132, £(£(£(£(ab)a)f(f(ab)a))£(£(E(ab)a)E(bg(b)))) #y y # e, 130 and 8,
133. fF(F(f(f(ab)a)f(f(ab)a))f(f(£(a)b)a)e)) # e, 131 and 132l |
134, £(uf(xe)) = £(ux), 2 and 10,
135, £(£(£(£(ab)a)f(£(ab)a))E(£(f(a)bla)e)) #y y # e, 133 and 8,

L0136, f(£f(f(f(ab)a)f(f(ab)a))f(f(ab)a)) # e, 134 and 1351

12 contradicts 136
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