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ABSTRACT 

The muon flux density and the absorbed dose rate that is pro- 

duced when a high energy electron beam is completely attenuated in 

matter is calculated by integrating the muon pair production cross 

section over the photon distribution in the electromagnetic shower. 

Several cross section and photon track length formulae are examined. 

The Fermi-Eyges theory of multiple scattering is applied to the case 

of 1 to 20 GeV muons penetrating thick shields, and the results are 

folded into the production theory. An 18 GeV electron beam was 

used to produce muons in order to verify the theory. The results in- 

dicate that the theory, even with multiple scattering included, does 

not correctly predict the shape of the angular dose rate distribution, 

although integration over the theoretical and experimental curves 

gives agreement within experimental error. 

(Submitted to Nucl. Instr. and Methods) 
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I. INTRODUCTION 

As a result of the calculations by Drell’ and Ballam’ during the summer 

of 1960, it became apparent that a high-energy, high-intensity electron linear 

accelerator could produce a high-intensity beam of muons by direct electro- 

magnetic pair production. It was also quite evident that one of the most serious 

shielding problems would arise from the muons produced in a beam stopping 

device. Now that the Stanford two-mile accelerator is operating at high-energies 

we would like to present the results of several calculations3 that we have made 

and have recently improved on, and we would like to compare these calculations, 

to an experiment that we have performed using an 18 GeV electron beam. 

At both electron and proton machines, high-energy muons are peaked 

predominately in the forward direction because in both pair production and 

in nuclear pion production the transverse momenta are of the order of the 

particle mass @ = 105.7 MeV). As an example, the characteristic angle for 

the pair production of 10 GeV muons is 10 milliradians, or about a half of a 

degree. Consequently, muons are rarely a problem for transversing shielding. 

On the other hand, they are a problem in the forward direction as a result of 

their weakly interactin, c nature - that is, muons with energies less than, say, 

50 GeV lose energy essentially by ionization, and hence, a fairly unique range 

is associated with each energy. 

A set of range-energy curves for muons in var’ious materials is provided 

in Fig. 1. The curves represent an extension of the calculations of Barkas 

and Berger4 to energies above 5 GeV, but in addition they include pair produc- 

tion, bremsstrahlung, and nuclear interaction losses of the muon. 
5 A similar 

calculation has been made by Thomas. 6 If one wishes to shield for the complete 
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range of a 20 GeV muon, it is seen from this figure that it will.‘take about 

13 meters of iron. _: . . . . 

2. MUON PRODUCTION CALCULATIONS 

2.1 Differential Muon Flux Density 

The differential muon flux density that is produced when a high energy 

electron beam is completely attenuated in matter can be calculated by integra- 

ting the pair production cross section over the photon distribution in the electro- 

magnetic shower. This can be expressed as 

Eo-m 

2 (Eo, E, 9) = 21 
R2 / 

& (k, E, 4) $$ dk @mm2 - Set-’ - GeV-‘) . (1) 

E+P 

In this equation, and in the equations that follow, 

G 

R 

I 

EO 

E 

k 

m 

P 

is the production angle in lab coordinates, 

is the distance from the target, 

is the beam current in e-/set, 

is the total energy of an electron in the beam, 

is the total muon energy, 

is the energy of a photon in the shower, 

is the rest mass of the electron, 

is the rest mass of the muon (105.7 MeV), and 

dE/dk is the differential photon track length,. which is the total path 

length throughout the shower traversed by photons in the energy increment 

dk about k. The integration limits have been chosen by kinematics and the 

factor of two comes from the fact that we want both p’ and cc- . 
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2.2 Differential Photon Track Length . : - . . 

The differential photon track length formula, derived under Approximation A 

of shower theory is given by7 

EO = 0.572 - (r.8. /GeV) . 
k2 

Approximation A neglects collision processes such as ionization and excitation, 

it neglects the Compton effect, and it uses the asymptotic formulae to describe 

bremsstrahlung and pair production. A comparison of Eq. (2) with Monte 

Carlo calculations of the longitudinal shower development in copper by Zerby 

and Moran8 for several incident electron energies is made in Fig. 2. 9 The 

symbols represent the Monte Carlo data divided by the Approximation A track 

length formula, so that perfect agreement would give unity on this figure, 

Approximation A will be quite good except at the high energy end where 

it will overestimate the muon flux density. The two solid curves drawn on this 

figure have been suggested by Tsai and Whitis 10 and by Clement and Kessler. 11 

The Tsai and Whitis track length expression has been used at SLAC in the de- 

sign of a high energy external muon beam for particle physics research. Since 

we are interested in the low energy muons as well as the high energy ones, the 

Tsai and Whitis expression will not apply in our calculations. The Clement 

and Kessler formula (Eq. (3)) , h owever, agrees quite well with the Monte Carlo 
. 

results over most of the range. 

0.964 u 

-en(l-u2) i- 0.686 u2 -o.5u4 
(r. 1.) (3) 

, 

where u = fractional photon energy, k/E0 . 
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As pointed out by DeStaebler, 9 Eq. (3) can be approximated by 

for u2 cc 1 (or k ccEo) 

and 

27/28 de 
-!n(l-u) - 0.5 L k& (5) 

for u2 z 1 (or k = E()) 

where represents the Tsai and Whitis differential track length 

formula. 

2.3 Muon Pair Production Cross Section 

The energy-angle distribution of relativistic muons in the small angle 
.12 

approximation has been derived by Tsar by applying the substitution rule to 

the Schiff 13 formula for the distribution of bremsstrahlung by an electron 

scattered in the atomic nucleus. This distribution can be written as the 

probability per radiation length (in the small angle approximation), 

d20- 1 m 

) 0 

2 E2 Y2q 
dRdE T=z F k3Qn(183 Z-1’3) 

X 16 qA(l--o) - (2-o) 2+ 2 (2-20+0 3 
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where 

o=k/E 

Y= E/P 
2 

and where use has been made of the definition of the radiation length 

1 - =4z(uZ(Z+l)rEE In (1832 -l/3 

xO 
) (r.P.-cm2-g-l) (7) 

where 

01 = fine structure constant 

rO = classical radius of electron 

A = atomic weight 

N = Avogadro’s number 

and with Z (Z + 1) -Z2 for high Z. The characteristic angle, which is de- 

fined as p/E, enters in the terms y , A, and q. As is seen from Eq. (6)) the 

Z dependence of the muon flux density is governed by a slowly varying log 

term in the denominator. The difference between an iron target and a lead 

target,for example, is at most 12%. 

Equation (6) and the Clement and Kessler track length formula Eq (3) are 

presently being used in the muon shielding calcula’tions at SLAC. 
(* J 

Until recently 

we3 had used a cross section formula due to Drell’ and we integrated over the 

Approximation A photon track length (Eq. (2)) . The Drell formula is 
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In Fig. 3 we have plotted the ratio of the two cross sections as a function of 

the photon energy, k, and for three muon energies, i = 1, 5 and 15 GeV in 

the forward direction. The asymptotes are due to the fact that the photon 

energy must be greater than E + p. As was originally pointed out by Tsai, 12 

and is observed in Fig. 3, the Drell formula will overestimate the muon flux 

density by about a factor of two as compared to the Tsai formula. Using Eqs. (2) 

and (8), Eq. (1) can be integrated exactly to give 

$; (EO,E.@; =& 
0.572 IEO 

2hY 
P 2R21n(183 Z-1’3) 

(9) 

x (L v2) 
1 

-+ ~-4v3(l+)]r1(1+A?)} 

where v = fractional muon ener,T, E/E~ . 

Equation (9) is plotted in Fig. 4 (dashed line) as’s function of E/E0 for 

an incident electron energy of 20 GeV and for several angles. Also shown 

(solid line) is the numerical integration of Eq. (1) using the Clement and 

Kessler track length kg. (3)) and the Tsai cross section Eq (6) ( . ). As anti- 

cipated, the former overestimates the flux density by as much as a factor of 

four., The three points are not experimental points but are taken from the 

section in the SLAC Users Manual on secondary particle beams, 
12 and are 

in agreement with the present theory (solid line). . 

The differential flux calculations of Tsai 12 have been experimentally 

verified for 16 GeV/c electrons producing 5.5, 8.0 and 12.0 GeV/c muons at 

0’ from a 1.8 radiation length berryllium target. 
14 The agreement was quite 

good and they found no difference in the yields of positive and negative muons. 
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It should be pointed out that both Eqs. (6) and (8) ,. whenintegrated over 

all angles, reduce to the Bethe-Heitler formula. 3,12 

2.4 Integral Muon Flux Density 

The integral muon flux density and the absorbed dose rate are given, 

respectively, by 

Eo-m-p 

@ (Eo, E, $1 
/ 

dQ, 
m dE’ (cm 

-2 -1 
= - set ) 

i E 

and 
Eo-m-p 

$ (EoJW) = 
/ 

f(E’) $$ dEf (rad - set -’ ) 

E 

(10) 

(11) 

d@ where do’ is given by Eq. (1) and where the upper limit of integration is 

die tat ed by particle kinematics. The factor f(E’) converts particle fluence 

to absorbed dose. Generally, f is taken outside the integral as a constant 

such that 10 p/cm2 -set gives 1 mrad/hour (which is calculated by using a 

constant ionization loss of 1. 75 MeV cm2-g- 3 since the error involved in 

doing this is small. A slightly more accurate method is to consider f to be 

a function of energy according to the equation 

f(E’) = 1.6 X 1O-8 ‘$ p . (rad-cm2) 

where 1 dT 
P= 

is the unrestricted mass stopping power formula given by 

4 Barkas and Berger, in MeV-cm.‘-g 
-1 . 

The integral muon flux density (Eq. (10)) versus the fractional muon 

e-w, E/EO, is plotted in Figs. 5a-5d for electron energies of E. = 5,10,15 
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and 20 GeV incident on an iron target that completely absorbs the electro- 

magnetic shower. The Clement andKessler track length and the Tsai cross 

section were used with Eqs. (I) and (10) whichwere numerically integratedonthe 

IBM 360 Model 75 computer at SLAC . The conversion to absorbed dose rate can 

easily be approximatedby dividing the ordinate of Fig, 5 by ten, as indicatedabove. 

3. MULTIPLE SCATTERING OF MUONS IN SHIELDS 

The distribution function F(z, y, e), which describes the multiple elastic 

scattering of charged particles as they pass through matter, can be obtained 

by solving the Fermi diffusion equation’ 

aF -= 
a2 

(13) 

where W = 2pP/Es 

l/2 
m = 21.2 MeV 

and where y and z are in radiation lengths. 

Consider a system of Cartesian coordinates with the origin at the point 

of incidence and the z-axis along the direction of motion of the incident 

particles. The other two axis will be the x and y axis, and we will con- 

sider the projection of motion of the particles on the (z, y) plane, so that 

Ffz, y,e) dy de will be the number of particles at the thickxess z having a 

lateral displacement (y, dy) and traveling at an angle (8, d8) with the 

z axis. Because of symmetry, F also represents the distribution in the L 

(z, x) plane, and the independent nature of the x and y orthogonal directions 
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implies that F(z, y, 8 y) l F(z, x, 62 dy dx dOy-dOx represents the general 
-._. 

case in three dimensions. 

Equation (13) is derived in Rossi and Greisen’ under the assumption that 

8 is small, and is solved for the special case of a parallel and infinitely 

narrow beam of monoenergetic charge particles traversing some scattering 

substance with no energy loss. 

Eyges 
15 has treated the same problem by accounting for the energy loss. 

He assumes that W2 is some known function of z and neglects the fact that 

a particle at’ z has traveled a somewhat greater distance than z due to de- 

viations caused by scattering - a good approximation for high energy particles. 

Eyges obtains the result* 

where 

and 

F(z,Y,~‘) = 
1 e2A2- 2yOAl+y2A0 

47&(z)] 1’2 
4B 

I 

2 B(z) = AOA2 - Al 

Z 

A@4 = / 
dz’ 

() W2(zt) 

Z 

Al(Z) = 
/ 

(z-z’) dz’ 

0 W2(z?) 

Z 

A2(z) = 
1 

(‘-it 
)2&t . 

0 w @‘I 

(14) 

(15) 

(16) 

(17) 

* 
Equation(14) of Eyges’ does not agree with Eq. (14) above, although his other 
equations do agree with this paper. 
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If W2 is constant, Eq. (l.4) reduces to the Fermi solution as given by’Eq. (1.62) -_ ._ 

in Rossi and Greisen. 7 --. 

If we integrate F(z, y, 0) either over y or over 8, we get for the angular 

and lateral distribution functions, respectively 

P 

G(z,e) = 
/ 

F(z,Y,~) dy 
-X 

and 

2 

=* exp -a0 
0 ( ) 

a3 H(z,Y) = s F(z,Y, 0) de 
-X 

=&7T exP -$ 
2 ( > 

(19) 

The fact that Eqs. (19) and (20) are Gaussian in 8 and y is a result of the 

simplifications introduced in the derivation of Eq. (l3). 16 

The mean square projected angle of scattering is easily obtained from 

Eq. (Y-9) as follows: 

<e2> = j*02 G(W) d6 = uo(Z) (21) 
-X 

and similarly for the mean square lateral displacement 
. 

32 

<Y2> = 
/ 

y2 H(z, y) dy = 2A2(z) 
- *x 

(22) 
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The quantities <e2> and e2> can be calculated from Eqs. (21) and (22) 
.- 

when the functional form of W2(zt) is known and integrabie. . 

Since W = P ,a knowledge of pp versus range is needed. Numerical 
8 

, 

solutions to Eqs. (21) and (22) have been obtained 17 
and erms and Y,,, are 

plotted, respectively, in Figs. 6 and 7 as a function of the distance into the 

shield for various incident momenta. The calculations were made for Fe and 

for SiO2, and each calculation was carried out to a residual range correspond- 

ing to a pp of 100 MeV/c. 

If we neglect energy loss (i. e., pp = constant), Eqs. (21) and (22) reduce 

to 

2 1 Es 2 
<e>=z pp z 

( ) 

.- .- 

2 1 Es 2 
<Y> =g pp 

( ) 
Z3 

(24) 

(25) 

which correspond to Eqs. (1.67) and (1.68), respectively, in Rossi and 

Greisen. 7 This special case is compared in Fig. 6 and 7 for pp = 20 GeV/c 

and for SiO2. 

4. MUON DOSE RATE THROUGH A THICK SHIELD 

Consider a source of muons and a point detector separated by a thick 

shield as shown in Fig. 8a. A muon produced at a space angle $ will inter- 

sect the downstream side of the shield at P, provided that no multiple scatter- 

ing occurs in the shield. 

In reality the particle will multiple scatter to some other point, say PI, 

and the space angle 0 locates a symmetric ring of point detectors. The rela- 

tive positions of points P, P’, and 0 is shown in Fig. 8,b, which is a projection 
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.- 
on the downstream side of the shield looking towards the target T. ‘The problem 

is to take an incident flux density (or dose rate) distribution in angle C$ and to 

fold-in the effect of multiple scattering to obtain the resultant distribution in 

@ on the downstream side of the shield. 

Let - -,. -.--- 

G(s) s ds dS = number of muons in s ds d6 at point P 

coming from the target with no shield present, 

et(r) r dr de= total number of muons in r dr d# coming from 

the target and multiple scattering to point Pt , 

H(h) h dh de = probability of multiple scattering into h-.dh de at 

point Pt relative to an incident direction given by 

the Iine TP. 

Then 
2x oc 

q’(r) r dr d@=J/ Q(s) s ds d6 H(h) h dh de 
s=o s=o 

(26) 

Now from the preceding section (Eq. 20), we have 

H(h) = [H(z, x) * H(z, Y) 
II 

1 -h2/4A2 

z=d=4nA2 e 

where we have assumed that the distance PP’ is equal to the distance PP” 

(which is true for small angles), and where A2 is a function of the incident 

muon energy and, hence, is a function of the production angle 9. Further- 

more, 
s=R$ (28) 

r=R@ G-w 

h2 = s2 + r2 - 2rs cos (6+ $) (30) 
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and 

hdhdC=rdrd$ 

where 
C(4) = R2b4,kQ 

and where A 

IO [W#4#Q] =; /‘- [CWW coss]di? 

0 

132) 

(33) 

(34) . 

is a modified Bessel function of the first kind. We have taken, with no loss of 

generality (since we expect symmetry), @ = 0 in the derivation of Eq. (X2), 

Similarly, the absorbed dose rate on the downstream side of the shield, 

v9 can be calculated from the dose rate excluding multiple scattering, 

9 ,by 

(35) 

x exp -C@) ($2 +‘02)/2 @d4 1 
where one could use, for example, Eq. -(ll) for 

%@* 

5. MUON EXPERIMENT‘ 

5.1 Description of Experiment - 

The production of muons from a complete shower-absorbing beam dump 

was measured on the downstream side of a thick steel shield at the Stanford 

Linear Accelerator Center. The general layout is given in Fig. 9, which is a 
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. 
plan view of the shielding that separates the in&de of End Station B, on the 

right from the B Target Room on the left. The electron beam enters the 

B Target Room from left to right and is normally steered into the beam dump 

at the top or the beam dump at the bottom of the center-line labeled “positron 

beam port. ?I Frequently, a positron beam is brought out the center port into 

the end station. For our experiment, however, an 18 GeV electron beam was 

directed into the lower beam dump, which consisted of 15 radiation lengths 

or more of water-cooled copper plates. A detector plate was well centered 

along the electron beam direction on the downstream side of the iron shielding. 

The shield was 4.2’7 meters thick, and all openings were plugged in order to 

reduce the background radiation. For a detector we used LiF (Harshaw TLD-700)* 

which was 99.993?0 enriched in Li7 and hence did not significantly respond to 

neutrons. LiF is a thermoluminescent material that can be used to measure 

energy deposition over a wide dose range with a flat energy response and good 

precision, and its usefulness for absorbed dose measurements around high 

energy accelerators has been previously demonstrated, 18,19,20 

The LiF powder was poured into polyethylene tubing having an inner 

diameter of 0.584 mm and an outer diameter of 0.965 mm. By vibrating the 

powder we achieved a bulk density of 1.6 g/cm3 and a fairly good uniformity. 

The tubing was placed in concentric circular grooves that were precisely 

milled in a 6. 35 mm Iucite plate. The radii covered a range of angles from 

essentially 0’ to 3.2’, as measured from the dumi located 5.19 meters up- 

stream in the Target Room. Ln addition, an ionization chamber was aligned on 

the 0’ direction just downstream of the detector plate. 

The 18 GeV electron beam was brought into the Target Room at about 

600 Watts for approximately 5 minutes in order to steer the beam on the center 
* 

’ Harshaw Chemical Company, Cleveland, Ohio. 



of a ZnS screen that had been precision-alignedan the face of the dump. The 

beam power was then increased to 16.2 kW and held there fbr 258 minutes 

during which time the beam was extremely steady in both position and magni- 

tude . 

5.2 Results and Comparison with Theory 

After the exposure, the detector plate was removed and the LiF was 

subsequently read-out, the results of which are plotted in Fig. 10. In the upper 

left is a view of the detector plate, looking towards the beam, The plate was 
z 

marked off into octants and the LiF powder in each segment was vibrated out 

of the polyethylene tubing into a weighing pan. After weighing, the powder was 

heated and read-out in a commercial TLD reader, * a background was subtracted, 

and the resultant light output was converted to absorbed dose in rad. 

The LiF powder was calibrated in terms of absorbed dose using a 
** 

Victoreen R-Meter and a Cs137 source and the calibration exposure was 

done under charged particle equilibrium conditions. 21 Corrections were 

made for temperature, pressure, and the NBS calibration of the R meter. 

In Fig. 10 the experimental results are compared with the theory (solid 

line) using the Tsai cross section and the Clement and Kessler track length 

(neglecting multiple scattering). There were 4.27 meters of steel shielding 

between the source and the detector, which meant that only those muons having 

energies greater than 6 GeV were able to get through. As a result, the 

absorbed dose rate integration was t&en from 6 GlV to (18-m-p) GeV, and 

the conversion factor f was evaluated within the integral at energies equal 

to (E-6) GeV. The maximum error of + 10% on the theoretical curve is the 

*&otopes, Inc. (ConRad), Westwood, New Jersey. 
Victoreen Instrument Co. , Cleveland, Ohio. 
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combined effect of the uncertainty in the sourc&to-detector distance, the un- 

certainty in the beam power, and the uncertainty in the total integration time. 

The TLD data is shown along with the one point at 0’ which represents 

the rad dose in air that was integrated by the ion chamber (a cylinder having a 

radius of 1 inch and length of 5 inches). At most the ion chamber could have 

subtended an angle of 10 milliradians, which is within the relatively flat dose 

rate region measured by the LiF. The maximum error of each of the LiF data 

points is about f. 10%. 

The disagreement between the solid line and the data is not surprising in 

view of the fact that the theory does not include shower divergence and multiple 

scattering, both of which will cause the distribution to flatten out. If one inte- 

grates the experimental and theoretical dose distributions over all angles, the 

resulting two numbers agree within 20% of each other, 

Since the experimental data does not extend past 57 mradians, there is 

some doubt as to how to extrapolate the experimental curve needed for the 

integration. .What was done was to fit (by eye) the data between 41 and 57 

mradians with a straight line. Within this limitation, the theory appears to 

correctly predict the total integrated muon dose (rad - sq, mradian). 

The spreading effect caused by multiple scattering in the shield was 

calculated by using Eq. (35) with dD(d) dt replaced by the solid line, D($), of 

Fig. 10. In order to perform the integration, a functional form for AZ(Q) 

was needed. This was obtained by calculating the average energy of those 

muons that are incident upon the shield but still get through, according to 

18-m-l 

(36) 

and then by calculating A2(#) from Eq. (18) with z = d., 
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The result of this integration is plotted as-the broken line in Fig. 10. It 

agrees with the experimental results better than the theory without multiple 

scattering does. However, it appears as if multiple scattering in the shield 

cannot, by itself, resolve the discrepancy between the theory and the experi- 

ment. Possibly the effect of nuclear form factors and/or the fact that the 

shower divergence has not been included in the theory could provide the answer 

to the disagreement. It should be pointed out that there appears to be a dip 

in the data at 0’ even though this is within the maximum experimental error 

In a recent paper, Bathow et al. 22 published the results of a 4 and 6 GeV -- 

muon shielding experiment. They compared their measurements with a cal- 

culation by Clement and Kessler which included form factors but not multiple 

scattering. Bathow et al. indicate that they must correct the theory for -- 

multiple scattering in the shield in order to obtain agreement with experiment. 

6. SUMMARY 

The differential and integral muon flux densities and the absorbed dose 

rate that is produced when a high energy electron beam is completely attenuated 

in matter has been calculated and has been compared with an experiment at an 

incident electron energy of 18.0 GeV. The theory correctly predicts the total 

integrated dose that penetrates a 4.27 meter iron shield, but the shape of the 

angular distribution is not as broad as indicated by+e.xperiment. 

Multiple scattering in the shield is reviewed and a calculation is made 

which folds multiple scattering into the theory, with the expected result that 

the angular distribution flattens cut. However, multiple scattering 1)~ itself 

cannot fully eLxplain the &perimental data and it is suggested that the discrcp- 

ancy might be due to the fact that the theory neglects.nuclear form factor effects. 
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A small contribution conceivably might come from shower divergence, 

although this is unlikely. 
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