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ABSTRACT 

It is demonstrated by construction that the three-particle wave 

function is completely determined by the wave function in the finite volume 

where the interaction regions of all three particles overlap, and that in the 

case of pairwise forces, the wave function in this region is completely 

determined by the solution of a (multi-component) two-variable integral 

equation contained within this volume. The construction is formal in that 

it implies the solution of a one-variable integral equation describing the 

scattering of the outgoing wave from one pair by one of the particles in the 

other pair, but this is just a two-particle problem with unusual boundary 

conditions. This preprint is being distributed in the hopes that someone 

will see a way to write the general solution for the one-variable problem. 

If so, a unique (in terms of a theory of the two-particle interactions in the 

sub-systems) description of the exterior (but interacting) final-state wave 

function of three particles, comparable to the phase-shift description for 

two-particles, is immediate. 

t Work performed under the auspices of the U. S. Atomic Energy Commission. 
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It has been shownlY2 that the assumption of finite-range pairwise 

forces allows a formal reduction of the three-body problem to two continuous 

variables in momentum space, and the corresponding coordinate space re- 

duction has also been given3. It has further been shown explicitly 4’5’6 that 

the truncation of the sum over angular momenta of the interacting pairs which 

is implied is in fact an excellent approximation for the simple problems 

studied so far. In order to remove the masses from the Schroedinger equa- 

tion, we use coordinates canonically conjugate to the momentum variables 

defined by Doolen7, namely 

J 2m2m3 
251 = (“2 + m3) CE2 - 53) 

(1) 

I 2ml(m2 + m3) “2E2 + m3z3 
I1 =dml+m2+m3 m2 +m3 

- -RI 1 
The alternative choices x2, y2 and x3, y3 are obtained by cyclic permuta- 

tion; note that the length xz + y& is the same in all three coordinate systems. 

The transformation from one set to another is given by, for example, 

52(5~y1) = cos ~~~~3 - siw12JTl 

y2(~lp~1) = siw12z1 +coscL12yl (2) 

1 
cos l-$2 = I mlm2/(ml + m3)(m2 + m,)l z 

We nowmake the Faddeev channel decomposition by breaking the wave function 
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in the center-of-mass system, !V, into three parts, 

I 

and the reduction to two radial variables in each channel by the expansion 

~” (~i,yi) = c 
JQh 

uQ~(xi, Yi) 
x.y. 1 1 YtiiA @x @x ey @y ) i i i i 

M 
where the YJlh are the usual ortho-normal two-direction functions as de- 

fined in Blatt and Weisskopf’. It is then easy to show3 that the Schroedinger 

equation 

-w+x+ - W2(X2(51’yI)) - W,(X3(Xl’Yl)) * = 0 

(4) 

(5) 

is equivalent to the coupled set of equations 

.-m---- 
X =-I- 2 2 2 2 cos S plsxl + sin Plsyl - 2 sin c”lscos PlsXIYlcos Cl 

(7) 

d- 

--I..- ___*s ----- -.- 

Ys = + sin 2 2 Plsxl + cos 2 2 plsyl + 2 sin c”lscos +sxlylcos Cl 
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with corresponding equations for v2 and U3. The angle 51 is simply the 

angle between 51 and ~1, namely cos tl = (~l*~l)/xlyl. Since all three 

vector sets xxi lie in a plane, we ca’n always express any lengths and 

angles in terms of xlyl and cos 51, as has been done explicitly above for 

xs and y,. The Euler angles of some arbitrary axis lying in this place have 

been eliminated. If 51 makes the angle < with this axis, 21. x2 = x1x2 cos C 12, - 

and $3’ x2 = x2y2 cos .c,, then the kernel is easily shown3 to be 

K12 - an c M* 
@J+U MM, yJ~h(~,",6,+~,o)Y~~n,(I +5@,5+51~+t2,0) (8) 

with the obvious generalizations. 

None of this geometrical complication is essential to the dynamical 

structure of the three-body problem, so we specialize immediately to three 

identical spinless particles interacting only via S-waves (1=h =0) in the state 

= of zero total angular momentum (J=O). For this case d = TJ2 

we have the single equation 

U3 = U, and 

a2 a2 
1 

-+-----z-W(x) U(x,y)=W(x) 
ax2 ay2 1 s 

dcos C 
-1 

$$ U(X’Y’) 

;+(Y/x) 
./3 

= W(x) J- A 
r de U(Vx”+y-cos0, x +y sin0) 

(Y/X) 

I (9) 
x’ +x2 +iy2 -cxy cos 5 = {ix2 + y2 cos e 

Y’ 
!3 2 1 2 +& -iJp + -&y ‘Tz--i sin ~9 zxycos t = ‘X +y 
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where the limits A? between which 0 is integrated are a function of 

tan-‘(Y/x),given in Figure 1. Note that the right hand side of Eq. (9) vanishes 

for x > R if the interaction W(x) = 0 for x > R, so outside of the strip x < R 

in the x-y plane illustrated in Figure 2a, we have three free particles. Un- 

fortunately, since the scattering solution of the equation is of order unity for 

large x and y, the 8 integration gives a source contribution for 0 near n/2 

which falls off in this strip only like l/y, so we cannot assume free particle 

solutions in the strip. The physical origin of this source is illustrated in 

Figure 3. A scattering in one of the two other Faddeev channels gives an out- 

going wave; so long as the pair in the direct channel are within the range of 

forces (x < R), they can pick up momentum from this wave and scatter to a 

three free particle final state. Clearly, the probability amplitude for this 

happening only falls off like l/y, as we have found. 

Nevertheless, we can still write down an integral equation for U in 

tw ms of solutions of the two-body problem for the interaction W(x), which we 

call up in the continuum or $J for bound states, and define as follows: 
Y 

u” + p2up 
P 

= W(x) u 
P 

2 * 

up(O) = 0 ; u,(x) = sin(px + dp) 

n s 
u (x)u,(x) dx = 6 (p-q) 

0 p 0 
4; - Y3y = W(x) Gy 

2 * 
Gy (0) = 0 4y =NyemYX 

ii s 
4 (4 $,,(x) = dyy’ 

0 y 

x> R 

x> R 

(10) 

03 c 4 (x) 4 
Y y Y (x’) + s 0 

dp up(x = 
f 

dp up(x = 6 (x-x’) 
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Note that in order to compute U, we need know it only in the strip shown in 

Figure 2b. This is still an infinite region. However, for x > R, we have 

already seen that only free particle solutions are required. But free particle 

solutions depend on only a single parameter (e. g. the relative momentum of 

the previously interacting pair p or the momentum of the free particle q, but 

not both, since in this region p2 + q2 = z). Consequently, we can write down 

an integral equation for U(x, y) for x ” > R in terms of a single variable, plus 

an inhomogeneous term comin, @ from the integral of U(x”, yff ) over the finite 

region 0 < xl’ < R, 0 < y” < (x+2R)/&? illustrated in Figure 2c. Note that 

this is simply the region where all three particles are within the range of 

each other’s forces. Before we can proceed further, however, we must 

understand the structure of the kernel in our integral equation better. 

Consider first the integral 

03 m 

I(K) = 5 
J 

dq sin qy sin qy’ = 1 dq 
sin qy sin qy’ 

0 s K2+ir-q2 ’ -CO K2+ie - q2 

(12) . 
m co 

.iqy . 
dq 2+iy:;;’ = & -co dq s 

,W . sm qy 

K2+ie -q2 

where the last two forms are possible because the integral of the cos term 

vanishes. IfY’ Y’t the -t ie allows us to close the contour above in the 

first form, and for y’ > y in the second, so 

I(K) = - ; I e 
iKy . sin Ky’ Y >Y’ 

e iKy ’ sin Ky Y” Y 

(13) 
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Hence, for y > y’ , we can perform the q integration in Eq. (11) and provided 

the integrand falls off sufficiently rapidly, obtain 

lim U(x, y) = G,(x) sinVz + r2 y + c # Y , (xl e 
iwyT 

Y=a, Y’ 
YY’ 

+ (14) 

dp up(x) e 
-6 YE(p) 

with 

rJ z-4 
YY’ jdx’ JdY1 Jde @yI(X’)W(X’) si:l$l U(r’cosB, rlsine) 

2 p <z T(p)=-; be dew siniyyf U(r'cosQ, r’sine) 

p2>z E(p)=-; 
JtiI Jdyl jfde u~(x’)~(x~ sizF y’ U(rlcosB1 rlsinO) 

\I rI= x1 2 +y'2 

which shows us that we do indeed have the correct scattering boundary con- 

ditions incorporated into our integral equation. 
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However, as we have already seen, we have a cutoff in x rather 

than y, so require instead 

co 
2 N ewYX$ (xl) e 

i(px+ 6p) 

rrr dP 
up wpw 

= 
C’ 

Y 

z+it-p2-q2 x>R y Z+y2+it-q2 
dp 

up (x’) 

0 z+ic-p2-q2 
x’< R 

(16) 
i(Vz-q‘x + 6 *---.- iz -q2 ) -.-. I 

e 
= u’liz- q2(x’) 

2 :Jz- q 

For q2 > z (i. e. p imaginary), we can still use this evaluation, if we are care- 

ful to normalize up according to Eq. (10) with e 2i6 p defined by 

23 
p=e - 2iPR 

e 
y!,(R) + ip up(R) 

u;(R) - ip u,(R) 
I 

Note that for the bound states u. 
1Y 

is proportional to $ 
Y’ 

and since 

@I =-y$ forxz R, wefindthate 2X 
Y Y 

p has the usual poles; in fact the 

contribution from these poles to the dp integration exactly cancels the sum 

in the first line of Eq. 06). However, this contribution is recovered by the 

dq integration, leading to the elastic scattering and rearrangement terms 

T 
YY’ 

as before. Consequently, with this understanding, we find that for 

x> R 

(17) 
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. ,I-2 2 UP&y) = $J~ (x) sin z+ y y - * 
s 

O” dq ei(ii,-x + k;z-q2)sin qy 

0 (18) 

x”+2R x”+2R 
< 
I” dyII + lR,,. 6”” dy” + Ldx’iT y “1 id0” 

6 

cm 

2 =- dq F(q) e 
l(Z-q x+6\: *v 7,i-q) 

lr 
sin qy 

Hence, as asserted, U(x, y) is completely determined for x > R if we know 

U(x, y) in the finite region 0 < x < R, 0 < y < (x + 2R)/ 3, and can solve the 

one-variable integral equation 

F(q) = x (4) + s 
dq' K(q, 9') F(q') 

0 

with 

v x (4) = 6 (q- z+y 1 

x”+2R 

+ Jdx’f 4 ‘6 dy” ~d,.,~,I,:“2+y”2cos~“) x 

(19) 

(20) 

(21) 

x p-12 W( x” +y” c0seff) sin q( d-sin0 ‘1) U(x”y’I) x1’ +yl’ 
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and 

Ktq,q’) = - ; 

x”+2R 2R - 

-/ f 
dx” i3 

dy” + 
R 0 

A+ 

/ 
de” 

A- 

;e---.-- 
i( .z- q’ 2 xl’+6 ,----a) 

x e rz- q’ sin qlyfl 

Note that this is just a two-particle scattering by the potential W with unusual 

boundary conditions. Hence, it should be possible to write down the resolvent 

kernel in terms of the off-shell two-body T matrix, and by applying it to x (q), 

obtain an explicit expression for U(x, y) for x > R in terms of U in the interior 

region. Once this is done, this expression can be inserted in Eq. (11) in the 

last two terms, leaving it an integral equation which depends on the coordinates 

of U only in the interior region. Unfortunately, I have not yet seen explicitly 

how to do this. 

It would seem that considerable effort would be justified in trying to 

uncover the resolvent kernel for Eq. (20). Note that the final equation for 
* 

U(x, y) is over a finite domain in both variables. Hence it can be immediately 

converted to a matrix equation by using a complete set of functions, which 

will be denumerable. In fact, at low energy the uncertainty principle precludes 

us from observing much structure within this region, and this expansion should 
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be rapidly convergent; it is also the obvious place to start a variational cal- 

culation, or a low energy effective range theory. 

Another point which is worth emphasizing is that all the final state 

interactions, overlapping resonances, etc. due to two-body forces occur in 

the exterior region, and are explicitly given in terms of known functions 

(assuming, as always, that we have a complete theory of the two-body wave 

functions). Consequently, even in situations where there may well be three- 

body forces in the interior region, we can still parametrize the interior 

region in any convenient fashion, and obtain an explicit formula for the two- 

particle contributions to the exterior region. This should provide a powerful 

tool for analyzing three-body final states and get over the necessity of throwing 

away the regions of the Dalitz plot where two or three final states interfere. 

I am eager to hear any suggestions. 
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