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ABSTRACT 

A suggestion of how to correlate the electromagnetic form 

factors of the proton with p-p scattering is developed in detail. Postulating 

a new elementary local interaction of current-current form plus a diffractive 

term, we construct for p-p scattering an approximately unitary scattering 

amplitude for large fixed s and all values of t using the Fourier-Bessel 

transform of the scattering amplitude. The t dependence of the resulting 

cross section is closely correlated with the fourth power of the electromagnetic 

form factor of the proton as suggested first by Wu and Yang and agrees well 

with high energy data (Elab = 30 BeV) over many decades in values for da/dt. 

Differences from related models are discussed, as well as further applications 

and experimental implications of the theory. 



I. Introduction 

With heuristic arguments, Wu and Yang’ predicted in 1965 that 

high energy, s >> Mi, large momentum transfer, -t >> Mi, elastic proton- 

proton scattering would reveal the same structure of the proton through its 

t dependence as that measured by the electromagnetic form factors in elastic 

electron-proton scattering. 

Since that original suggestion appeared there have been important 

new experimental results in both p-p and e-p scattering extending into broad 

new domains of s and t. From these data there has emerged a suggestion’ 

of how to correlate the electromagnetic form factors with the p-p cross sections, 

as illustrated in Fig. 1 which shows the cross section for p-p elastic 

scattering, 3 

X(s, t) = (do/dt) / (da/dt)+ o, 

plotted together with the fourth power of GMp(t), the magnetic form factor ’ 

measured in e-p scattering4 normalized to G ,,(O) = 1. This connection, 

although different in particulars from the earliest suggestions of universal 

functions that might represent all the high energy p-p data, supports in essence 

the original Wu-Yang proposal that the t dependence of p-p scattering and the 

fourth power of the electromagnetic form factor are proportional to one another. 

The basis for the ideas presented in Ref. 2 and for the theory 

which is constructed in the present paper is the close coincidence, extending 

over almost 12 decades in range of values, of the p-p data at the laboratory 

energy Elab = 30 BeV, or s = 2Mi + 2MNElab = 60 BeV 2 , with the measured 

form factors, together with the following theoretical conjecture: As the 
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incoming proton energy, or s, increases, the invariant differential cross 

section da/dt for large t approaches a limit independent of s to within 

logarithms and the t dependence of this limit is proportional to GMp 4 (t), i.e., 

lim 
S-- 

o3 g 6, t) cc G$tp(t) . (1) 

Fig. 1 suggests indeed that we have already witnessed, at least in a quali- 

tative way, the emergence of this limit. Whether or not this is a true 

inference from Fig. 1 can clearly be tested directly, and for our theory P-P 

crucially, before long at Serpukhov, at the CERN colliding proton ring facility, 

and at Weston. 

The purpose of the present paper is.to present a more complete 

theory of the conjectured behavior given by Eq. (1) starting with an input 

expression for the interaction forces or “driving terms” and deducing there- 

from an approximately unitary S-matrix and scattering cross section. First we 

will review our earlier suggestion for a theoretical interpretation of the data 

in Fig. 1. In I we wrote an ansatz directly for the scattering amplitude on 

the basis of the same physical ideas that are used in this work to specify the 

form of the single-nucleon matrix elements of the interaction currents from 

which the p-p scattering amplitude is now constructed. Limitations of the 

earlier model as well as essential differences from the related theories 

proposed by others will also be explored. 

In I we suggested the following correlation and interpretation of 

the data in Fig. 1: In the amplitude for p-p scattering there is a piece, the 

“diffractive tail, ” which dies precipitously for fixed t as s grows and, & 
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addition a point interaction of current-current from which depends on t alone 

and emerges as s becomes asymptotic. The differential cross section then 

appears as 

$ = (gjt=, [a G&t) + R(s,t)] 2 S 

where a is independent of s and t and R(s, t) vanishes as s -+ 00 for large, 

fixed -t. 

For concreteness we chose for R(s, t) the canonical “Regge form” 

1+ emiT*@) ,0!(t) - 1 
R(S, t) = P (t) sin Gus t 

although our ideas were and are weakly coupled to any special model for R. 

In a Reggeized world, a(t) refers to the usual vacuum trajectory. The 

experimental basis for choosing such an R(s, t) is the observed dramatic drop, in 

X(s, t) by a factor of 2 2 for each 20% increase in s in the range 20-60 BeV2. 

It is tempting to propose that s o! 0) accurately describes the approach to the 

high energy limit. Not only is this in accord with the data shown in Fig. 1 

and more transparently by the straight line segments of Fig. 2 whose slopes 

measure a(t) at the labeled values of t, but it is also theoretically appealing. 

If one particular Regge trajectory has a slightly smaller slope than all others, 

then by the time we move out to large values of both s and -t it will dominate 

the others and a simplified parametrization of the elastic scattering amplitude 

such as proposed for R(s, t) is a natural consequence. The small slope for 

the Pomeranchuk or vacuum trajectory, compared to other known trajectories, 

(2) 

(3) 
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which is suggested by p-p and n-p data at small t, is in agreement with this 

behavior. We emphasize that our main point of comparison between e-p and 

p-p scattering is not rigidly tied to a specific Regge model. More broadly 

stated, as s - ,GQ for fixed large -t, R(s, t), which may be interpreted as the 

decreasing tail of the diffractive or unitarity contribution from the inelastic 

channels, falls below the postulated s independent contact term revealing the 

GM~ 
4 (t) structure. 

An origin for the contact interaction was proposed as follows: 

Consider the reaction nucleon (p,) + nucleon (p,) - nucleon <pi) + nucleon (pi) 

in the region where s >> -t >> M 2 
N’ Writing out the T-matrix in terms of 

the Fermi invariants, we find that the pseudoscalar and scalar contributions 

are of order t/s or MG/s compared to V, A, and T. If we imagine that in 

this kinematic region, where all masses are negligible compared with the 

relevant dynamical variables, the scattering occurs with no flip of the nucleon 

helicities, then the amplitude becomes to order t/s 

TNN = FvGt~b) YcrU@2)5@i)YaU@l) + FAl(Ph) Ya, Y5”@2)%@i)Ya Y5u(Pl) * (4) 

This resembles one vector density probing another plus an axial density 

interacting with another. We proposed to take this resemblance seriously 

and suggested that the proper statement of the “contact interaction” which 

is exhibited in the p-p data is that for s >> -t >> Mi, FV and FA become 

proportional to the squares of the vector and axial-vector from factors one 

measures in the weak5 and electromagnetic interactions. 
6 The contact terms 

enter da/dt as 

lFv12 + I FA I2 + 4Re(F; FA) t/s . (5) 



-7- 

If, further, the vector and axial-vector form factors become similar for 

large t, or if the contact interaction cannot distinguish between right handed 

and left handed protons so that the contact interaction is purely of the vector 

type and FA = 0, then the structure a2Glp(t) for X(s, t) emerges. 7 

Our statement of no helicity flip by the proton in the kinematic 

range when Miis negligible compared with both s and t has its parallel in 

both weak and electromagnetic processes. In the weak interactions this is 

trivial due to the special nature of the lepton coupling, but in the electromagnetic 

interactions it is suggested in a preliminary way by the data. It also follows 

from the theoretically popular scaling law for the proton’s electromagnetic 

form factors. To see this we simply write out the Rosenbluth cross section 

for e-p scattering. 

= (F,(t))2 - +- /.L~ (F2(t))2 + 0 

4MN 

and note that if fi F2(t)/Fl (t) - 0 for large -t, then we are left only with 

the helicity non-flip term, F12. The “scaling law” for electromagnetic 

form factors tells us that FI(t) - -!- 1-1 F2(t) = GE(t) = GM(t)/pT = 
4M2 

1 Fl(t) + CL F2(t)lhT where PT = 2.79. If such a scaling is in fact experimentally 

verified it makes F2(t) cc Fl(t)/t for large -t, and is thus an even stronger 

condition than is needed if we are to be left with only the helicity non-flip 

term as s - 00 at large -t. Experimentally, the largest t value at which F1 

has been measured is -t - 3 GeV2 and by then the ratio of F2/F1 has dropped 

I 8 from 1 at t = 0 to < 3 . 
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With these assumptions our picture of the large s, large t 

proton-proton scattering was completely drawn, the differential cross section 

being written 

g = (gk= o [a2GGp(t) + y(t) (s/s~)~[O(~) - ‘I + interference terms] . (6) 

The magnitude of the interference terms depends on the relative phases of 

the contact terms and R(s, t), given by the signature factor in the Regge case, 

as well as on the spin structure of the diffractive contributions. We need only 

consider the interference terms in the limited range of s and t where R(s, t) 

and a GGP (t) are of comparable magnitude, and in our preliminary fits we 

ignored them, obtaining the following representative set of parameters: 

o!(t) = 1 + o’(O)t + (;)o!“(o)t2 , a’(0) = 0.5 f .l 

(7) 
o”(0) = 0.02 f 0.005, and a = 0.85 f 0.15 

The small value of a’(0) is consistent with our earlier remarks. Within the 

uncertainties permitted by the unknown interference term, more complicated 

guesses are possible for these parameters. 

There is an appealing simplicity to the idea that, in hadron 

processes, under a’ “diffractive tail” there should emerge a contact interaction 

of a current-current nature with the same currents whose transition form 

factors are being measured in weak and electromagnetic processes. However, 

before this idea of nature’s simplicity in choice of currents and interactions 

can be promoted from a pure phenomenology and dignified (or encumbered?) 

with a more solid theoretical foundation, several questions must be addressed. 

The most fundamental one is the following: In e-p scattering one measures 
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the matrix element of a conserved vector current for momentum transfer t 

between initial and final single physical nucleon states and summarizes the 

observations in terms of form factors. In contrast, in p-p scattering we have 

proposed a model containing both a strong interaction via vector currents, 

as in Eq. (4), as well as a strong diffraction term summarizing inelastic 

contributions via unitarity to elastic scattering. From out of this stew of 

strong interactions distorting the two proton wave functions via multiple vector 

and Regge type exchanges, how does pur;e of electromagnetic form factor 

emerge? More directly stated, if we construct a T-matrix starting with 

interacting currents such as in Eq. (4) as the “driving term” or input 

contact force and then add to this the inelastic or diffraction amplitudes, 

what is the t dependence of the resulting scattering amplitude fully unitarized? 

Does it still show a GMp 4 (t) variation in the differential cross section for 

large t ? 

There are several additional questions that can also be 

addressed. For example, what is going on at small t values? Eq. (2) with 

aGMp (0) - 1 tells us that the forward scattering amplitude naively obtained 

by extrapolating the contact term from large t has approximately equal real 

and imaginary parts, in contradiction with experiments that fix the ratio 

of real to imaginary parts of the forward amplitude to be much less than one, 

even at present energies. Although our original model was imagined to be 

applicable only when -t >> Mi, can our present approach remove this 

restriction and show how the observed behavior near t = 0 emerges? In this 

connection there is the very striking observation, emphasized by Feynman, 9 

that the close proportionality of do/dt and G ip (t) remains valid all the way to 

very small t. Can we also shed light on this behavior? What about the famous 
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“breaks” in do/dt? Finally, once we extend our theory to t = 0, what can 

we say about the total cross section and the status of the Pomeranchuk 

theorem? In particular, what is the resulting asymptotic limit of the contact 

interaction for s - m? 

Our program here will then be as follows: (1) We postulate 

that there is an elementary local interaction between two protons of the 

current-current form which operates & addition to the usual strong interaction 

dynamics leading to diffractive contributions which are customarily summarized 

in a Regge parametrization. (2) We can then introduce a precise form for 

this current-current interaction that embodies the Wu-Yang idea; namely, 

our input is just a product of single nucleon matrix elements whose structure 

is that of the electromagnetic current, It is introduced as an additional “force:” 

an inhomogeneous term in the fixed t dispersion relation in the energy s for 

p-p scattering. To this we add the usual forces leading to diffractive behavior. 

(3) In Section II we construct an approximately unitary scattering amplitude 

following the procedures developed by Blankenbecler and Goldberger 10 and 

Baker and Blankenbecler . 11 They introduce the Fourier-Bessel transform 

of the scattering amplitude, for in the high energy regime this leads to an 

exceedingly simple unitarity relation from which the elastic amplitude can be 

recovered by a judicious mixture of quadratures and computers. 

The resulting theory, which we complete in Section III by 

computing in detaiI differs in two essential ways from related studies of the 

connection of p-p data and electromagnetic form factors. (1) We have 

introduced a local current-current interaction in addition to the diffraction - 

scattering one would normally contemplate. In the models based on Yang’s 
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work 12, 13, l4 
9 the form of the diffraction term itself is identified with the 

electric charge density. More precisely, if one writes the partial amplitude 

at energy s and impact parameter b as e 2id (b, s) - 1, the scattering phase 

6(b, s) is interpreted in Refs. 12 and 13 as a path integral proportional to the 

overlap of the electric charge distributions of the colliding hadrons. (2) The 

S-matrix, as approximately unitarized in our approach with the Fourier- 

Bessel transform, also has desired analyticity properties- -in particular, a 

unitarity cut. Formally, in scattering examples with elastic unitarity, this 

replaces this “eikonal” phase 6(b, s) by the form 6 - 2 arc tan 6/2. 
15 This 

replacement was introduced by Blankenbecler and Goldberger in order to 

preserve desired analyticity as well as unitarity properties of the S matrix. 

Clearly these forms are indistinguishable for weak potentials, such as those 

with which the eikonal approximation has often been used, but differ 

dramatically for strongly interacting processes. We will exhibit an example 

in Section III which makes explicit the differences between these two procedures 

and shows the importance of preserving the analyticity properties in addition 

to unitarity of the S-matrix. We conclude this section by presenting our 

representations for the elastic p-p scattering cross-section and comparing 

with the original ansatz, Eq. (1). Our final results closely correlate with 

this form and hence with experimental data at energies M 30 BeV over the 

full range of measured t values extending over many decades for da/dt. 

Finally, in Section IV we will briefly recount the achievements 

of the earlier paragraphs, study the ultimate approach of our amplitude to the 

Pomeranchuk limit, and speculate on further applications of the theory and 

its experimental consequences. In particular, an intriguing connection between 
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the contact interaction we have examined here and & energy nucleon-nucleon 

scattering is discussed. 

II. Approximating Unitarity 

In constructing our suggested representation for the p-p scattering 

amplitude we begin by assuming that there exists a local current-current 

interaction in addition to the usual t-channel particle exchanges and production - 

matrix elements in p-p collisions. That is, we introduce a new two particle 

scattering matrix element with no physical singularities in s which we add to 

the usual driving terms or input forces B(s, t) that one might consider in 

constructing a unitary amplitude for elastic scattering. We then write for these 

driving or “Born” terms in the nucleon-nucleon T-matrix, 16 

(forces) 
TNN (N(P1) + N(P2) - W1,) + N(P2,N 

(8) 

where g2 measures the strength of the additional local coupling we are considering; 

G(t) is the form factor associated with the one nucleon matrix element of the 

vector current involved in the interaction; 6 s is the square of the total barycentric 

energy in the collision; and t is the four momentum transfer t = (PI- PI,)~ = 

(P2’ P2,)2* B(s, t) includes any and all other driving forces leading, in the 

absence of our added current-current interaction, to the high energy diffractive 

scattering. We include in B(s, t) not only t-channel exchange contributions 

such as one pion exchange terms, but also the strong inelastic forces which, 

after acting twice via unitarity through multi-body channels, return the system 

back into the elastic p-p channel. A graphical representation of these 
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contributions to B(s, t) is drawn in Figs. 3b and 3c, along with the current- 

current term of Eq. (8) in Fig. 3a. We are omitting terms required by 

crossing symmetry and the Pauli principle because we will subsequently 

examine a region of s and t (s >> -t, s >> mi) where such effects may be 

safely ignored. 

We are also suppressing inessential spinor factors. Our 

requirement of no helicity flip for large t as discussed in Section I and Ref. 2 

is essential in order to introduce, by an argument that is essentially a state- 

ment of generalized CVC, the electromagnetic form factors to describe the 

structure of our direct interaction matrix element. We have no deep commit- 

ment to the Lorentz tensor structure of the driving terms B(s, t) in Eq. (8) 

leading to the usual diffraction behavior, and henceforth wilI suppress the 

spinor factors as inessential. 

It is a basic physical assumption of our model that the form factor, 

G(t), appearing in the current matrix element above is to be identified with the 

electromagnetic form factor of the nucleon6 as measured in elastic e-p 

scattering. Equivalently we may also think of this force with its form factor 

structure in t as arising from an effective Lagrangian interaction of the form 

Leff(x) = -g2J,(x) Jfi(x) as in weak interaction theory. 

Given the driving forces we must now construct the properly 

unitary and analytic scattering amplitude for p-p scattering. Since many 

inelastic channels are open and important at high energies, giving rise to the 

diffraction pattern for elastic scattering, it requires in general Herculean 

labor to construct a unitary S-matrix. We will therefore attempt to approximate 

unitarity in a tractable manner following the route mapped some years ago by 

Blankenbecler and Goldberger . 10 They noted that if one writes a Fourier- 
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Bessel representation for the scattering amplitude T(s, t) 

00 

T(s, t) = 
/ 

bdb Jo@ fl) W2, s) , 
0 

then for large values of the energy s the problem of implementing the unitarity 

condition on the partial amplitudes H(b2, s) for fixed impact parameter b can 

be managed with relative ease. In fact, a completely algebraic procedure for 

doing this was given by Baker and Blankenbecler 11 using a multi-channel 

formalism and a further strong assumption that we shall state shortly. B&B 

consider multiparticle unitarity for the amplitudes T,,,(s, t) for a particles 

to yield a’ particles. (The 3(a+a’) - 12 variables other than s and t are 

suppressed. t is still the momentum transfer between a nucleon in the initial 

state ,and a nucleon in the final state. ) A Fourier-Bessel representation for 

T,,.(s, t) is written 

03 

Ta,,(s, t) = J bdb Jo(b VCT-) Ha,,(b2, s) , 

(9) 

(10) 

0 

and unitarity is given in the high energy limit as 17 

Im Ha~a(b2, S) = lF2 HaTif s + ie, b2)pi(s) Hia(s - ie, b2) + 0(1/s) , (11) 

with pi(s) the appropriate kinematic density of states factor for the intermediate 

state with i particles. An approximate solution to (11) is now constructed by 

B&B by assuming, and it is both a strong assumption and the only tractable one 

available, that “the multiparticle matrix element is produced only through 

transitions to a fully interacting two-particle state.” 



-15- 

We will accept this assumption as a working tool. In terms of 

the Fourier-Bessel amplitude defined in Eq. (9) for elastic scattering, 

H22(b 
2 

9 s) = 
f 

q dq Job) T22(~, t = -q 
2 
) 3 

0 

and of the driving terms in Eq. (8) (we drop the Lorentz tensor structure 

and spinor factors as noted earlier), 

Hc(b2, s) f 
I- q dq J,@s, tg2G2@ = --q2)) 3 
0 

(12) 

(13) 

06 

HD(b2, s) 3. 
/ qdq Jo@4 B(s,t= -q2), (14) 

0 

we write the approximate solution to the unitarity relation constructed by Baker 

and Blankenbecler as 

H22@2, s) = 
HcB2, s) + H,(b2, s) 

1 - I(s)[Hc(b2, s) + BI,(b2, s)l 

As defined, Hc(b2, s) is given directly by the Fourier-Bessel transform of the 

electromagnetic form factors, and H,(b2, s), which is the reflection back on 

the p+p - p +p elastic transition of all the inelastic channels as well as the 

boson exchanges as illustrated in Fig. 3, will be given a suitable paramateriza- 

tion below. The factor I(s) is an integral over the two body phase space factor 
co 

I(s) = $ 1 
P2W 

ds’ s’ , 

S 
0 

and the lower limit so is introduced to cut off the phase space integral at an 

energy so >> 4 MN2 below which this high energy approximate solution of the 

unitarity condition, Eq. (ll), ceases to be valid. Only the two body phase 

(15) 
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space appears, and never three or more body phase space, as a result of 

the approximation stated above of building up the multiparticle scattering 

amplitude through two body intermediate states. Eq. (15) is recognized as 

no more than the summation of a geometric series formed by successive 

iterations of the driving terms in Eqs. (13) and (14), as illustrated in Fig. .3, 

using two body unitarity. It is a consequence of this 17 that unitarity leads to 

the simple algebraic form of Eq. (15) for the partial amplitude H22@2, s) at 

“impact parameter” b. 

The form of I(s) for s > so is 

I(s) = constant X [+ log F i- i] , 
0 

with the logarithm coming from the principal part integration in (16). For 

s < 25 so, the imaginary or absorptive part is the primary contribution to I(s). 

Taking 4Mi << s 
0 

& 20 M;, we see that we may approximate I(s) by 

I(s) = i x real constant for all energies s x 500 MN2 or laboratory energies 

up to EL x. 250 BeV. 

For larger energies yet there will be logarithmically growing 

corrections to this approximation as the energy is increased. Such a growth 

would certainly be imperceptible in the p-p data as presently available; 

however, we return to consider these logarithms in Section IV as we discuss 

the approach to infinite energy behavior and the emergence of the Pomeranchuk 

theorem. 

The elastic scattering amplitude for proton-proton scattering is 

(17) 

now constructed by integrating 
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* 
T(s, t) = f bdb Jo (bm) 

HcP2, 6) + H,(b2, s) 

0 
1-h [Hc(b2, s) + HDe2, s)l 1 ’ 

(18) 

where the real constant from Eq. (17) has been determined to be l/G from 

the normalization requirement 

where 

and 

f+ = I T(s,t)i2 . 

It proves convenient to define a slightly renormalized amplitude 

co 
/ bdb Jo@ fi) 

hc(b2, s) + h,ti2, s) 
1 - hc(b2, s) - hI,(b2, s) 1 ’ 

0 

hc(b2, s) = (im) Hc(b2, s) , 

hI,(b2, s) = (i/G)H,(b’, s) . 

(19) 

(20) 

Now rewrite T(s, t) in the form 

co 
f bdb Jo@ 0) 

hD(b2, s) 
1 - hI,(b2, s) 

+ 
hc(b2, s) 

1 
(21) 

0 
(l-hDfi2, s))(l- hcP2, sH-j$b2r s)) ’ 

where the first term is what would survive if there were no contact interaction, 

that is, if the entire amplitude came from “diffraction” scattering. The 

second term may be viewed as our unitarized contact interaction. 

For this contact term we compute Eq. (13) with the electromagnetic 

form factor represented by the dipole fit to the data 

G(t) = (1 - t/K2)-2 (22) 
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with fc2 = 0.71 (BeV)2. The difference between (22) and the measured G(t) 

can only result in some inconsequential, for our arguments, numerical changes 

in the output, namely 
da dt for p-p scattering, and will not change the main 

features of our predictions as given below. This form also allows us to have 

a closed analytic expression for hc(b2, s), which is essentially the Fourier- 

Bessel transform of G2(t), 

hc(b2> s) = $$ qdq Jo(bq)G2 (t = -q2) . 

0 

A is a constant that characterizes the strength of the contact interaction; its 

relation to g2 is g2 = A$Z&C2. 

We may switch to dimensionless variables now by defining 

x =’ Kb and y = G/K, Eq. (23) reads 

x3K (x) 
he(x) = 2 483 3 

(23) 

(24) 

and the scattering amplitude is 

hD(x s) hc (x, s) 
1-hB(x, s) + (1-hB(x, s))(l-hc(x, s)-hI,(x, s)) 1 

z F(s, (25) 
K2 

and 

do 91 F(s,t)i2 dt = K4 = 8~ I F (s, t) 12/(BeV)4. (2’3) 

It only remains to give a convenient parametrization for hB(x, s) 

which represents in an acceptable approximate manner our ignorance of the 

diffractive or inelastic channel contribution to the elastic process. Motivated 

by the experimental knowledge that for small momentum transfers, differential 
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cross sections fall exponentially in t and are essentially independent of s for p-p 

scattering (again, up to logarithms), we choose to give hl,(x, s) the s independent 

form 

hDW = 

so that 

hD 64 
1 -hD(x) 

Some s dependence may always be added to this if one desires. For example, 

Regge pole enthusiasts would recommend that R2 be proportional to log s, so 

the resulting diffraction peak in g would “shrink.*’ We will return to this 

possibility in Section IV in discussing the approach to the Pomeranchuk limit, 

and for the present proceed with the thought in mind that we are working at 

some fixed large energy s. 

We may interpret the parameters in Eq. (28) by recognizing a! as 

the imaginary contribution to T(s, t) and thus a measure of the absorption due 

to the inelasticity at large energies. Common sense and a bit of unitarity led 

us to require it to be positive. R2 is the width of the diffraction peak, more 

or less, and is clearly a positive number. Typical widths of diffraction peaks 

led us to expect it to be on the order of 10 in units of K 
-2 . The meaning of p, 

the real part of the diffractive amplitude, is less transparent. It reflects the 

fact that at finite energies, like those found at accelerators, our “diffractive” 

like processes are not purely imaginary. 

The four parameters A, o, p, and R2 will be determined in the 

(27) 

(28) 

following section by certain physical requirements on T(s, t). At that point we 
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shall be prepared to evaluate T(s, t) for all t (at our imagined large fixed value 

of s) from 

xdx Jo(xy) 
0 I 

i(a! + ip) e -x2/R2 

x3K (x) 
-x2/R2 -’ 

+& 483 
) 

[l- (a, + ip) e 
iAx3K3(x)(l-(rY+iP)e 

48&i Ii (29) 
III. Quadratures and Computers 

Our unitarized Fourier-Bessel representation for T(s, t), Eq. (29), 

contains four unknowns which we fix by the following physical requirements: 

(1) The correct value of da/dt at t = 0 must be reproduced; 

that is, 

da 
x I 

= I T(s,o)12 = 80 mb/BeV’ . 
,t x0 

(30) 

(2) The observed slope of dcr/dt must be reproduced. This 

gives the “diffraction radius” and is primarily determined by our R2. We chose, 

for definiteness, a slope of 10 BeVm2, suggested by the present high energy 

data, so that 

do da 
dt = FE,=, 

I 

,1ot for t = 0 . (31) 

(3) The real part of T(s, o) must be much smaller than the imaginary 

part. This is in accordance with the observations of Foley et al. 18 
-- In particular, 

we take small here to mean zero, although ReT(s, o)/ImT(s, o) - 20% is 

suggested by the data at present “high’* energies. Our program can certainly 
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accommodate that view of %mall.” Therefore, we demand that 

ReT(s, o)/ImT(s, o) = 0 . (32) 

(4) Finally, we require that for large -t, say above 20 BeV2, 

the differential cross section approaches a constant times G Gp(t), as given by 

the dipole fit in Eq. (22). More precisely, we demand that for large -t, and 

the large energies we are always considering here, 

da 
dt large 

2 4 
a GMp (t) 9 (33) 

where a is a constant independent of s and t and on the order of one. This is 

the substance of our observations in Ref. 2 on the manner in which the Wu-Yang 

asymptotic behavior emerges. 

In order to implement this last condition we need to know the 

asymptotic t dependence of the Fourier-Bessel transform of a given function. 

We find by integration by parts that 

j xdx Jo(xy) f(x) = (;$? j: xdx Jo(xy)(;$)3f(x) 
0 0 

(34) 

plus surface terms and integrals which vanish as y --c ~0 faster than l/y’, 

the asymptotic behavior expected from our particular choice of 

lr f(x) = 5 I i(a!+ip) e -x2/R2 + 

A x3K3 tx) 2 2 

z 43 
[l - (o +ip) eBx ‘R I2 

iA x3K3(x) -x2/R2 ] -- 
l d&i 48 

[l - (a,+i/?) e 
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from Eq. (29). Although we have used the “dipole” approximation of Eq. (22) 

to the proton form factor for simplicity in constructing closed expressions, 

our results are not essentially dependent on this approximation. Using Eq. (34) 

we find that T(s, t) in Eq. (29) has the large -t behavior (recall t = KEYS): 

G 48 &a-&j tl - (a+W12 
T(s,t) -t - - 

K2 y8 (1 -& + [l- ((w+i@] 1’ 
(35) 

We note that the diffractive terms proportional to (Y and p have made the 

originally purely real contact term pick up a non-zero phase at large -t. 

We are now in a position to actually construct T(s, t). Choosing 

a value of a2 in Eq. (33) we imposed the four conditions given above by doing 

fourvparameter searches on a computer with successively finer mesh. For 

any reasonable value of a2 we found that we could always find a solution. 19 

Some typical values of o, /3, R2, and A for given values of a2 are to be found 

in Table I. The resulting amplitude was then constructed by numerical integration 

of Eq. (29). Because of the rapid oscillations of Jo(xy), leading to almost cancel- 

ling contributions to the integral for large y (i.e., large -t), it was necessary to 

do the integral numerically by integrating between the zeros of the Bessel 

function Jo(xy) and printing out the result of each such sub-integration. This 

also provides a convenient check that the final (very small) amplitude for large 

y (i.e., -t) is not of the same order of magnitude as the last significant figure 

carried by the computer. 

In Fig. 4 we have the computed (da/dt) / (do/dt)t=o curves for 

some typical values of a2, 4 as well as GMp (t). Our “best fit” 2o is shown in 

Fig. 5 where X(s, t) f (da/dt) / (da/dt)t= o as computed from Eq. (29) is exhibited 
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with GMp 4 (t), as given by the dipole fit, and clot. The asymptotic strength of X(s, t) 

for large -t is 0.4G G:,(t). The parameters CY, p, R2, and A are 0.53, + .35, 

12.7, and + 12.92 respectively. This corresponds to a g2 in the driving terms, 

Eq. (8), of 

g2 = (1.6 fermi)2 . (36) 

Further light is shed on the properties of our form of T(s, t) by 

detailed comparison of da/dt for -t 5 2.5 BeV2 with the dipole form of G ;,tt), 

as is seen in Fig. 6. The differential cross section falls as e lot near t=o, as 

it was constrained to do, but for -t 2 1.5 BeV2 or so it has already turned 

over to closely approximate the fourth power of the form factor. In between, 

at -t = 1.0 (BeV)2, there is what might be called a “break” in do/dt where 

the contact interaction emerges to take over a dominant role from the 

precipitiously decreasing diffractive contribution. Note also that for -tL 0.5(BeV)2 

dc/dt falls below G ip(t) then crosses over near -t= 1.0 (BeV)2 to rise above it, 

only to return below again at very large values of -t. This is in fact qualitatively 

similar to the observed behavior of dcr/dt for high energy elastic p-p scattering 

at small -t. Attempts 

appearance of a break 

slopes joined. Fig. 5 
3 

to fit these data with exponentials alone have suggested 

or knee in the curve at -t x 2 where the two different 

fits the observed p-p differential cross section at 

s = 60 (BeV)- to within a factor of M 2-3 over the measured range out to 

-t = 15 (BeV)2. This is evident by comparing with Fig. 1 and noting the close 

coincidence of our computed da/dt to the form G4(t). The main point to be 

emphasized is that in the high energy region the unitarized result differs in 

form from G4(t) by less than a factor of two over many decades in values for 

the momentum transfer -t and, hence, is a good representation of the data. 
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This is a confirmation of the basic ideas presented in I. Whether this behavior 

remains correct at Serphukov and higher energies is now the crucial question. 

For completeness, rather than any particular implication for 

experiments, we give in Fig. 7 the real and imaginary parts of T(s, t) as a 

function of t. It is amusing to observe that both Re T(s, t) and Im T(s, t) have 

zeros, but that these zeros are arranged, by unitarity, to fall where their 

effect on da/dt is not noticeable, resulting in a smooth behavior for the 

differential cross section. This is in strong contrast to the results presented 

in Ref. 12 and 13. This difference shows the importance of protecting, at 

least approximately in the high energy limit, desired analyticity properties 

in s as we have done, in contrast to the eikonal method. Had we adopted the 

eikonal approach the amplitude within brackets in Eq. (20) would have been 

replaced by the transcription 

I 1 r;;:D] - 1 :c+hD - jeikonal ) (37) 

or equivalently the complex “scattering phase” 6e(b, s) = -i@c + hD) is replaced 

in our procedure by 

‘e - 2 arc tan 3 de 

as remarked by Blankenbecler and Goldberger . 10 The unitarity cut in particular 

is absent from the eikonal amplitude. To illustrate the effect of this substitution 

we have taken for simplicity a model given in the paper of Durand and Lipes 13 

and performed this substitution on it. In particular, we took their Model A in 

which the scattering phase 6(b, s) is given as a path integral over a purely 

absorptive density proportional to i@K)3K3@K). This is the solid line in Fig. 8 

and agrees with Fig. 1 of Ref. 13. Next we made the substitution 6 - 2 arctan (d/2), 
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indicated above, and the resulting do/dt is given by the dashed curve of Fig. 8. 

The striking zeros of the eikonal amplitude have gone away and only one little 

wiggle remains. With the addition of a real part to the potential and spin 

dependent pieces of the cross section as in Ref. 13, even this little wiggle 

can be washed out. Similar effects may be anticipated for the other models. 

IV. Further Observations and Consequences 

We have now completed the major task of this paper: the construction 

of an approximately unitarized high energy representation for the elastic p-p 

scattering amplitude starting from a basic input force given by our current- 

current driving term 

TDriving = g2G2 (t) uy ,+ u 
P P’ 

plus diffractive contributions. Unitarity was implemented essentially through 

the N/D formalism of Blankenbecler, Baker, and Goldberger which writes+ 

TNN = f 
bdb Jo@fi)[HDriving/(l - I(s) HDriving)] . 

0 

(38) 

The extra handle of unitarity provided us with enough leverage to be able to 

extend our basic ideas down to small momentum transfers- -a regime we had 

avoided before. Some of the interesting features of this extension have now 

been spelled out both in Section III and in the accompanying graphs. 

The value of g2 which we have extracted from our analysis indicates 

that the interaction we have been discussing is a strong interaction. If we take 

out the dimensions of g2 by expressing it in units of BeV 
-2 , then 

g2/47r = 5.1 , (40) 
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which is certainly strong. Although we have been discussing very high energy 

scattering, one might ask whether such a new strong interaction can be 

accommodated by present phenomenological analyses Zl of low energy nucleon- 

nucleon scattering in terms of forces generated by the exchange of mesons. 

Recalling the Born approximation arising from our interaction 

TNNtNb?$ + N@2) --c N@i) + Nt~h)) = 

(41) 

g2Gip(t) U@2) y, U(p,) ‘ii yau(Pl) + “u channel” terms, 

we see that it has a “range” dictated by the form factors for the hadronic 

structure and spin properties determined by the non-relativistic limit of the 

tensor products of the spinors and y-matrices. Given the dipole fit to G(t) 

in Eq. (22), the effective radius or range of the force in Eq. (38) is given by 

a mass of 4 

.7 BeV2 
z ‘(<)2 = (4201MeV )2 . This is very close to the 

mass of the so-called a-meson discussed in Ref. 21 and introduced to provide 

a needed force intermediate in range between the pion and rho meson, but 

with isospin zero. The non-relativistic limit of Eq. (38) gives a spin 

independent force as also desired. The strength of the coupling we find is 

smaller than the ones favored by these authors by about a factor of three, so 

that a u meson may still be necessary to fit the low energy nucleon-nucleon 

scattering data, but our additional interaction is at least not in contradiction 

with such data in range, strength, or sign. 19 

The nuclear physics requirement that the extra force be in the 

I = 0 state may shed some light on the isospin properties of our interaction- - 

a matter we have not discussed here. This is most relevant when we turn 

to collisions of other hadrons- -and in particular to n-p elastic scattering. 
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Since a pion can only couple to a vector current with I = 1 (viz, the p but not 

w or $ mesons), if our current is assigned I = 0 only, it will not contribute 

directly to r-p scattering at high energies since the contact term Hc(b2, s) in 

Eq. (13) would be identically zero. 

Further, we may address ourselves to the region of ultra high 

energies. This is the realm where the phase space integral, I(s), in Eq. (18), 

is no longer well approximated by a purely imaginary constant, but grows as 

log (s/so). Let us also add an s dependence to the diffraction term in H(b2, s) 

by letting cy fall as l/log (s) and R2 grow as log (s) for large s in Eq. (28). 

This is needed to give a shrinking forward peak, appropriate to Regge asymptotic 

behavior, for diffraction scattering and to lead to a constant contribution to the 

amplitude at t = 0 (corresponding to a constant total cross section in our 

normalization). Thus we write 

H,(b2, s) 
0 = A(s) ei@@)/2 e-b2/@2 log S) , a 

(42) 
1 - I(s) HI,(bA, s) 

and imagine that as s - 00, A(s) - l/log s and 4(s) - x . The unitarized 

elastic partial amplitude now looks like 

Hz203 
2 

, s) = h(s) e i@(s)/2 e-b2,‘(R2 log s) 

Hce2, s) [l + I(s) A(s) i@(s)/2 e-b2/(R2 log ~$2 
(43) 

e 
+ 

1 - I(S) Hc(b2, s) [l + I(s) h(s) e W(s)/2 e -b2/(R2 log s)] 

For large s, I(s) A(s) is a constant. We are interested in the asymptotic behavior 

of 00 

T(s, t) = 
/ bdb Jo@@) Hz2(b2, s) 

0 
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for fixed t + 0 as s - =J. As constructed,the diffraction term, (the first one in 

Eq. (22)), vanishes in the Regge manner. The detailed nature of the contribution 

to T(s, t) of the contact term in the ultra high energy limit depends somewhat 

on the exact asymptotic behavior of G MpW. F or example, if GMp(t) is a dipole, 

then the behavior of this term is (log log s)2/log s ; if G Mp @) is an exponential 

in I&, then its behavior is l/(log s) l/3 ; if GMp(t) is an exponential in t, then 

asymptotic decreases of this term is log(log s)/log s. In each case the part of 

the amplitude coming from the contact term goes away quite slowly, but it does 

go away. Thus the elastic scattering cross section vanishes for s -. ~0, and 

we are able to recover pure diffraction scattering in the ultra high energy regime. 

This enables us, independent of the isotopic or unitary spin properties of our 

current-current interaction, to enforce Pomeranchuk theorems such as 

a,@P) - a,@~) at infinite energies, although only in a logarithmic and not in 

a power law manner. 22 Whether or not it will prove to be feasible to trace 

such a gentle approach of the p-p total cross section to its asymptotic limit is a 

matter for future experimental analysis. 

Finally, we remind the reader of the possibility that the local 

current-current interaction we have been discussing should show up in other 

high energy hadron collisions. We have discussed pion-nucleon scattering 

above and outlined some others of these in our earlier paper. 2 The observation, 

or lack of it, of the contact interaction in other reactions provides a strong 

handle for determining its isospin properties. 

Before we consider recommending such difficult experiments, 

however, we must reiterate our earlier statement that elastic proton-proton 

scattering done at the energies available to Serpukhov, Weston, or the CERN 

Intersecting Storage Rings will provide crucial tests of the theory of p-p 
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scattering presented here based on the assumption of a new and strong inter- 

action between hadrons of the current-current type. 
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At this point the isotopic and unitary spin properties of the current in the 

contact interaction are not specified beyond saying that its diagonal matrix 

element between proton states exists. The possibility that the contact 

interaction in fact corresponds to the SU(3) symmetry breaking interaction, 

thus restricting its unitary spin properties, has been suggested by Y. 

Ne’eman, Phys. Rev. (to be published). 

Specifically we mean the form factors Fl(t) and g,(t) which are the 

coefficients of y, and y,y5 respectively. If the scaling law G ,,@) = 

GMp (t)/GMp (0) holds, as assumed by Coward fi &., Ref. 4, then Flp (t) 

becomes proprotional to GMp(t) for large t. 

Such an indistinguishability of right and left handed protons, or helicity 

independence, as s - *, t fixed, has previously been discussed by 

R. Torgerson, Phys. Rev. 143, 1194 (1966), who calls this strong y5 

invariance. The previous case of just no helicity flip terms as s - 03 

is called weak y5 invariance in his notation. 
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TABLE CAPTION 

Table I- -Values of the parameters of cx, p, R2, and A found by computer 

2 do 2 4 
search for a set of choices for a , where - - a dt G Mp(t) for large 

-t. a2 = 0.40 is our best fit. The sign of A corresponds to an 

attractive input contact force as suggested by the low energy discussion 

in Section IV. 
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TABLE I 

2 
a 

.25 

02 P R2 A 

.50 + .30 13.0 + 11.41 

.35 

.40 ( 

.50 

.70 

.51 

.53 

.57 + .38 12.3 + 13.85 

.58 + .40 12.2 + 15.0 

+ .33 

+ .35 

13.0 

12.7 

+ 12.43 

+ 12.92 
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FIGURE CAPTIONS 

Fig. 1 - - The normalized differential cross section X(s, t) = (da/dt) / (da/dt)t= o 

for p-p scattering and the fourth power of G Mp(t)/GMp to) plotted 

against t. The experimental points are labeled by the corresponding 

values of s, the square of the c. m. energy, and are taken from Ref. 3. 

Equal s contours are shown by dotted lines. 

Fig. 2- -The normalized differential cross section X(s, t) for p-p scattering 

and the fourth power of GMp(t)/GMp(0) plotted against s for -t = 10.0, 

11.1, and 15 (Rey2. If X(s, t) were purely of the form P(t) so@), 

the plotted points for given -t would lie on the straight lines. The 

deviation from these lines we attribute to the emergence of the contact 

term. 

Fig. 3 - -3a. Apictorial representation of the local current-current interaction. 

3b. A picture of the “usual” t-channel exchanges leading to diffraction 

scattering. 

3~. Graphical representation of inelastic channel contributions to the 

elastic p-p scattering. 

Fig. 4-- The normalized differential cross section X(s, t) as computed from our 

unitarized T-matrix for various choices of the asymptotic condition 

da 2 4 
dt- a GMp (t). Also plotted is the fourth power of the dipole fit to 

the proton form factor: G Mp(t) = (1 + I ti/ K2)-2. 

Fig. 5- -The normalized differential cross section X(s, t) as computed from our 

unitarized T-matrix for the asymptotic condition g - 0.4 GMp 4 m. 

This is our best fit. Also plotted is the fourth power of the dipole fit 

to the proton form factor: G Mp (t) = (1 + I t l/K2)-2 which would have 

been the prediction of the non-unitarized hypothesis of I. 

-35- 



I 

-36- 

Fig. 6- -The computed small -t behavior of $ for the best fit: 
da dt - 0.4 G,4,(t) 

for large -t. Note the “break” as 2 turns from the diffractive 

behavior clot to the dominance of the contact interaction above 

-t M 1.0 (BeV)2. 

Fig. 7- -The real and imaginary parts of the elastic p-p scattering amplitude. 

Fig. 8-- Modification of Model A of Ref. 13. The solid l.ine reproduces a 

result found in Fig. 1 of Ref. 13. The dashed curve takes 

6-- 2 arctan (d/2). 
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