Production and dracay or A_{1} and A_{2} resonances in
 $16 \mathrm{GeV} / \mathrm{c} \pi^{-} \mathrm{p}$ INTRTACTIONS*

by
J. Ballam, A. I. Brody, G. B. Chadwick, D. Fries, Z. G. T. Guirarossián, W. B. Johnson, R. R. Larsen, D. W. G. S. Leith, F. Martin, M. Perl, E. Pickup, T. H. Tan

Stanford Lincar Accelcrator Center Stanford University, Stanford, California

Abstract

AISSTRACT The total cross sections for production of A_{1} and A_{2} mesons produced in $16 \mathrm{GeV} / \mathrm{c} \pi^{-} p$ interactions are presented together with a determination of their spinparity. An attempt has been made to treat the A_{2} as a superposition of two resonath states.

(To Re submited to Pioys. Rev. Letters)

[^0]We present here data from an exposure of 60,000 pictures in the Brookhaven National Laboratory 80 -inch Hydrogen Bubble Chamber, using the rf separated beam ${ }^{1}$ in an unseparated mode to obtain a beam of $16 \mathrm{GcV} / \mathrm{c} \pi^{-}$with $\Delta \mathrm{p} / \mathrm{p}= \pm 0.25 \%$. The film was scanned for 4-prong events, and tho antlysis was performed using the TVGP-SQUAW scries of programs. The rocrtant sample contains 1995 events which constrain to the hernaim

$$
\begin{equation*}
\pi^{-} \mathrm{p} \longrightarrow \mathrm{p} \pi^{+} \pi^{-} \pi^{-} \tag{1}
\end{equation*}
$$

and which are consistent with a visual check of ionization. The total cross section for this raction is $1.08 \pm 0.12 \mathrm{mb}$.

In Fig. 1 the unshaded historram shows the mass spectrum for the $\pi^{+} \pi^{-} \pi^{-}$ system with no cuts imposed on the data; the shaded histogram shows those events having at least one $\pi^{+} \pi^{-}$combination in the mass interval 0.66 to 0.90 GeV (ρ° region) and with no associated Δ^{+1} (1236). There is a very strong enhancement in the mass region 1.0 to 1.4 GcV which we associate with the Λ_{1} and A_{2} mesons. ${ }^{2}$ The separation into two peaks is consistent with the production of two resonant states with parameters shown in Table I. In order to understand the backeround beneath these peaks, we use the OPE calculation of Wolf. ${ }^{3}$ There are three one-pion exchange diagrams Which contribute to reaction (1). Their contribution has been calculated neglecting possible interference terms between them. The absolute cross sections for Δ^{++}, ρ^{0} (not associated with the A mesons), and f° predicted by this calculation are in good agreement with the data of this experiment, and in fact there is quite credible agreement with data from experiments over a very wide range of energies. Furthermore, the angular dependences predicted for events selected to have 3-pion effective mass near the A region (1.4 to 1.8 GeV) agree fairly well with the data of this experiment. We therefore use this calculation to estimate the amount of backeround and its angular
depentences in the ensuing analysis of the promerties of the A_{1} and Λ_{2} versonances. The resonance parameters given in Table I were oltance by fitting, the shaded histogram to two Breit-Wignex resonanes and the form of the Wof barkground.
 the absolute prediction in accordance with the best fit.

Figure 2(a) shows the helicity angular disiribution for Λ_{1} evenis with $\pi^{+} \pi^{-}$mass combinations in the ρ° region (and excluding, crous with m(p π^{++}) in the Δ^{++}restion) where β is: the ancele in the ρ° rest frome between the wor π. Fvents where beth $\pi^{+} \pi^{-}$mass combinations lie in the ρ° region have heon ploted twien. Fits have been made to the data for various spin-parity assignments ossuming the background has an angular dependence given by Wolf's calculation. We use the functional form

$$
\mathrm{F}_{\mathrm{s}}(\cos \beta)=\mid A_{\ell}^{\mathrm{s}} \mathrm{e}^{\mathrm{ja}} \mathrm{sf}_{\ell}^{\mathrm{s}}(\cos \beta)+\text { Wolf background }\left.\right|^{2}
$$

The spin of the A_{1} is denoted by s, the orbital angular momentum state of the decay by ℓ, the amplitude for the decay (assumed real) by A_{ℓ}; a_{s} is the relative phase between the decay amplitude and the background to account for possible interference effects, and $f_{l}^{s}(\cos \beta)$ is the Bose symmetrized ancular function appropriate to the decay. ${ }^{1}$ The pronounced poaking of the distrjlation at cos $\beta= \pm 1$ excludes assignments in the natural spin parity series $1^{-}, 2^{+\quad}$, ete, and wo list fits only for the assignments 1^{+}, and 2^{-}. These are quite insensitive to hekeround confidence levels change by $\leqslant 5 \%$ over the full range of background levels) and we give the confidence for the background estimate shown in Table I: 12% for 1^{+}S-wave, 35% for 1^{+}D-wave, 17% for $2^{-} \mathrm{P}$-wave, and 8% for $2^{-} \mathrm{F}$-wave. The assignment 1^{+} D-wave is clearly favored by these data although one cannot welude the other possibilities. The preference for D-wave is indeed surprising and appears to indicate that if the 1^{+}assignment is correet, an appreciable amount of D-wave must be included to explain these clata.

For the assignment 1^{+}, a number of theoretical predictions have been made concerning the relative amounts of S and D-waves in A_{1} decay. ${ }^{5-8}$ Those of Ref. 5 are "hard pion" or Effective IAgrangian calculations and predict predominantly S-wave decay. Those of the ware"quan" calculations and predict predominantly transverse $\rho^{0,}$ s in the decay. Finally, Refs. 7 and 8 summarizes those papers using current algebra and supereonvergence ideas. Onc of these, Ademollo et al. ${ }^{8}$ predicts dominantly S-wave deray. The other three ${ }^{7}$ (Gilman and Ilarari, Bishari and Schwimmer, and Frampton and Taylor) find predominantly longitudinal $\rho^{\mathrm{O}}{ }^{\mathbf{S}} \mathrm{S}$. In terms of S - and D -wave amplitudes, production of transverse $\rho^{\mathrm{o}}{ }^{\mathbf{S}} \mathrm{s}$ implies equal amplitudes but of opposite sign (if the amplitudes are relatively real) while the appearance of longitudinal $\rho^{o_{1}}$ s requires $\Lambda_{D} / A_{S}=2$ under the same reality assumption.

Further information concerning the longitudinal or transverse nature of $\rho^{\circ}{ }^{\prime} \mathrm{s}$ in A_{1} decay can be inferred from the distribution in $\cos \theta$, where θ (the so-called Jackson angle) is defined as the angle in the A_{1} rest frame between the incident beam particle and the bachelor π^{-}. If the A_{1} resonance is diffraction produced (as seems indicated by the relative energy independence of the production cross section), the state should have zero helicity. This alignment leads to a distribution in $\cos \theta$ given by

$$
\begin{equation*}
\mathrm{W}(\cos \theta) \alpha\left(\frac{\mathrm{m}^{2}}{\mathrm{~m}_{\rho}^{2}}\left|\mathrm{~g}_{\mathrm{L}}\right|^{2} \cos ^{2} \theta+\left|\mathrm{g}_{\mathrm{T}}\right|^{2} \sin ^{2} \theta\right) \tag{2}
\end{equation*}
$$

where we have used the notation of Gilman and Harari. ${ }^{7}$ The quantities g_{L} and g_{T} are the coupling constants for longitudinal and transverse ρ° helicity states. This formula neglects the effects of Bose symmetrization in the decay. Figure 2(b) shows this distribution for A_{1} events where the solid curve indicates a fit to the data using Eq. 2 superimposed on the Woll background. The agreement is quite good and
yields a value for the ratio of the corpling constants,

$$
\left|\mathrm{g}_{\mathrm{T}} / \mathrm{g}_{\mathrm{L}}\right|^{2}=0.16 \pm 0.08
$$

This is in good agreement with the prediction of Gilman and Harori who find a value of approximately 0.1 . Althourh the relative phase of the coupling must be known in order to calculate the amounts of S - and D-wave, a determination of the magnitude of $\mathrm{g}_{\mathrm{T}} / \mathrm{g}_{\mathrm{I}}$, allows us to set limits on the ratio of D -wave to S -wave. For the value of $\left(\mathrm{g}_{\mathrm{T}} / \mathrm{g}_{\mathrm{L}}\right)^{2}$ indicated, we find

$$
0.4 \leq\left|A_{\mathrm{D}} / \mathrm{A}_{\mathrm{S}}\right| \leq 22
$$

The preference of D-wave in the helicity distributions appears to indicate that the ratio is larger than the lower limit, but the presence of two orbital states makes a more precise measurement from the helicity distributions quite difficult.

Similar analyses have been performed for the A_{2} resonance. The distribution in $\cos \beta$ is shown in Fig. 2(c). The absence of peals at $\cos \beta= \pm 1$ excludes the assignments $1^{+} \mathrm{D}$-wave and $2^{-} \mathrm{F}$-wave, and the data do not show a dip at $\cos \beta$ $=0.2$, which is characteristic of 1^{-}. Thercfore, fits have been made only for the assignments $1^{+\quad}$ S-wave, 2^{+}D-wave, and $2^{-} \mathrm{P}$-wave. Conficlence levels for these fits at the level of background indicated in Table I are $73 \%, 67 \%$, and 87% respectively. Only the 2^{+}assignment is sensitive to the background level giving poor fits (3% confidence or less) for hack rouncl levels less than 30%. Clearly all these fits to the data are aceeptable.

In order to distinguish between these assignments we must examine the distribution in $\cos \theta$ (as defined above) which is presented in Fig. 2(d). The theoretical distributions for the possible spin-parity assignments are

$$
\begin{equation*}
W_{2}+_{D}(\cos \theta)=N\left[\rho_{22}\left(1-\cos ^{4} \theta\right)+\rho_{11}\left(1-3 \cos ^{2} \theta+4 \cos ^{4} \theta\right)+3 \rho_{00} \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)\right] \tag{3a}
\end{equation*}
$$

$W_{2^{-} P}(\cos \theta)=N\left[2 \rho_{22}\left(1-\cos ^{2} \theta\right)+\rho_{11}\left(1+\cos ^{2} \theta\right)+\rho_{00}\left(1 / 3+\cos ^{2} \theta\right)\right]$

$$
\begin{equation*}
\mathrm{W}_{1}{ }^{+} \mathrm{S}(\cos \theta)=\mathrm{N}\left[2 \rho_{11}+\rho_{00}\right] \tag{3c}
\end{equation*}
$$

where $\rho_{i \text { i }}$ represent spin density matrix clements and N is a normalizinor constant. The data clearly deviate from isotropy, climinating 1^{+}S-wave. For the remaining two possibilities we have made fits to the data for cach, once again assuming the background of Wolf and also assuming Pomeron and ρ exchanges for the $2^{-} P$-wave hypothesis (i. e. $\rho_{11} \neq 0, \rho_{00} \neq 0$, and $\rho_{22}=0$ in Eq. (3b)) and ρ exchange for the hypothesis 2^{+}(i.c., $\rho_{11} \neq 0, \rho_{00}=\rho_{22}=0$ in (3a)). Confidence level.s are 5% and 2% respectively for 2^{+}D-wave and 2^{-}P-wave. The preference for 2^{+}results from the pealing in the data about $\cos \theta=0$ and appears to indicate that at least part of the enhancement procedes through a state with these quantum numbers. A fit to the data assuming the presence of both 2^{+}and 2^{-}also gives a conficlence level of 5% and yiclels a ratio of 1.0 ± 0.25 for the relative amounts of these two states; the 2^{-} state oceurs entircly through Pomeron exchange.

Recent experiments have indicated a splitting in the Λ_{2} mass spectrum. ${ }^{9}$ Although the resolution of this experiment is insufficient to detect such splitting, we have separately examined the angular distributions for the upper and lower halves of the A_{2} peak. Figure $2(\mathrm{c})-(\mathrm{h})$ shows that the data are dramatically different under this selection. In the mass interval 1.28 to $1.36 \mathrm{GeV} \mathrm{J}^{\mathrm{P}}=2^{+}$is favored over 2^{-}by conficience levels of $24^{\prime \prime}$ to 15% in the fit to the $\cos \beta$ distribution and by 14% versus 2% for $\cos \theta$; in the mass interval 1.20 to $1.28 \mathrm{GeV} \mathrm{J}^{\mathrm{P}}=2^{-}$is preferred by 33% versus 1% for $\cos \beta$ and 59% versus 4% for $\cos \theta$. The data are indeed consistent with production of two unresolved resonances cach with a cross section of about one half the value shown in Table I.

We wish to acknowledge Dr. F. Gilman, and Professors H. Harari, and Sam Berman for helpful discussions. Joc Good, Paulette Spink, and Frank Lloyd contributed at various stages to the computation for this experiment, and nirs. Judith Suckle was of great assistance in directing the scaming and measuring effort. We are deeply indebted to Dr. Horst Foelsche and the crew of the 80-inch Hydrogen Bubble Chamber for thoir aid during the exposure. Finally, we wish to thank Professor W. K. II. Panofsky for his support throughout the experiment.

REFERENCES

1. II. Foclsche and J. Sandwelss, "Operating Fnerges and Fluses for the RF
 ratory, unpublished).
2. G. Ascoli et al., Phys. Rev. Letters 21, 113 (1968); 20, 1321 (1968); N. Armenise et al., Phys. Letters 26B, 336 (1968); R. A. Donald et al., Phys. Letters 2633, 327 (1968); A. Fridman ctal., Phys. Rev. 167, 1268 (1968); S. U. Chung et al., Phys. Rev. Letters 18, 100 (1967); C. Caso ct al., Nuovo Cimento 47A, 675 (1967); N. Armenise ct al., Phys. latters 2513, 53 (1967); C. Baltay et al., Phys. Letters 25 In, 160 (1967); J. Bartsch et al., Phys. Letters 25F, 48 (1967); D. R. O. Morrison, Phys. Lciters 2513, 238 (1967); N. M. Cason ct al., Phys. Rev. Letters 18, 880 (1967); W. Beusch et al. Phys. Letters 251, 357 (1967); F. Conte ct al., Nuovo Cimento 51A, 175 (1967); J. A. Danysz et al., Nuovo Cimento $51 \mathrm{~A}, 801$ (1967). For references prior to 1967, sce Chung et al.
3. G. Wolf, to be published.
4. R. Diebold, "Dulit\% Plot Densities Along the ρ-Bends of π Resonances," (CERN/ TC/PROG 64-25, unpublished).
5. L. Brown and H. Munczek, Phys. Rev. Letters 20, 680 (1968); R. Arnowitt et al., Plys. Rev., to be published; R. Chanclra et al., Phys. Rev. 170, 1344 (1968); I. S. Gerstcin and H. J. Schnitzer, Phys. Rev. 170 , 1638 (1968); HI. J. Schnitzer and S. Weinberg, Phys. Fev. 164, 1828 (1967); J. Schwinger, Phys. Letters 2413,473 (1967); J. Wess and F. Zumino, Phys. Rev. 163, 1727 (1967).
6. J. G. Kusiyan and M. Suyuki, Phys. Rev. 169, 1385 (1968); H. J. Lipkin, Phys. Rev. 159, 100: (1907).
7. M. Bishari and A. Y. Schwimmer, Nuclear Physjes B5, 641 (1968); P. H. Frampton and J. C. Taylor, Nuovo Cimento 49A, 152 (1968); F. Gilman and II. Harari, Phys, Rev, Letters 18, 1150 (1967); Phys. Rev., 165, 1803 (1908).
8. M. Amedollo al al. Nuovo Cimento 51A, 227 (1967).
9. W. Kienzle, in Procecting of Informal Mecting on Experimental Moson Spectroscopy, Philadelphia, April 1909 (to be published); D. J. Crennel ct al., Phys. Rev. Letters 20, 1318 (19G8); G. Chikutor !al. Phys. Lutters 2513, 44 (1967).
Tonal
 Cross sections bere then conretod for the umeasured decay mode $\rho^{-} \pi^{\circ}$.

Resomance	Mass (GeV)	Widh I (GeV)	σ $(\mu \mathrm{b})$	Resonance Cuts (GCV)	$\%$ Mackground Inside Cuts
A_{1}	1.089 ± 0.012	0.140 ± 0.091	250 ± 50	1.00 to 1.16	49 ± 5
$\mathrm{~A}_{2}^{(\mathrm{a})}$	1.282 ± 0.015	0.125 ± 0.010	180 ± 60	1.20 to 1.36	54 ± 8

(a) This assumes the presence of a single resonant state.

Fig .1

 estimate for ρ^{o}, no Δ^{t+1} events beced on the OPE calculation of Wolf (see text).

Fig. ? Holjeity (cos β) and Jackson (en O) ancular distributions. The dashed curves indicate the contributionfrom the OPL calculation of Wolf. (a) Helicity distribution for Λ_{1} cvents. The solid curve shows the fit for $\mathrm{J}^{\mathrm{P}}==^{+}$D-wave. (b) Jackson distribution for Λ_{1} events. The solid curve represents the fit
 solid curve is the fit for $J^{P}=2^{+}$, the dotted curve for $\mathrm{J}^{\mathrm{P}}=2^{-}$. (d) Jackson distribution for: A_{2} cvents where the solid curve shows the fit for 2^{+}and the dotbed curve for ogual amounts of 2^{+}and 2^{-}(see text). (c) and (f) Helicity and Jackson distrilations for $1.28 \leq m\left(\rho^{\circ} \pi^{-}\right) \leq 1.36 \mathrm{GcV}$; solid curves indicate fits for $\mathrm{J}^{\mathrm{P}}:=2^{+}$. ($(\underset{\sim}{ }$) and (h) Helicity and Jackson distributions for $1.20 \leq$ $m\left(f^{\circ} 7^{-}\right) \leq 1.28 \mathrm{GeV}$; :otid curves represent fits; for $\mathrm{J}^{\mathrm{p}}: 2^{-}$.

Fig. 1

Fia. 2

[^0]: *Work supported by the U. S. Atomic Energy Commission

