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ABSTRACT 

We devise an algebra of currents and their first time-derivatives 

designed to damp at high momentum the asymptotic behavior of lepton- 

pair scattering amplitudes from hadrons consequent from the local cur- 

rent algebra of Gell-Mann. Given certain criteria, the algebra we find 

is unique, and the commutators are expressed linearly in terms of the 

currents themselves, The Jacobi identity, however, is’formally violated for 

this algebra; we argue that this does not invalidate it. A possible realization 

of this “minimal” algebra is found in terms of the formal limit of a 

massive Yang-Mills theory as g0, m0 - 0; go/m:--constant # 0. With 

this algebra, all electromagnetic masses of hadrons are finite. Exper- 

imental consequences, the strongest of which occurs in inelastic lepton- 

hadron scattering, are outlined. 

(to be submitted to Phys. Rev. ) 
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I. INTRODUCTION 

Many of the predictions of local current algebra, 1 notably the sum rules 

derived by Adler, 2 Fubini ,3 Dashen and Gell-Mann,4 and similar asymptotic sum 

rules valid at high q 
2 5-9 

, imply that very far off the mass-shell, current-hadron 

scattering matrix elements are at least as singular as those of free particles. 

This result, if verified experimentally, would give one great confidence in the 

general validity of the locality assumptions on the weak currents which underlie 

the supposed pointlike nature of these amplitudes. On the other hand, the con- 

verse is not true. Were all the sum rules to fail experimentally, local current algebra 

wouldnot necessarily fail. There are many loopholes ., One possibility is that the equal- 

time commutators are ambiguous o 
10 

Another is that, although the commutators are 

taken to exist, technical assumptions (interchange of limits in the P-+03 method, or absence 

of subtractions in dispersion relations for certain amplitudes) needed in the derivations of 

the sum ruIes may be incorrect. Also, alterations of the highly model dependent space- 

space commutators and/or of theusually assumed high-q 2 behavior of amplitudes can 

invalidate many existing sum rules. It is this latter loophole which is explored in this paper e 

We formulate criteria designed to minimize the experimental consequences 

of the local algebra. They are to be applied in the limit of large q2 (where q is 

a momentum carried in by a current). Given these criteria, it follows that many 

of the existing sum rules should be damped at high q2 by at least an extra power 

of q2, and that all electromagnetic self-energies converge. It also turns out 

that these criteria uniquely determine the commutation relations not only of the 

currents with each other, but also with their time derivatives. These commutators 

turn out to be linear in the currents and derivatives thereof. We call this algebra 

the minimal algebra. In Section II we describe in detail the “unobservability 

criteria” which are supposed to minimize the observable effects of the local alge- 

bra of currents. In Section III it is shown how these criteria are sufficient to 
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lead to a unique set of commutators of currents with their time derivatives. In 

Section IV the minimal algebra is shown to result from a limit of a massive 

Yang-Mills theory as mo-+ 0 and go/m:- constant. In Section V, we discuss 

the experimental implications of the minimal algebra. 

II. CRITERIA FOR THE MINIMAL ALGEBRA 

According to the Gell-Mann”philosophy of current algebra, matrix-elements 

of time-ordered products of two currents <plT*(?(x) J:(O)) 1 p’> = M$ are 

considered as observables, because they can in principle be related to S-matrix 

elements for scattering of lepton pairs or photons from hadrons: 
12 

Sfi cc .ppQv Mpv @‘d; p,cl) 

with 

$= 3P+Q yp u(p) or U yP (I- r5) u 

the lepton current. In order that MPv itself be observable, it is necessary that 

the factors QP are allowed to be removed; i. e. , that all four components are inde- 

pendent. This is true provided the lepton mass is @ neglected; otherwise 

qpQp = 0 

and M is ambiguous up to terms proportional to qP or q: . On the other hand, 
PV 

sum rules which test the local algebra, such as Adler’s neutrino sum rules, 2 

involve high-energy leptons where the neglect of lepton mass would appear to be 

justifiable. 

As go- Q) , 2 fixed, M 
PV 

can be expected (but not proven) to be at least as 

singular as qil with the coefficients controlled by equal-time commutators. 5 

This asymptotic behavior is characteristic of point particles. If no such behavior 
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is manifested experimentally, it may mean the commutation relations are ambiguous. 
10 

It may also mean that the leading asymptotic behavior of M crv 
is contained in pieces 

proportional to qP or q:, with the result that observable consequences in the S- 

matrix are limited to terms of the order lepton mass. 

We shall adopt this behavior for M 
PV’ 

and assume that through order q,“, 

M 
-PV 

contains only pieces proportional to qP or qL1 In this way, experimental 

consequences of the local current algebra would be expected to be minimized. 

This possibility will be explored in a quantitative way in the next section. 

III. THE MINIMAL ALGEBRA 

We consider the process shown in Fig. 1 to lowest order in the weak and elec- 

tromagnetic interaction. The corresponding S-matrix element is proportional to 

,b Q;(g, Qv (9’) M;;(s,s’, p) (1) 

where Q and Q’ are lowest order matrix elements of leptonic weak or electromagnetic 

currents and M is the covariant hadronic current correlation function. We assume 

that 

M ab 
I-lV 

= 1;“; + 8; 

where T is the connected time-ordered product 

ab T E-i 
s 

d4x e+iq. x 
PV <P/T (J;(x) J;(O))/ P’> 

(2) 

(3) 

and S is a polynomial in q. The hadronic currents are assumed to be conserved,13 

aPJ;(x) = 0 , 

and RI is assumed to satisfy the divergence conditions 

(4) 

qp M$tqd,p) = if abc 
<~jJc,jp’> 3 

9: M$)xb4 = if abc <P/J;~P’> . 

(5) 

(6) 
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I 

The leptonic currents satisfy 

sQ;‘9’ = 0 , (6’) 

neglecting the leptonic masses. 

Let us first assume that S = 0 and that the T-product in Eq. (3) is well-defined 

and has an expansion in inverse powers of qos 0 up to order -3 W . Then this 

expansion is given by5 

We now ask if the commutators in Eq. (7) can be chosen so that (1) is 0 -!- (in the 
( 1 w3 

limit qo, qb- Q) with q, q’ , and A ti m = q - q’ fixed) for all leptonic currents and had- 

ronic scattering states. f 1 Then all observable effects of the theory will be0 - 
d 

(neglecting leptonic masses) and the theory will be as smooth as possible in the 

above framework. We shall therefore refer to the resulting current algebra as 

the minimal one. 

The problem can be most succintly expressed in terms of the operators 

T$ (q, q’) and JE( A) defined by 

<PIT;; (q,q’)(p’> = s(p+q-p’-q’) T$q,q’,p) , 

J;(A) = 
s 

d4x kh*x c 
J,$x) l 

(8) 

(9) 

Thus we want to find the commutators in Eq. (7) such that 

Q;(q) Q;b(q’) T;$,q’) = 0 -$ , 
( 1 

qp’J$(q,q’) = i f abc J;(A) , 

$, T;E(q,q’) = i f abc J;(A) . 

(10) 

(11) 

(12) 
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We mean by Eqs’. (10) - (12) that the identities are valid when the equations are 

sandwiched between arbitrary hadronic scattering states. 

In view of Eq. (6’), the conditions (10) require that T has the form 

T ab 
py(% 9’) = qp F;b (‘it s’) + q; Fiabt% 9’) + 0 (w-~) PI 

for some operators F and F’. The divergence conditions (11) and (12) impose the 

further restrictions 

a;b(A) = q2 FFb (q, q’) + q; q . F’ ab 
uwl’) + 0 (w-7 

and 

x’b(A) = qP q’ . Fab(q,q’) f q’2 Fkab(q,q’) + 0 (w-2, , 

where we have defined 

3;” = i fabc JE . 

Finally, the behavior (7) requires that F and F’ have the forms 

F ab = w2 Aab + o3 gab -3-E 
v V 

v+ww )* 

We shall now show that (13) - (17) uniquely determine the minimal algebra 

occurring in (7). Substituting (16) and (17) in (14) and equating coefficients of 

w’andw -1 gives the relations (suppressing the internal indices) 

To=~o+A’ , 0 

0 =Bo - q . $’ +- Bb - AoA; , 

Tk = A k ’ 

(14) 

(15) 

(16) 

(17) 

(19 

t 18b) 

( 18c) 

t 184 0 = Bkf qE; A; . 

-6- 



Similarly, Eqs. (16)) (17) and (15) give 

Jo = A; + A; t1w 

0 =Bo-q’.~+B~-AoAO-2AoA~ , t1w Y 

‘k =Ak , t w 

0 = Bk + qkAO - 2AoAk . (19d) 

Let us exhibit the independent information in (18) and (19). Equations (Isa) and 

(19a) are the same equation 

?o=~o+~b , (20) 

and (MC) and (19c) give 

Tk=~k=~k . (21) 

The difference of (18b) and (19b), using (20) and (21)) simply gives current con- 

servation 

0=--($-s .~-A~J~ , (22) 

whereas the sum gives 

O=2BO+ 2Bb - CS,‘+CJ, * ,J- Ao(Ao’ 3A;) . (23) 

Finally, the difference of (18d) and (19d) gives 

O=Bk+qkAO - 2AoA;; , (24) 

and the sum gives 

O=Bk+q’A . k 0 (25) 

Equations (20) - (25) are the consequences of (14) - (17). Note that they do not 

uniquely determine the sixteen quantities A , A;, BP, B’ . I-1 P 
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If we now substitute (16) and (17) into (13) and use (20) - (25)) we find 

T00= o 
-1 J + ,-2 

0 9,’ z+ 0 (L3) 

Tok = 0 -l Jk + 0 (cL3) 

TkO = 0 -l Jk -I- CL2 AoTk + 0 (0 
-3 

) 

Tld = cc2 (qkJQ + c$Jk) -t 0 g3) . 

Thus, as claimed, the conditions (10) - (12) uniquely determine the minimal 

algebra (to within c-numbers). Comparison with (7) gives it to be (x0 = y,) 

~~(3, Ji(yjT = i fabc J;(x) S(z - l) 

k;(x), J;tyjl T = o 

[j ;tX)) J;(Y{ T = i gpo fabc J;(Y) & St? - x) 
i 

[$W, J$y)lT = i fabc j:(x) 6(~ - y) 

[j:(x), Jgb(~g T = i pbc (J:(x) & - J;(Y) $---) 6(x - .$ . 
Q k - 

Here the subscript “T” refers to “truncated” commutators 

[A, BIT = [A, B] - <O][A, B]IO> l 

Strictly speaking, we have not yet established the existence of the minimal 

algebra but have only shown that, if it does exist, then it is given by (27). Thus 

we must show that the commutators (27) constitute (part of) a consistent algebra 

and that there exists a solution to Eqs. (20) - (25) such that the resulting T 
IJV 

given by (13) is an acceptable amplitude. 

We first show that the latter requirement is satisfied. We shall exhibit a 

? 
P 

consistent with (10) - (12) and with the usual conditions - particularly 
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(264 

Wd) 

(2W 

WV 

(27c) 

(274 

(27e) 



Lorentz covariance. To this end, we let T 
ccv 

be an arbitrary acceptable ampli- 

tude [satisfying (11) and (12)] and consider l4 

Q, tq,q’) = ~pv(s’ cl’) - gpa ( - y) (gvp - y) ~aptqd) l (28) 

This amplitude is Lore&z covariant, satisfies (11) and (12)) and, in view of (6’)) 

also satisfies (10). Thus a consistent solution of (20) - (25) is guaranteed to exist. 

To see what this solution is, we use the divergence conditions (11) and (12) to 

write (28) as 

Comparison with (13)) (16)) and (17) now gives, for example, 

Ak =A;=Tk , Ao=Ab= $To , 

Bk = - B * p 2 AoJo , 

s = -$qkJo+2Ao:k , Bb = $ l ;+ ; AoTo . 

(2% 

(30) 

This solution, of course, satisfies (20) - (25). 

Next we consider the minimal algebra (27) itself. Equation (27a) holds in all 

of the usual models. Equation (27b) holds in models, such as the o-model 
15 and 

the algebra of fields, 16 in which the currents are constructed from Bose operators. 

Equations (27~) and (27d) follow from (27a) and (27b) together with current con- 

servation (4). Equation (27b) implies that (27e) must be symmetric under (k-1, 

a-b, x-y), as it is. Finally, all of the Jacobi identities are formally satisfied 
D 

except the one involving J k’ JQs and Jo, which cannot be satisfied unless the cur- 

rents vanish. The fact that this double commutator does not formally satisfy the 

Jacobi identity is not necessarily an inconsistency. Our derivation only implies 
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and requires that (27) is valid when sandwiched between physical scattering 

states Ip) , whereas the formulation of the Jacobi identity would require them to 

be valid between, say, the physical state 1 p’> and the state J(x0, alp> . Thus 

no difficulties can arise if we only use the relations (27) between scattering states. 

Put differently, field theoretic equal-time commutators must be defined as equal- 

time limits17 and the Jacobi identity will not hold when certain of these limits 

can not be interchanged. We shall illustrate and discuss this further in the next 

section within the context of a specific model. 

The relations (27) are, furthermore, consistent with our initial assumption 

that T has an expansion in powers of o -1 -3 
PlJ 

to the order of o . The non-singular 

nature of the right-hand sides of (27) (e.g. , the absence of local operator products) 

suggests that the terms in (7) are well-defined so that the expansion should be 

valid. 

We finally note that dropping the assumption S = 0 would not change any of 

our results. If we add to T 
PV 

any polynomial S 
PV 

in q, than the conditions (1) = 0, 

(5)) and (6) require that S = 0. 
PV 

HI. LIMIT OF MASSIVE YANG-MILLS THEORY 

In this section we shall show the minimal current algebra of the previous 

section is the algebra corresponding to a particular formal limit of the massive 

Yang-Mills theory. This will shed light on both the singular aspects of the model 

(such as the failure of the formal Jacobi relation) and the smooth aspects (such 

as the good high-q0 behavior). It will also enable the incorporation of electro- 

magnetism, PCAC, and SU(3)-breaking into the model. The approach is along 

the lines given by Bardakci, Frishman, and Halpern. l8 
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The massive Yang-Mills 
19 

theory is defined by the Lagrangian density 

L(x) = - $ F;,(x) FzV(x) + + mi $09 $04 y 

where 

F” 
PV = ap e: - av 4: - ; 80 pbc ($e”v + $“, 5$) - 

The equations of motion are 

a Fa 
2 a 

P PV +mo %J =; gof abc 
( 
Fb Gc + ec Fb 

VlJ P P VP 1 ’ 

the stress-energy tensor is 

8 ’ Fa 
( 

a + Fa 
/Jv = 2 j.0 FAIJ v,FL)+$$ (o$+@~$)-!&,L y 

and the canonical commutation rules imply (x0 = yo) 

[i-$:(x), r#f(y)j = i h-l fabc $i a(:-cy) + imi2 Sabe S(z-2) 

-iC -1 face fbde c 
Q,(x) ($9 6 (&-$ t 

where we have defined 
2 

“0 A= - 
80 

2 
mO c=yj- . 

80 

(31) 

(32) 

(33) 

(34) 

(354 

(3W 

(36) 

The assumption of field-current identity 
20 and field algebra 16 is that the hpdronic 

currents are given by 
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One then has current conservation 

a Ja = 0 
PlJ (38) 

Bardakci, Frishman, and Halpern18 have shown that in the limit 

mo--0, y--o s C = const, (3% 

the above model becomes the Sugawara 21 model (x0 = y,) : 

[ 
J@, J~(Y;] = i fabc J:(x) S(z- z) Wa) 

[J:(x), J:(y)] = i fabc J:(x) 6(~ - .$ + i C sab e a5 - Jl ww 

@xl 3 J;(Y)~ = 0 WC) 

[a, J:(X) - ak J:(X), Ji(yj= i fabc J:(x) & a(~ -2) - i C-l face fbde J@ J&Q “(5-z) 
P 

Pod) 
a Ja cL v-a, J;= +C-‘fabc J”, + J”, J; (41) 

e lC pv =2 (42) 

Bardakci et al. -- used the limiting procedure (9) to incorporate electromagnetism, 

PCAC, and SU(3) breaking into the model. 

We sh.all show that in the different limit 

ma----O, go-o s A = const, c-w, (43) 

the massive Yang-Mills theory yields the commutation relations of the minimal 

algebra. We shall (and, in fact, must) simultaneously take the divergence of 

local field products into account. We assume that the divergence of G;(x), @z(x)} 

is mild enough so that 

C-l I+;(x), @t(x)}- c-number . (44) 
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in the limit (43). This can be thought of as a boundary condition to be used in 

solving the theory. Under (43) and (44)) (35) - (37) give exactly the commutation 

rules (27) of the minimal algebra. In addition, the c-number parts of the com- 

mutators are given and, for (35b) and possibly (35d), are infinite. This, of 

course, is acceptable and is exactly what happens in the free-field quark model. 

What we attempt to do is remove the q-number divergence from (35d) and have 

it become a c-number divergence in (35b). As we have seen in the previous sec- 

tion, this makes the physical properties of the theory less singular. 

Let us now give a more careful discussion of our limiting procedures. We 

assume that, in analogy with soluble models and perturbation theory, local field 

products are to be defined as suitable limits of non-local products. 22 Thus the 

mass term in (3 1) becomes 

(45) 

where the limit is to be taken in a spacelike direction, say 5 = (O,t). The vanishing 

of m,(O) is supposed to cancel singularities of the local product e(x) G(x). The 

equation of motion (33) becomes 

(46) 

We only assume this relation is valid between physical scattering states. Let 

J;(x; 5) = A([) $;(x; 5) be the non-local solution of the non-local theory with < # 0. 

We assume, again in analogy with soluble models and perturbation theory, that 

the equal-time local current commutators can be calculated as limits of commu- 

tators of the corresponding non-local currents. 17 Thus we assume, for example, 
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that (35d) becomes (x0 = y,) 

[a,<(X) - ak$(X), J)y)lT = lim [a Ja(x; t) - ak Ji(x; 8 s JitY; tljlT 
#p--o O k 
p---O 

(47) 

=if abc c 
J&9 + 

d 
6(2-$ - i face fbde lim ~-‘(I) J;@+t) J;(4 “(x;$, 

p-0 

valid between physical states. All the equal-time commutators in the theory are to 

be defined in this way. 

We now specialize to the case (43) and (44). We put 

go(5) = CmJ2 , (48) 

with23 

(49) 

so that the commutation rules (35)) defined in analo,q with (47)) become those of 

the minimal algebra. The algebra is, furthermore, now guaranteed to be completely 

consistent, provided the limits t- 0 are taken after all commutation. In particular, 

the Jacobi identity will now be satisfied. For example, whereas one has 

lim C-l([) JE(y + 5) Ji(xy) = C:(y) = c-number , 
e-0 

one nevertheless has (x0 = y,) 

=i iimo C-l(t) + SCaC(<) & k 
I 

+ J;(Y+~) cbd J;(x) -!- acb C(t) & 1 
=i[GCa J:(y) f BCbJ;(yjj S(z-2) # 0 . 

(50) 

(51) 
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One can now use the method of Bardakci et al. 
18 

-- to introduce electromagnetism, 

PCAC, and SU(3) breaking into the theory. 

In perturbation theory 
22 

the divergences in the local products $(x) q(x) +(x) 

and W4 $4t x will be worse than that of Q(x) q(x) and, in order to obtain a non- ) 

trivial theory, we assume that this is the case here. We put (as boundary con- 

dition on the solution of the theory) 
24 

(52) 

(53) 

for some local operators @, X, and call KE (x) the particular combination occurring 

in (33). Thus, in our limit, (31) - (34) become 

L $‘a a 
-- 4 pLJ FpJ ’ 

e 
PV 

(57) 

between physical scattering states. It is important to note that, for example, (55) 

can not be substituted into (54). One must first substitute (32) into (31) and then 

take the limit t--- 0 using (52) and (53). 

It is interesting to note that our expressions (54) - (57) are exactly orthogonal 

to the Sugawaraexpressions obtained from (31) - (34) in the limit of Bardakci et al. -- 

In our limit (43) only the kinetic terms survive whereas in the limit (39) only the 

mass terms survive. 

Although the minimal algebra appears to be more singular than the Yang-Mills 

or Sugawara theories, many aspects of it are, in fact, less singular. JVe must use 
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complicated commutator definitions such as (47) and impose boundary conditions 

such as (44)) (52)) and (53). We have, however, eliminated the singular local 

field products from (31) - (34) and (35d). As we have seen in Section II, this has 

a smoothing effect on the high-q0 properties of the theory. In effect, we have 

made the mathematical formalism of the theory more complicated in order that 

its physical consequences become less complicated. 

V. EXPERIMENTAL CONSEQUENCES 

Because the minimal algebra yields smoother asymptotic behavior in q. = o , 

except in the almost unobservable pieces proportional to qF or q: , the high-q2 

behavior of various sum rules is weakened. Among the results are: 

1. All electromagnetic mass-differences are finite to order 01. This follows 

from the vanishing of the q-number part of J [ ;m*J;m] ? 

2. Asymptotic sum rules for neutrino2 (and in all likelihood inelastic electron 

or muon-scattering) in the backward direction7 have a vanishing right-hand side 

because j (x) j (0) = 0 for the minimal algebra. In the case of inelastic scat- 
[i ‘j] 

tering, where only inequalities exist, one cannot make a rigorous argument, 

because the inequality goes the wrong way. It is consistent with the minimal alge- 

bra to have a vanishing right-hand side. 

3. The sum rule of Callan and Gross’ 

where 

lim q2 “Odv 

s 
7 W2(q2, v) = constant = K (58) 

2 
cl--- 0 

lim du(ep--hadrons) = 47~~~ 

E, El--m dq2 dE’ q4 
w2(c12,E-E’) (5% 

(generalized to cases where a, ji (x), j. (0) has finite matrix elements between nucleon 
[ J j 

states) in the minimal algebra has a vanishing right-hand side K = 0, because to this 

-2 order (w , m P = 0), all observable consequences have been obliterated. 
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4. Similar statements hold for neutrino and antineutrino processes, e.g., 

lim lim q2 vp-hadrons) = 0 

2 
q ---co E-Q, dq2 dv I 

(60) 

5. No statement can be made on the validity of the Fubini-Dashen-Gell-Mann 

sum rule with the minimal algebra alone. Writing, for the special case of spin 

zero matrix elements 

M pv = P&, Al@ ,t,q2,q’y + l q. (61) 

the Fubini-Dashen-Gell-Mann sum rule is 

1 * 
n / 

dv Im AI(v ,t,q’,q’ 2, - F(t) (62) 
--oo 

while from the minimal algebra 

lim q ’ 
2. ,2 J 

% Im A,(V,t,q2,qfy = 0 

q ,q -00 

( 63) 

What can be said is that the value of v needed to saturate this sum rule grows 

more rapidly than linearly with q2 in the “minimal algebra, ” contrary to what has 

been sometimes assumed in the literature. 

6. The minimal algebra implies that the Weinberg 26 sum rules are valid. 

In fact, the absence of J2 terms in the [J, J] commutator allows the second sum 

rule to be derived without invoking special limiting processes. 

7. The failure of the minimal algebra to satisfy the Jacobi identity suggests 

that some of the vacuum expectation values of the commutators are divergent. 

This was the case, for example, when the algebra was obtained as a limit of the 

massive Yang-X’Iills theory. These divergences themselves have experimental 
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implications. The Dooher 27 relation, 

e+e- ---t hadrons 
0 = lim E4 log E otot (E) 

E-a 
w 

for example, should no longer hold. 

In conclusion, we wish to emphasize that experiments can test the speculations 

in this paper. Perhaps the most conclusive test is the behavior of the Callan-Gross 

integral Eq. (58). For it to vanish in the limit is not a consequence of field algebra 

or most conventional models. 
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FIGURE 1. Scattering of a current from a hadron. 


