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ABSTRACT 

Sum rules for electron proton total cross sections are deduced 

from the vanishing of various equal time commutators; it is shown 

how these cross sections determine the (spin-averaged) proton ex- 

pectation value of all equal time commutators of components of the 

electric current and time derivatives thereof. 
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Electron scattering on a proton at rest is described by the cross section 

(electron mass = 0) 

d2ce13 Lr2 1 
zz-- 

dq2d v M2E2 q2 
2M2EE’ 
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- 5 M2 ) Al&I24 + y2Al(s2,u) -q2A2(q2,v) 1 , 

where 

a= e2/4n = (137):: 

E(E’) = initial (final) electron energy 

qP=e - P 
eb = momentum imparted to proton 

v = (E - E’)M = -q - p (p = proton momentum), 

and the hi are the absorbtive parts of the forward, off-shell Compton amplitudes 

Fi defined by 

TCLv (9, p) = i Jf d4x e-%’ X <pIT(jlr(x) j,(O))l p>c ( w 

+ Y(qpPv + q, PJ .Y2 6 1 pu F1 + (4,&, - s2s,,)F2 9 

cw 

where j 
ct 

is the electric current, and a spin average is implicit. The subscript 

Vf indicates the covariant time ordered product; thus T differs from the 
PU 

ordinary time ordered product by a polynomial in q if the equal-time commutator 

of j, and ji has a connected matrix element. 

Bjorlren’ has pointed out that for large q. and fixed q the coefficient of - 

90 -I-’ (1 20) in an expansion of TClv gives the matrix element of the equal-time 
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commutator of the electric current and its t11 I! time derivative; in particular 

T 
q(jj co 

------+ polynomial in q. 
NJ 

_ O3 @s dxewi4’1! c - a-0 90 . (3) 

Thus, all of these commutators are determined by the coefficients C: @SE, g2, p,) 

occurring in 

c$j--* to 

Fi - polynomial 4 
c 

Q -Q-l 
‘i q0 ’ 

Q=O 

We wish to show how the C: can be constructed from the Ai, and thus from the 

electron proton scattering data. 

We assume that each of the Fi(q2,v) satisfy the D. G. S. representation 2,3 

Mi Mi 00 1 

Fi= c Fm =i c s dc s d/I 
,mhm(~, P) 

m=O m=O 0 -1 q2+2py +U 
, (5) 

where by crossing symmetry 

h+,-p) = (-l)mh;(&$ . (6) 

Expanding this form of Fi as in Eq. (4)) we obtain after some combinatorics 

G” = c (-4. E9 
I-l-2s+2n Q2) s-2n-t @d 2s-g+l s! (2n)! 

(2s~I-t.1) ! (Q-l-2s+2n) ! (s--2n-t) ! KYt ’ 
n, 0 

(74 
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where 

Mi 
nt Ki = c (2n-rni! (t+m) ! dP (2P) 

2n-m Ut-l-ni m 
hi (CT*@> 

and where the sum over n, s and t is restricted by 

quirement that the arguments of all the factorials are 

example, t 2 maximum (-m, -2n) . 
.-* 

tw 

n 20, s 20 and the re- 

non-negative. Thus, for 

The absorbtive parts Ai of the Fi can be read off from Eq. (5). 

(8) 
m=O m=O 

and hence for n = 1,2,3, . . . 

03 Mi 0 

S dv Ai = c (-1)” s”do. s dp y211+1 
(q2+Ql 

2n+l-m hy . (9) 
0 m=O 0 -1 

2n-iii 10 

As indicated, the sum on m includes only terms for which 2n-m 2 0.4 We will 

show in a moment that the R. H. S. of Eq. (9) can be expanded for large q2 in 

terms of the Ktt occurring in Eq. (7). However, to complete this connection, 

we first must extend Eq. (9) to n=O. 

Assuming Regge asymptotic behavior of the Ai for large v , we guess 

that5 



where, i!l addition to the l?omeranchon, the sum on Q! includes whatever other 

trajectories contribute with O< CY < 1; for example, the A2 and fo. Because 

of Eq. (lOa) the integral on the L. H. S. of Eq. (9) exists for A1 when n = 0, 
6 

and Eq. (9) holds for this case. However, for A2 the L. H. S. of Eq. (9) must 

be modified for n = 0. 

As suggested by the form of Eq. (5)) we assume that the Regge limit in 

Eq. (lob) arises only from the terms with m 2 1 in Eq. (8). That is, we as- 

sume that (l.Ob) is satisfied with A2 replaced by A2 - Ai . Since F2 - Fi 

vanishes at V = 0, a subtracted dispersion relation for this difference reads 

F2 
-F; zz?!? f dv’ 

ll V’(V2-V 2, 
(A2 (s2, v’) - A; (q2, vl)) , (11) 

0 

and if we add and subtract the R. H. S. of (lob) to the integrand of this expression, 

and in the first case do the integral explicitly, we obtain 

F2 - Fi= ifpv - 
c 
cl! 

(12) 

+ 2v2 
to 

-S dv’ 
‘IT o yr(vf2 - Y2) - A2 O - fpV’ - o! 

Let us now assume that the behavior of F2 for large v is given entirely by the 

Regge terms, namely, that there is no part of F2 constant in V in this limit. 

Then, since both Fi and the bracket in the integrand of Eq. (12) vanish as 

V-+CQ, it follows that7 

C-J dv s c v A2 -A; - fp” -CfIy/] = 0 ) 

0 cl! 
(13) 
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which from (8) gives 

co 
dv 

J [ 0 u A2 - fpv - x fa?] = [do- s” dp ‘$;; . (14) 
o! 0 -1 

The R. H. S. of this expression is the same as the R. H. S. of (9) with n = 0 and 

i=2, Thus Eq. (9) can be extended to n = 0: with no change in form for i = 1, 

and with (9) replaced by (14) for i = 2. Summarizing this result, and expanding 

the R. H. S. of (9) in a power series in (q 2 -1 ) , we obtain for n = 0, 1,2, . . . 

w 

1 
dv 

0 
y 2n+l Ai - ‘i2 %O tfp” -I- c fava)]= $ 7 d (qF;m;y+t Kyt , 

Q! 

(15) 
with Ki nt given in (7b). 

The connection between the commutators in Eq. (3) and the integrals for 

n 10 on the L. H. S. of (15) can be read off from Eqs. (2,3,4,7) and (15). In 

nt principle, the integrals in Eq. (15), and thus the Ki , can be determined from 

the electron scattering data, and from these results the C!: and the matrix 

elements of all commutators in Eq. (3) can be constructed. 

Rather than pursue the connection between commutators and the integrals 

in (15) in more detail, let us present some restrictions on the electron scatter- 

ing cross sections which follow from the vanishing of various equal-time com- 

mutator s. These restrictions can be derived straight forwardly from our pre- 

vious results. Actually there are many more restrictions (involving higher 

values of n in (15)) than the ones we list; however, all of these others are im- 

plied from the relations that we write explicitly because of the conditions 

WA1 Wa) 

-M2A,< A2< V2/q2 A1 . 
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These ineclualities follow from the definitions in Eq. (2), or equivalently, from 

the requirement of non-negative cross sections for both transverse and longi- 

tudinally polarized photons. 8 Since 2Y > q2 when Ai $ 0 in the integrand of 

(15), these inequalities are useful in allowing us to conclude that if 

then 

and 

2 

2 

(~2)p+1j-v-- A2 q-‘co. 0 . 

The restrictions listed below can be extended to larger values of n by Eqs. (17). 

(174 

VW 

(17c) 

They are similar in form, and also in their origin, to relations discussed re- 

cently by Bander and Bjorlten. 9 

(i) if (p 1 [jo(xJ, j,(O)] (p) = 0 , then for i = I,2 

(ii) if <p 1 [ j,(xJ, ji(0)] 1 p > = 0 , then for i = 1,2 

(18) 

* dLt 
s [ 

q2 v Ai - 
0 

(19) 

(iii) if <P 1 [ ji(g, j,$O)] IP > = 0 , then there are no further restrictions if (i) 

and (ii) hold. , 

(iv) if <P 1 [ a,j,@), j,<(O)] ) P> = 0, as well as (i) and (ii), then for i = 1,2 

(q2)2r$- [Ai - ai ( fp” + c fQVO)] ,2_,, o . (20) 

0 cl! 
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The conditions (18) - (20) for A, can be expressed simply in terms of high 

energy, high momentum transfer sum rules for the electron scattering cross 

section in Eq. (1). The amplitude A2 makes its presence felt for backward 

scattering angles 10 and is relatively more difficult to extract from the data. 

For A1 

s dv d2Uep E-oo 2cr2 O” dv 
Y 

-- 
dq2dv S 

q2 0 
v A1 -i- 0 (l/E) . 

Thus, for example, if the commutators (i) - (iv) are all satisfied, as has been 

suggested, 11 then it follows from (20) and (21) that 

;hnw (q2) 3 S G d2cep 

dq2dv 

q2eW o , (22) 

(21) 

If only (i) - (iii) are valid, we would expect the R. H. S. of (22) to be a (non-zero) 

constant. In fact, for the Sugawara model, 12 this constant can (almost) be calcu- 

lated exactly. 13 

To give some perspective to these results, let us compare them to the in- 

equalities derived previously by Bjorken. 10,14 The first inequality, derived 

from isospin manipulations on Adler’s sum rule, reads (for all q2) 

w 

q2 
5 

dv A 1 (isoscalar) 2%. 

0 
(23) 

The second inequality, based upon quark commutation rules for the space com- 

ponents of the isospin current, is 

q2 

2 
q--w 

A2 
isoscalar 

-2; 
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It is clear that we have been optimistic in assuming the existence of all 

moments of the hy in Eq. (7b). It is a likely possibility that for t greater 

nt than some value the Ki do not exist; that is, essentially, that for high order 

derivatives, the commutators in Eq. (3) are not defined. An interesting pos- 

sibility I,6 is that the int.egrals in Eq. (15) 2 
-exp -9 u-1 . The Knt determined 

from scattering data according to Eq. (15) would then all be zero, and the con- 
nt 

nection given in (7) between the commutators and the Ki would break down. 16 

Except for this kind of occurrence, the conditions listed above as (i) - (iv) are 

reversible; that is, if thgy are satisfied, then the corresponding commutators 

vanish. 

Finally, we remark that radiative corrections and/or multiple photon exchange 

would tend to decrease the significance of our results. 

One of the authors (R. E. N.) wishes to thank Professor J. 13. Bjorken and 

other members of the theoretical physics group at SLAC for a number of very 

helpful discussions. 
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