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“ABSTPLACT 

Arguments are given why the non-leptonic weak interaction should, in a 

quark model with neutral. vector boson strong interaction (&on model), be 

calculable in terms of low-energy contributions, which can be estimated from the 

knowledge of semi-leptonic processes. Fair agreement with experiments seems 

to support this possibility. The suggestion is also made that the “gluon” model 

could be very helpful in understanding many properties of e. m. and weak inter- 

actions. 
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I. INTRODUCTION 

The universal current - current hamiltonian for the weak interactions’ has 

b&en extremely useful in explaining leptonic and semileptonic prpcesses. An 

equally satisfactory understandin, c of the non leptonic decays in this framework, 

however,’ has not been achieved yet. 

Interesting results2 have, on the other hand, been obtained by introducing a 

few low-lying intermediate states between the currents, in the current- current 

hamiltonian, and using the information available from semileptonic processes. 

The picture that emerges from such a “saturation” scheme is, as we will review, 

consistent with experiments. This success is quite surprising. In fact, even if 

the current - current form is basically *‘correct, ” the local product of currents 

may be too singular to allow meaningful tests via a crude “saturation” approxi- 

mation. Our experience with the calculation of electromagnetic mass-splittings 

may also serve as grounds for pessimism. It has been shown that one contribution 

of low-lying states to the Cottingham formula3 fails to reproduce even the correct 

sign of the AI= 1 e. m. mass splittings. 435 Such a failure is relevant to the present 

discussion, because the S-wave decays in the soft pion limit6 are related to the 

P.C 
matrix elements <B’ HW I I B>*, which are very similar (except for the missing 

photon propagator) to <B’ .H,: m \ B>. 
I . . 

It has been recognized that additional “tadpole” terms’, reflecting high energy 

contributions; must be present and account for most of the AI=1 mass splittings 435 ; 

and it has been suggested7 that the AI=f rule in non-leptonic decays should emerge 

through a similar tadpole mechanism, thus casting severe doubts on low-energy 

saturation. 

* The Suzuki-Sugawara analysis assumes certain commutation relations between 
the weak hamiltonian and the axial charges, which are true both in the JJ and in 
the intermediate vector boson pictures. 



A possible interpretation of the fYadpolesTf has been suggested by Bjorken. 8 
<. 

By applying his method to the virtual “Compton-like” amplitudes, one finds in 

general divergent integrals, both in non-leptonic and e. m. amplitudes. ‘We do 

not think that the occurrence of such divergencies is disastrous. Motivated by 

renormalization theory, we take the attitude that when these divergencies occur, 

they are going to supply us with uncalculable r’renornializationff constants. On 

the other hand, if such divergencies are not present, the possibility of calculating 

such amplitudes in terms of low-energy contributions seems to be likely. We 

would like to emphasize that this is the basic attitude taken in the present investi- 

gation. 
’ 

In Section II we show ‘that there exists at lea& one model of the strong inter- 

actions where the “divergent” terms have operator coefficients whose matrix 

elements vanish between the physical states of the weak decays. Such a privileged 

model is the gluon-model, i. e. a quark-model where the interaction is medi.ated 

by a massive neutral vector meson coupled to the conserved baryon current, ahd - ~.._~ ~.. -... 

the SU3 @ SU3 chiral invariance of the theory is broken only through mass terms 

* 
in the Lagrangian . It is worth noticing that t.his is the only renormalizable 

model of the strong interactions which guarantees either finiteness or universality 

of the radiative corrections to semileptonic processes. 9 

II. BJORKEN’S METHOD AND EVALUATION OF DIVERGENT PARTS 

It. 1. Intermediate-vector boson weak interaction. 

We wri.te the weak Lagrangian in the form: 

Lw = g J’(x)W~ (x) (1) 

Some properties of this model have been considered by M. Gel&Mann, ,Phys. 
Rev. 125, 1.064 (1962 ) and by J. D. Bjorken, ref. 8. 

* 
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where JP is the Cabibbo current 

and W (x) is the vector boson field whose mass m 
P 

w relates the dimensionless 

coupling constant g to the Fermi coupling constant, via 

-l&G 
mW 

L/i- 

This Lagrangian leads to the non leptonic amplitude 

where 

T 
s 

4 =-i dxe ikx 
IJV 

(3) 

(4) 

(5) 

and T* denotes the covariant amplitude which represents one response of the 

S-matrix to the second order weak vect.or perturbation. * 

We now apply to T 
Pi? 

the Bj orken’s analysis. We analyze first the kp kvT 
w 

part. 10 
By using the chiral algebra we have 

k’k”T = B>- 
W 

ikv<B’7rI?v(~)IB>- 
1 

d3xe-i’G<B17rI Jo(x), D+(o)] 
[ I 

x0 =o 

(6) 

where TV(o) is a combination of neutral vector and axial currents, and D(x)=aPJP(x). 

The first term integrates to zero by a symmetrical integration over k. The second 

term yields a quadratic divergence in (4): 

2- ~ 
mW s 

‘d4k 1 
2 

(2~)~ mb-k2 s 
d3xe -&cB’B Jo@, 0): D+(o) 

I 
1 B> 

T--- 
-- 

T* consists in general of the time order product of the currents and additional 
Y3chwingertf terms O Here and in the following we assume that no AS = 1 “Schwinger” 
terms are present so that we can ignore them t.hroughout our discussion. 
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Logarithmic divergencies in (5) may arise from the third term in (6) and from the 

gtiv piece in (4), and according to the Bjorken’s analysis will be given by 

ji?x < B+;(x),[ H, j”‘o)]] 1 B,\ 

where H is the hamiltonian of the system. 

We now evaluate (7) and (8) in the framework of the above mentioned “gluon- 

model, I’ which is characterized by the Lagrangian 

L=<(-ia + gg+M)q-t-LB (9) 

where LB refers to the vector boson BP part, and M is a numerical quark mass 

matrix. In such a model the Cabibbo current has the form: 

J,(x) = $W’bl (1 + Y5 )A’-cl(x) (10) 

where 

cos 8 sin 

0 0 

0 0 

and 

D(x) = iz(x)&q(x) (111 

where script letters here and in the following denote products of Gell-Mann’s matrices 

with 1, and Y5. _ 

The equal. time commutator in (7) is now 

In particnlar the part relevant to non leptonic decays (AS = 1) is 

&dAS = l)q = E&!h -t Ph Y )q 
6 7 5 

where (Y and P are constants. 

(12) 

(13) 

,. 
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We analyze next thk logarithmically divergent part (S), and consider first the 

matrix element 

)~?xc BVfD+@, 0),[H, rq0jj) B>. 

Using the hamiltonian H correspondin, m to (9), and the expression (11) for D(x), we 

find 

J”“x< B’.l[D+(x,,[H, D(o,]]~~~ o,B’ = 

/;“x<B’*I(u.~~~~i(-i~+gBi~q+~~‘q~lB> (14) 

The first term in (14) can be written in the form 

<&Yi(-ivi + gBi)q = -<JI’(-ia f g$)q +?IPfjv !JV r’(-i$ -t gB’)q (15) 

where VP= (3, 1). . 

The covariant form corresponding to (15) is obtained by the substitution’ 

yielding the following contribution to (8), 

ig2 

m-Q4 
B> (16) 

A similar calculation applies to the second term in (8). 

The crucial observation is that within the framework of this model the 

S = 1 scalar and pseudoscalar densiti.es can be expressed as four-divergences 

of the corresponding current operators. 

Matrix elements of these densities therefore vanish between‘states of equal 

energy and momentum (provided such operators are, as they indeed are, non- 

singular) . As a consequence we find that the coefficients of both the quadratic 

and logarithmic divergencies Eqs. (13) and 16).vanish for the physical decay 

process. 
-6 - t 
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This is different from what one finds, within this same approach, for the 

second order e. m. mass shifts. There the coefficient of the leading logarithmic 

divergence(* 

(16.1) 

when Q is tile 3 X 3 charge matrix. This density cannot be written as a four- 

divergence, and therefore its relevant matrix elements will in general be non- 

vanishing. Indeed if we wish to attribute the prominent AI = 1 mass differences 

to such tad-pole terms, these matrix elements should be quite large, as we 

will discuss later on. 

II. 2. Current-current interaction. 

We may obtain the current-current interaction formally from (4) by letting 

2 * 
n+v -+ 02 , giving 

T (B+B’n) =G 
s 

d4k - 
h- (W4 

T& iw 

In addition to the quadratic divergence in (1’7) which by the above argument may 

be absent there are lomrithmic divergencies. If the Bjorken’s analysis can be 

pushed this far, the coefficient of this divergence is b;, -d-d :,]. Evaluation 

. of this commutator gives in addition to quark densities (13) expressions of the 

form _ 

which are qui.te different from a quark density, and their matrix elements may 

,. 

well be much smaller than those of the e. m. tadpole (16.1). This, together 
* 

We have however to warn that this procedure’ may be meaningless due to the 
possible bad behavior of the theory at small distances. 

-7- 
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with the fact that the leading quadratic divergence is absent leaves open the 

possibility that the unknown appropriately cut-off high energy contribution to 

the non-leptonic amplitude is relatively small compared with the calculable 

low-ener,gy contribution. This may serve as a motivation for the analysis of 

the low ener,gy part of the weak amplitudes to which we now proceed. 

III. LOW-ENERGY CONTRIBUTIONS 

Since we are interested in the region of small virtual momenta (k2 << 

experimental lower limit of n$V) Eq. (1’7) is an adequate starting point for the 

calculation. 

In order to evaluate the contribution of the low-lying states in (17), it is 

3 most useful to write down a Cottingham-like formula , 

: Tlow(B -B ‘rr) =.- ; & k; k2) j@max~~-.I:T(k2, Y,Z> (18) 

where . 

III-I T(k2, Y,z) 
4 

=y J4(Pn - P - k) < B’n/Ji(O)[n> i: nl Jp(0) IB,> (19) 
n 

and V= 
k* PB <*; 
L z =- 

“B Ill I k; 
where < is the pion momentum in the rest frame of the 

decaying baryon B. 

V 
max 

is a cut-off energy defined by the condition 

(k + pj.Y~)~ _< M2 

and M2 will be specified below. . 

In (19) there are three different- types of interme3nt.s states n: 

ns containing no disconnected parts (Fig. 2a), nu cofitaining a disconnected 

pion (Fig. 2b), nv containing a disconnected baryon (Fig. 2~). 

-8- . 
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In the following we will keep only the two lowest SU3 multiplets in the s ,u, 

and v channels. This. is effectively achieved by choosing M of Eq. (20) to be 

slightly above m + m N 1800 NIeV. 
V B 

The final result will in fact not be partic- 

ularly sensitive to the value of M2. 

Within this approximation the typical contributions to Im T of Eq. (19) 

involve weak currents form factors and weak meson production amplitudes. 

Following earlier calculations2 we take the weak currents baryon matrix elements from 

the fit to the Cabibbo theory and use universal dipole form fat tors. Lacking de tailed experi - 

mental information about weak meson procluc tion amplitudes we use the soft pion limit. 

In previous estimates of S-wave decays 622 PCAC and the soft pion limit 

was usecl at the outset, restricting the saturation procedure to the matrix 

elements of the weak Hamil.tonian between single baryon states. In the frame work 

of the present model the PCAC extrapolation may be dangerous, ‘since in the soft 

pion limit the non-leptonic Hamiltonian carries effectively a momentum transfer 

q and the matrix elements of the quark densities (13,16) do not vanish any more; 

In practice, as we shall show later, the difference between this and our approach 

of using PCAC in the weak meson production amplitudes is relatively small. 

We consider the general weak meson production amplitudes f (k,q) (see 

Fig. 3). If we assume that Tp (k,q) - Tf (k,q) (where T B is the born ampl.itude) 
P 

11 
_ is a smoot,h function of q when q -+O , we may write tge amplitude 

T; (k,q) =T,aB(k,q) + (LO) - T;~(W 
3 

(21) 

. 
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Making use of PCAC z&d the chiral SU3@SU3 algebra we have 

d- T;(k, 0) - Ta’k, 0)’ = - $- <B’(p’) y;(O) 1 A(p. ) 5 
P( 7i 

B /T*(AE(x) =(O)) IB > - T;(k,q)I) 1 (22) 
where3;(0) is the result of the equal time commutator 

C 
A:(x), Jo] . If we 

write TL(k,QB using a derivative coupling the last term in (22) is identicallJi 

Equipped with Eq. (23) for the weak pion-production amplitude and with the usual 

weak currents form factors we now evaluate the contribution to the non leptonic 

amplitude from n = n s u 
= baryon octet and decuplet diagrams. 

For the S-wave decays the dominant contribution comes from the equal-time 

commutator term in Eq. (23), so that we recover formally an S-wave amplitude 

identical with that obtained by direct application of PCAC 
3 

to the nonleptonic 

Hamiltonian: 

S(B -+“ra) &# < B’ I I Xa B> 
: 71 

where i3;’ W 
is an effective non leptonic Hamiltonian evaluated by saturating a 

current-curSent Hamiltonian by the low-lying and decuplet states. In s?J3- 

symmetry limit one can write: 

<B’ ga B>=DDa 
I I 

+ F Fa a 
B’B B’B + T TB’B 

(24) 

(25) 
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with D, F, T referringi to the D and F octet, and 2 7 coupling respectively. An 

estimate of < B’ 1 gal B > was done by Hara2, who obtained* 

D = - 3,2 1O-5 MeV 

F = 3,8 lO-5 MeV (26) 

T = - .l 1O-5 MeV 

Eqs. (24) and (27) yield a resonable predication of all S-wave decays. (See Table I ). 

In particular the AI = l/2 selection ru1.e seems to emerge in a dynamical way, 

due to mutual cancellation of octet and decuplet contributions. 

The corrections to Eqs. (24) and (26) which arise from the. Born term in Eq. 

(23), and the so far’neglected nv diagrams, have been estimated. We find that 

such contributions give at most 20-30s corrections. 

We turn now to consider the P-=vJave non leptonic amplitudes. Neglecting 

again the nv-type diagrams, and the equal-time commutator term. in the weak- 

p?oduction amplitude (23), we obtain from the Born diagrams effectively the ’ 

results which have been previously obtained in Ref. 12, where we have to use 

for the ‘bpurion” matrix elements the values of Eqs. (26). As it is shown in 

Table I this gives a substantially correct picttire of the P-wave amplitudes. ** 

* 
Uncertainties in F, D, and T of Eqs. (26) arise from, the insufficient experimental 
information on the vertices < B 1 Jcl 1 B > and < B 1 JCL 1 A >. The forms used by 
Iiara for these vertices are rather simple and appealing. In particular the 
universal dipole form factor (m$ / k2 - m$)2 witln.m~zO. 71(BeV)2 was used in 
all cases. We found only small variatiotis (~15%) when ‘choosing different form 
factors, incorporating the correct static values (including the radii). 

** 
The results for the P-wave decays are not as significant as those for the S-wave, 
due mainly to some subtle cancellations in the Born diagrams, which on the other 
hand are particularly sensitive to mass SUQ-kreaking effects. , 

-ll- 
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<. 
We found that the neglected pieces (ETC and nv-diagrams) give small corrections 

without altering the picture. It is however, interesting to notice that the possible 

effect of a, Pll resonance in the P wave weak production amplitude will add a 

contribution which is qualitatively of the right structure to improve agreement 

with experiment. Also here the AI = l/2 rule is dynamically brought in through 

the matrix elements of the weak “Harniltonian” between bdryon states. 

. CONCLUSIONS 

We have shown that in a particular field theoretical model, a justification 

can be given to the “saturation” approach to the non-leptonic intkraction. & 

review of its implications has shown that, within the approximations made, it 

describes correctly the main features of the non-leptonic baryon decays. 

That this situation is significantly different from what we have in the case 

of e. m. mass difference, we think is supported by the following argument. 

Let’s consider the S-wave amplitudes; if the deviations between the calculated 

and experimental values for the S-wave decays are interpreted in terms of 

additional ‘Yad-polel’ contributions we find for the magnitude of the tad-poles 

IFw 1 +lDWlti 1.8 10v5 MeV. - 

The analysis of e. m. AI = 1 mass difference indicates3 that the low-energy 

contributions need be augmented by a tad-pole term’with a magnitude 

(F + D) e. m. = - 2.08 MeV 

F/D =-1.8 

giving 

IFI+ ID 1 = 6.3MeV 

. 

- 12 - 



If we adopt Bjorken’s interpretation8 of the tad-pole contributions, we 

would in general expect a ratio 

J 
A2 

s 
e” “‘&2 gEM 

K2 
and g 

VV= g&i = gE&f 
as a consequence of the “universality” of tad-poles. Using 

for the cut-offs the values A wk cj’ 10 BeV and Aae m 2 100 BeV, we find . . 

that rth is smaller than “r 
exp 

I1 by almost an order of magnitude, and the situation 

2 
is of course much worsened if we increase the value of Awk. In spite of the 

crudeness of the argument we think that this is a fairly meaningful indication of 

the difference between the e. m. and the lxeak case, which seems to be incor- 

porated in the model discussed previously. 

The question now is: What have we learnt from all this? We think 

optimistically that from the preceding discussion may emerge the basic adequqcy 

of the current-current picture for low-energy non leptonic interactions, and the 

interesting role played by the “Gluon” model in supplying us with information 

going beyond the realm of “current algebra”. We think that investigating other 

features of such a model could be helpful in understanding the weak and e. m. 

interactions of the hadrons. 
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/ TABLE I 

We define& = u(p’) (A - Br5) u(p) as the decay amplitude. The amplitudes 

satisfy the N = l/2 rule. 

Decay A, lo6 exp.* Calculated B. 106 exp. * Calculated 

0.335 -+ 0.004 

0.001 f 0.006 

0.338 rt 0.030 

0.405 f 0.003 

0.440 zt 0.006 

0.285 2.3&O. 1 1.48 

0 

0.40 

0.57 

0.50 

4.2rtO.08 2.6 

2.6-+0.4 1.85 

-3.4rt8.5 1O-2 0 

1.47&O. 12 1.28 

The experimental figures have been taken rrom N. Cabibbo, Proceedings 
of the XIIIth International Conference on Nigh Energy Physics, Berkeley 
(1966). 
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