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*ABSTRACT

Arguments are given why the non-leptonic weak interaction should, in a
quark model with neutral vector boson strong interaction (gluon model), be
calculable in terms of low-energy contributions, which can be estirﬁated from the
knowledge of semi-leptonic processes. Fairagreement with experiments seems
to support this possibility. 'The suggestion is also made that the "gluon'" model
could be very helpful in understanding many properties of e. m. and weak inter-

actions.



I. INTRODUCTION

The universal current - current hanﬁltonian for the weak interactionsl has
been extremely useful in explaining leptonic and semileptonic processes. An
equally satisfactory understanding (ﬁ the non leptonic decays in this framework,
however, has not been achieved yet.

Interesting resul‘cs2 have, on the other hand, been obtairlled by introducing a
few low-lying intermediate states between the currents, in the current- current
hamiltonian, and using the information available from semileptonic processes.
The picture that emerges from such a "saturation scheme isb, as we will review,
consistent with experiments. This success is quite surprising. In fact, even if
the current - current form is basically '"correct, " the local product of currents
may be too singular to allow meaningful tests via a crude ”saturation” approxi-
mation. Our experience with the calculation of electromagnetic mass-splittings
may also serve as grounds for pessimism. It has been shown that one contribution
of low-lying states to the Cottingham formula3 fails to reproduce even the correct

3

sign of the AI=1 e. m. mass splittings. Such a failure is relevant to the present

6
discussion, because the S-wave decays in the soft pion limit are related to the

P.C
W

photon propagator) to <B! "He‘ m [B>.

matrix elements <B' ‘H B>*, which are very similar (except for the missing

1t has been recognized that additional "'tadpole terrns7, reflecting high energy
contributions,; must be present and account for most of the Al=1 mass splittings4’ 5;
and it has been suggested7 that the Alz—% rule in non-leptonic decays should emerge

through a similar tadpole mechanism, thus casting severe doubts on low-energy

saturation.

* The Suzuki-Sugawara analysis assumes certain commutation relations between
the weak hamiltonian and the axial charges, which are true both in the JJ and in
the intermediate vector boson pictures. '



A possible interprétation of the ”ta.dpoles” has been suggested by Bjorken. 8
By applying his method to the virtual "Compton-like" amplitudes, one finds in
general divergent integrals, both in non-leptonic and e. m. amplitudes. *We do
not think that the occurrence of such divergencies is disastrous. Motivated by
renormaiization theory, we take the attitude that when these divergéncies‘ occur,
they are going td supply us with uncalculable "renormalization” constants. On
the other hand, if such divergencies are not present, the possibility of calculating
such amplitudes in terms of low-energy contributions seems to be likely. We
would like to emphasize that this is the basic attitude taken in the present investi-
gation.
In Section IT we show "that there exists at least one model of the strong inter-
actions where the "divergent" terms have operator coefficients whose matrix
“elements vanish between the physical states of the weak decays. V Such a privileged
‘model is the gluon-model, 1 e. a quark-model where the interaction is mediated
by a E}%gsive nueut’ral vector meson coupled to the conserved baryon current, ahd

the SU3 ® SU3 chiral invariance of the theory is broken only through mass terms
N - * RPN - . - - . - . e
in the Lagrangian . It is worth noticing that this is the only renormalizable

model of the strong interactions which guarantees either finiteness or universality

s s - . . 9
of the radiative corrections to semileptonic processes.

I. BJORKEN'S METHOD AND EVALUATION OF DIVERGENT PARTS

. 1. Intermediate‘vector boson weak interaction.

We write the weak Lagrangian in the form:

o TP ey w
L, =g 3" ()W, (x) &)

%
Some properties of this model have been considered by M. Gell-Manmn, Phys.

Rev. 125, 1064 (1962) and by J.D. Bjorken, ref. 8.
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where J is the Cabibbo current
s + +. + +
J (x) = cosb V" (%) + AT (x)/+sinb Vk (x) + Ak (x) - (2)
4 A 13 H 14 U

and W“(x) is the vector boson field whose mass My relates the dimensionless

coupling constant g to the Fermi coupling constant, via

2 G
__&._ — e (3)
m? v

W

This Lagrangian leads to the non leptonic amplitude

g kﬂkl/ TP’V
T (B—B'T) = f il 22 )
( 'w w
where
[ 4 ikx - ot
TN‘U: —3/d x e < B'm lT*(J” (X)JV(0)>|B> 5)

and T* denotes the covariant amplitude which represents one response of the
S-matrix to the second order weak vector perturbation. *
We now apply to TIH’/ the Bjorken's analysis. We analyze first the k* kUT“V

part. 10 By using the chiral algebra we have

B ~ 3. ~ikx +
Kk K Twz 11<V<B'7r]Jv(o)|B>~fd xe <B'7f|[JO(X), D (0)] |B>-
X, =0
ﬁ4xele< B T*<D+(x), D(°)>IB> (6)

where Ty(o) is a combination of neutral vector and axial currents, and D(X)ZBHJ # (x).
The first term . integrates to zero by a symmetrical integration over k. The second

term yields a quadratic divergence in (4):
3 -ikx L
/ zfd xe ﬂQ< B‘W|[Jo(x, 0), D+(o)],B> (7)
m (27() m k

%
T* consists in general of the time order product of the currents and additional

"Schwinger' terms. Here and in the following we assume that no AS =1 "Schwinger™

terms are present so that we can igrore them throughout our discussion.



Logarithmic divergenci‘es in (5) may arise from the third term in (6) and from the

g,y piece in (4), and éccording to the Bjorken's analysis will be given by

H . .
i) [tk 1 1 [
=\ " a D
27r)4 m2 —1{2 1'2(m2
( we R My

ﬁ3x<3'w|[J; (x),[H, J“(o)]] | B>} (8)

We now evaluate (7) and (8) in the framework of the above mentioned ""gluon-

[D+(x),|:II, D(o)ﬂl B>dox +

w-ss ~ T I~
where H is th

model, " which is characterized by the Lagrangian
L=q(-i3 + gB+M)q+ Ly (9)

where L, refers to the vector boson BM part, and M iz a numerical quark mass

B

matrix. In such a model the Cabibbo current has the form:

- _I_
3,69 =2, (1+ 75N a0 (10)
‘Where
o} cosf sinb
+
A = 0 0 o
o o 0
and
D(x) =iq(x)Zax) (11)

where script letters here and in the following denote products of Gell-Mann's matrices
with 1, and ')'5.
The equal time commutator in (7) is now

[JO(?{, 0), D+(6’, o)} L (x) 1q.i'q T (12)

In particular the part relevant to non leptonic decays (AS= 1) is

GBS = 1)y - q(erg + B Y:)a (13)

where & and 8 are constants.
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We analyze next the logarithmically divergent part (8), and consider first the

ﬁ3x < B"[(‘I[D+ ®, b),[H, D(O)]:Il B>,
Using the hamiltonian H corresponding to (9), and the expression (11) for D(x), we
3 +
ﬁi X< B'WI[D (x),[H, D(o)]:]XO: O‘B> =
ﬁSX < B'7T|

The first term in (14) can be written in the form

matrix element

find

€~u3'”71(—iﬁ +gB)a+ qt! Q}l B> (14)

QY -1V, + gB)a = ~qA (=13 + gB)a+n m,, aur P13+ gB”)a (15)

-

where 77“5 (0, 1).

' e 8
The covariant form corresponding to (15) is obtained by the substitution
k k '

r]u n,° %—l—’— yielding the following contribution to (8),
k

d.¢''q|B> (16)

. 2 4
_ ig d k 3 _ntr
@n 4 Kem? - K2 4 2
) (myy -k dmy,
A similar calculation applies to the second term in (8).
The crucial observation is that within the framework of this model the

S =1 scalar and pseudoscalar densities can be expressed as four-divergences

of the corresponding current operators.

Matrix elements of these densities therefore vanish between' states of equal
“energy and momentum (provided such operatorsare, as they indeed are, non-
singular) . As a consequence we find that the coefficients of both the quadratic
and iogarithmic divergencies Eqgs. (13) and 16).vanish for the physical depa;r

process.
-6 - .
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This is different from what one finds, within this same approach, for the

second order e, m. mass shifts, There the coefficient of the leading logarithmic

divergence(s)is

em u - 2
.lETH ,[H,Jem]}tq Q q (16.1)

when Q is the 3 X 3 charge matrix, Thié density cahhot be written as a four-
divergence, and therefore itsrelevant matrix elements will in general be non-
-vanishing. Indeed if we wish to attribute the prominent Al =1 mass differences
to such '-tad—pole terms, these matrix elements should be quite large, as we
will discuss later on.

II. 2. Current-current interaction.

We may obtain the current-current interaction formally from (4) by letting
2 Tk
my, —oo , giving
d4k

G ‘
T (B—B'm == f~—— T (17)
/2 emt

In addition to the quadratic divergence in (17) which by the above argument may

be absent there are logarithmic divergencies. If the Bjorken's analysis can be

3
5 d :I Evaluation

at” K

of this commutator gives in addition to quark densities (13) expressions of the

pushed this far, the coefficient of this divergence is [J;, 4

form
gzma (5 B. -3 B Yo g4 (18)
: (TR S T AT 7

which are quite different from a quark densi'ty, and their matrix elements may

well be much smaller than those of the e. m. tadpole (16.1). This, together

We have however to warn that this procedure may be meaningless due to the
possible bad behavior of the theory at small distances.

*
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with the fact that the leading quadratic divergence is absent leaves open the
possibility that the unknown appropriately cut-off high energy contribution to
the non-leptonic amplitude is relatively small compared with the calculable
low-energy contribution. This may serve as a motivation for the analysis of
the low energy part of the weak amplitudes to which we now proceed,
1. LOW-ENERGY CONTRIBUTIONS

Since we are interested in the region of small virtual momenta (k2 «
experimental lower limit of m,‘\zv) Eg. (17)is an adequ?.te starting point for the
calculation,

In order to evaluate the contribution of the low-lying state.s in (17), it is

3

most useful to write down a Cottingham-like formula®,

1

, . N
00
-G 1 2. fibmax 9
Tlow(:B —Bm) "\'[é 3 fd(" k) f Va? 2 3Z.Im I, v,z)
. : A |

327

where

4
Im T(sZ, v,2) :%ﬂ) 2; ‘54(pn -p -k) <B'7rlJ;(O)[n> ’<n|Ju(0) [B¢> (19)

ke P - —
and V=B ; =54
mp k]l

decaying baryon B.

where ?f is the pion momentum in the rest frame of the

Vmax is a cut-off energy defined by the condition
2 2
(k +pp) <M (20)

and Mz will be specified below. _

In (19) there are three different typeé.-of intermediats states n:
n containing no disconnected parts (Fig. 2a), n, cohtai»ning a disconnected
pion (Fig. 2b), n, containing a disconnected baryon (Fig. 20).

-8 -
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In the following we will keep only the two lowest SU,_, multiplets in the s,u,

, 3
and v channels. This.is effectively achieved by choosing M of Eq. (20) to be

slightly above m +m_, ~ 1800 MeV. The final result will in fact not be partic-

B
ularly sensitive to the value of Mz.
Within this approximation the typical contributions to Im T of Eq. (19)
involve weak currents form factors and weak meson production amplitudes.
Following earlier ca].culattions2 we take the weak currents baryon matrix elements from
the fit to the Cabibbo theory and useuniversal dipole form factors. Lacking detailed experi-
mental information about weak meson productionamplitudes we use the soft pion limit. B
| In previous esfimateé of S—wave vdécayssv’erCAC and the soft pion limit
was used at the outset, restricting the saturation procedure to the matrix
elements of the weak Hami].tonian between single baryon s£ates. In the frame work
of the present model the PCAC extrapolation may be dangerous, ‘éince in the soft
pion limit the non-leptonic Haniiltonian carries effectively 2 momentum transfer
q and the matrix elements of the quark densities (13,16) do not vanish any more,
In practice, as we shall show later, the difference between this and our approach
of using PCAC in the weak meson production amplitudes is relatively small.
We consider the general weak meson production amplitudes TZ (k,q) (see
Fig. 3). If we assume that TH k,q) - Tf (k,q) (where Tf is the born amplitude)

is a smooth function of g when q —0 1, we may write the amplitude

a aB, a _ 2B
T, (,0) =T, (k,q)+[T“ (,0) - T, (k,0>] (21)



Making use of PCAC and the chiral SU3®SU3 algebra we have

V2

a B 1 ~a
T (k,0) -T (k,0) =~ "=~ <B (p! lJ olA Y 3
,06,0) - T (K, 0) £ <BED|LO]AR) >

lim [2__ ‘i‘/-‘l igx a . _ a, B
q—0 [fw iq fd'xe ™ <B IT*(Aa(_x) JH(O)) lB > - Tu(k,q) (22)
where 33(0) is the result of the equal time commutator [Aa(“)(x), J“(O)] . Ifwe

write Tz(k,q)B using a derivative coupling the last term in (22) is identically
zero when g—0. So that in the >soft pion limit we have

a .

Tu(k,Q) = Tz(k,.Q)B - \'/i <B

f
T

Epf’l(O)l A> 23)

Equipped with Eq. (23) for the weak pion-production amplitude and with the usual
weak currents form factors we now evaluate the contribution to the non leptonic
amplitude from n,=n = baryon octet and decuplet diagrams. |

For the S-wave decays the dominant contribution comes from the equal-time
commutator term in Eq. (23), so that we recover formally an S-wave amplitudé
identical with that obtained by direct application of PCA03 to the nonleptonic

Hamiltonian:

' ~
S(B—~B'1) g*ff— <B l B> 24)
T

where EW is an effective non leptonic Hamiltonian evaluated by saturating a
current-current Hamiltonian by the low-lying and decuplet states. In SU3~

symmetry limit one can write:

a FFY _+T TS

' ~
<B lHa|B>~DDB'B+‘ p T Tog

(25)

-10 -



with D, F, T referriné to the D and I octet, and 27 coupling respectively. An

estimate of < B' |I~1a| B > was done by Hara2 , who obtained*

D=-3,210"° MeV

5

F= 3,810 ° MeV ' (26)

i

T=-.1 10" Mev

Egs. (24) and (27)yield a resonable predication of all S-wave decays. (See TableI ).

In particular the Al = 1/2 selection rule secems to emerge in a dynamical way,
due to mutual cancellation of octet and decuplet contributions.

Thé corrections to Egs. (24) and (26) which arise from the Born term in Eq.
(23), and the so far neglected n, diagrams, have been estimated. We find that
such contributions give at most 20—30% corrections.

We turn now to consider the P-wave non leptonic amplitu.deé. Neglecting
- again the nv—type.diagl*anlé_, and the equal-time commutator term in the weak-
production amplitude (23), we obtain from the Born diagrams effectively the
results which have been previously obtained in Ref. 12, where we have to use
for the 'spurion' matrix elements the values of Egs. (26). As it is shown in

Table I this gives a substantially correct picture of the P-wave amplitudes, **

* g ‘
Uncertainties in F,D, and T of Eqs. (26) arise from the insufficient experimental

information on the vertices <B|J, | B >and <B|J,| A >. The forms used by
Hara for these vertices are rather simple and appealing. In particular the
universal dipole form factor (m% / k2 - m%) with. mg=0. ‘71(BeV)2 was used in
all cases. We found only small variations (~15%) when choosing different form
factors, incorporating the correct static values (including the radii).

ok .
The results for the P-wave decays are not as significant as those for the S~wave,

due mainly to some subtle cancellations in the Born diagrams, which on the other
hand are particularly sensitive to mass SUS-breaking effects.

- 11 ~



¥
We found that the neglected pieces (ETC and n, -diagrams) give small corrections
without altering the picture. It is however, interesting to notice that the possible

effect ofa P resonance in the P wave weak production amplitude will add a

11
contribution which is qualitatively of the right structure to improve ag'reément
with experiment. Also here the AI = 1/2 rule is dynamically brought in through

the matrix elements of the weak "Hamiltonian' between bdryon states.

CONCLUSIONS

We have shown that in a particular field theoretical model, a justification
can be given to the "saturation" approach to the non-leptonic interaction. VVVA
"réview of its implications has shown that, within the approximations made, it
describes correctly the main features of the non-leptonic baryon decays.

That this situation is significantly different from what we have in the case
of e.m. mass difference, we think is supported by the following argument.
Let's consider the S~Was}e amplitudes; if the deviations hetween the calculated
and éxperimental values for the S-wave decays are interpreted in terms of
additional '"tad-pole" contributions we find for the magnitude of the tad-poles
S

-5
w | +|P |:.~.-1.8 10™° MeV.

W

The analysis of e.m. AI =1 mass difference indicates5 that the low-energy

contributions need be' augmented by a tad-pole term with a magnitude

(F+D)e.m. =-2.08 MeV
F/D =-1.8
giving
|FI+ |D| = 6.3 MeV

-12 -



If we adopt Bjorken's interpretationS of the tad-pole contributions, we

would in general expect a ratio

‘ 2
. Awk
By~ cumomes 8oy
"t T(ID[F]F) B —o.c0sd s
| De.m. J2 A2 g
fe,nl.dkz BEM

o K

and g as a consequence of the ”Liniversality" of tadiioies. Using

vV BAA T Bgm

for the cut-offs the values AW 2 10 BeVand A . 1m ~ 100 BeV, we find

k

that r,, is smaller than ”rexp” by almost an order of magnitude, and the situation

th

is of course much worsened if we increase the value of A?vl . In spite of the

>

2

.crudeness of the argument we think that this is a fairly meaningful indication of
the difference between the e. m. and the weak case, which seems to be inqore
porated in the model discussed previously. ‘

The question now is: What have we learnt from all this? We think
optimistically that from the preceding discussion may emerge the basic adequacy
of the current—current picture for low-energy non leptonic interactions, and the

interesting role played by the "Gluon" model in supplying us with information
going beyond the realm of "current algebra'. We think that investigating other
features of such a model could be helpful in understanding the weak and e. m.
interactions of the hadrouns.

s
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TABLE I

We define # =u(p") (A-Byg) u(p) as the decay amplitude.

satisfy the AI = 1/2 rule.

The amplitudes

6

Decay A, 106 exp.* Calculated B.10~ exp.* | Calculated
A5 0.335 = 0.004 0.285 2.5&0.1 1.48
> 0.001 0,006 0 4.2:+0,08 2.6
}:g 0.338 & 0.030 0.40 2.6%0,4 1.85
¥ 0.405 + 0.003 0.57 ~3.48.5 1072 0

= 0.440 + 0.006 0.50 1.4740,12 1.28

The experlmental figures have been taken trom N. Cabibbo, Proceedings
of the XIIT'Y International Conference on High Energy Physics, Berkeley

(1966).




