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1. Introduction 

In a standing-wave accelerator structure, essentially all of the input RF 

power is inherently utilized (assuming proper input matching) to set up the ac- 

celerating fields and for conversion to beam power. Because of this basic sim- 

plicity all of the experimental work on superconducting accelerators carried out 

to date has employed the standing-wave structure. The theoretical performance 
of the standing-wave superconducting accelerator under beam loading conditions 
has been studied by Wilson and Schwettman. 2 (See Section 6 of this report for 

further discussion. ) The energy gain in a properly matched standing-wave (SW) 
accelerator with negligible beam loading is given by 3 

VW = (La&“2 (1+ e-2T)-1/2 ( psrol)l/2 

where P is the RF power from the source, r 
S 0 is the shunt impedance per unit 

length, d is the length of the accelerator structure, and T is the attenuation 

parameter in nepers. For superconducting accelerators, where T is very small, 

Eq. (1) becomes : 

where P d = P, is the power dissipated in the accelerator structure. 

* 
Work supported by the U. S. Atomic Energy Commission. 

t This report is based upon an earlier SLAC Technical Note. 
1 

(2) 

(Presented at The 1968 Summer Study on Superconducting Devices and Accel- 
erators at BNL, June lo-July 19, 1968.) 



The energy gain in the traveling-wave (TW) accelerator with negligible beam 
loading is given by: 

‘TW = (27) 1’2 (’ _yeeT) (PsroP)1’2 . 

When T is very small, Eq. (3) becomes: 

vTW = 2 7 Psro’)l/’ = (l?droi!)1’2 (4) 

where 2TPs = Pd is the power dissipated in the accelerator structure. In this 

case, P d, which is the power useful in setting up the accelerating fields, is very 
low and most of the RF power is lost at the output end of the accelerator. To make 

full use of the available power it is necessary to feed back the residual RF power 

through an external loop and to combine it in proper phase with the input power. 

If this is done, the power and fields in the TW structure will build up to a very high 
level. If the loss in the external loop is negligible compared to the loss in the accel- 
erator structure, essentially all of the input power is available for setting up the 

accelerating fields, i. e. , Pd a Ps. Comparing Eqs. (2) and (4), it is noted that, 

for the same no-load energy gain, the power dissipated in the SW structure must 
be twice the power dissipated in the TW structure with feedback, assuming the 
structures have the same lengths and shunt impedances. In actual fact, it is possible 

to compensate largely for this disadvantage in the SW case by using the x mode or 
the 7r/2 mode in a bi-periodic structure for which the shunt impedances are consid- 
erably increased. 

From another viewpoint, for a given net energy gain, the ratio of peak to 

average fields in the standing-wave structure is up to two times as high as this 
ratio in the traveling-wave structure. This consideration gives an advantage to the 

traveling-wave structure for superconducting accelerator applications. Again, the 

relative advantage of the TW structure is reduced when the 7~ mode or the special 
7r/2 bi-periodic mode is used in the SW structure. 

The original idea of using feedback in conjunction with a traveling wave linear 

aCCekatOr was proposed by R.-Shersby-Harvie and Mullett4 in 1949. This method 

was used on a number of early low energy British accelerators designed for medical 

therapy. The use of the feedback principle in resonant rings for the purpose of testing 

various microwave components such as RF windows was demonstrated by Milosevic 
and Vautey . 5 Hahn and Halama 677 have studied the possibility of using the resonant 
ring concept in superconducting RF beam separators. 
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2. Optimum Feedback in the TW Accelerator With Beam Loading 

A schematic of the TW accelerator with feedback is shown in Fig. 1. The re- 

sidual RF power at the end of the accelerator is fed back to the input end where it 
is combined with the source power Ps by means of a suitable waveguide bridge. 

The combined power PO is then fed into the accelerator. The bridge ratio, which 

will be designated by the symbol g, is defined as the ratio of the powers which the 

bridge is designed to combine. When the ratio of the feedback power to the source 

power is equal to the bridge ratio g and when the feedback phase is properly ad- 

justed, the power input to the accelerator will be (1 + g) times the source power 

and the power PL to the external load will be zero. 

Suppose that the attenuation due to beam loading and to wall losses in the accel- 

erator structure and feedback loop is such that PF = Pa/x2. Then the condition 
for maximum power input to the accelerator and zero power to the resistive load is 

ps (1 + g) 
X2 

= es 

or 

(5) 

When the condition of Eq. (5) is met, the steady state power build-up ratio in the 
accelerator will be: 

pO 1 
73 = l+g = 

1 - (1/x2) 
. (6) 

From Eq. (6), it is noted that a large build-up ratio results when x2 is small 

(close to l), i.e. , when a large fraction of the input RF power is fed back to the 

bridge. The design value of the bridge ratio g must be correspondingly high as 

also given by Eq. (6). 
In the presence of beam loading, the residual power at the output (z =a) of the 

accelerator section is : 

2 =8[emT _ (?r si] 

where i is the peak beam current and the other terms are as previously defined. 

The power PF fed back to the bridge is Pne -27 where y is the attenuation in 
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the feedback loop expressed in nepers. Thus, 

1 pF 
z =5= 

,-tT+Y) _ .-Y (%$‘2 s12. (8) 

Inserting 1/x2 from Eq. (8) in Eq. (6) and solving for Po/Ps yields the result: 

1 + i2 ,-2y (1 - e-T)2 
n 27 

(‘) 
i e -(Ti%y) 
n 

1 _ e-2(T+Y) 

where 

i2roi 1’2 
i = - c ) . n 

% 

The normalized beam energy with beam loading is given by : 

where 

‘n = (27) 
l/2 (1 -;-i)(PoY2 _ in(l _ 1 :J?) 

Substituting Eq. (9) in Eq. (10) yields the result: 

(10) 

1 + i2 .-2y (1 - ewT12 
vn = n 27 

i e-(7+27’) .-2y l/2 - h 
1 -eeT - 7 (11) 

n 

The beam conversion efficiency 7 is defined as the fraction of the power from 

the RF source which is converted into beam power at steady state, i. e. , 

q= v+ . (12) 
S 
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From the definitions of Vn and in, it is clear that r) can also be expressed as 

rj = vnin. Thus, 77 may be obtained by multiplying both sides of Eq. (11) by i n’ 
Two sets of curves of Vn and Q versus in are shown in Fig. 2. One set is based 

on Y/T = lo4 [case (a)] which is typical of feedback through a loop which is at room 
temperature while the accelerator structure is supercooled. The other set is based 

on Y/T = 0.1 [case (b)] which is a rough approximation* for the case where the 
feedback loop as well as the accelerator structure is supercooled. From a compari- 

son of these curves, several observations may be made. For fixed RF power input, 
the theoretical no-load energy is about 95 times higher for case (b) where Y/T = 0.1 

than for case (a) where y/T = 104. As the beam current increases, rl increases much 

more rapidly for case (b) than for case (a) and approaches 100% for relatively small 

values of current. Similarly, the beam energy for case (b) drops off much more rapidly 
with increasing current. At higher values of beam current, the values of beam energy 
and ?J for both cases approach the same values. Case (b) is obviously superior where 

the attainment of high energy is paramount. However, the very large value of the beam 

loading derivative requires that the current be maintained constant with high accuracy 
in order to achieve energy stability. 

3. Fixed Bridge Ratio g in the TW Accelerator with Beam Loading 

The above discussion is based upon optimum feedback which implies a bridge 
ratio g which can be varied to suit any degree of beam loading. While variable 

ratio bridges have been designed, g they are expensive and cumbersome and are of 

questionable feasibility at cryogenic temperatures. A bridge having a fixed ratio 
corresponding to a specific value of design current may therefore be required. How- 
ever, it is desirable to understand the performance of such a system over the entire 

range of feasible beam currents. To gain insight, it is helpful to study the transient 

build-up of a feedback system with fixed bridge ratio g. 

The power build-up process is a stepwise affair with intervals between steps 
equal to the loop transit time. Initially, the voltage Vs applied to the bridge from 

the power source will divide, producing a voltage Vs/(l + g) l/2 in the accelerator 

* 
At room temperatures, the attenuation in nepers per unit length is typically 

50 to 100 times as high in the accelerator structure as in a similar length of 
ordinary waveguide. Because of the presence of bends and the recombining bridge 
in the feedback loop, the more conservative estimate of 10 is being used in this 
example. 
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arm and a voltage Vs [g/( 1 + g)]1’2 in the resistive load arm. After one transit 

through the accelerator feedback loop, a voltage Vs/[x(l + g) l/2 ] appears in the 

feedback arm. If the phase is correct, this feedback voltage divides, the fraction 
l/2 - 

[g/t1 + tz)] b ein g added to the existing voltage in the accelerator 

fraction [l/(1 + g)]1’2 being subtracted from the existing voltage in 

Additional transits lead to the series 

arm and the 

the load arm. 

vO 
l T =p [~.(y(&Y"+(~~ &+. . . . .] 

-- 
A 

ZZ 

x(1 + g) 
l/2 l/2 

- g 
(13) 

and 

vL = i&Y2 -[x(l:g)] [l+(:)(&f/z’(g &+. * .] 
vS 

xg u2 - (I+ g)1/2 
EZ 

l/2 
W+g) -g 

l/2 l 

(14) 

The squares of Eqs. (13) and (14) give the steady state values of Po/Ps and 
PL/ Ps , respectively. From Eq. (14) it is noted that when xg 1’2 = (l+g)1’2, i.e. , 

g = 1/(x2-1), VL and PL = 0, and all of the power is delivered to the.accelerator. 

In this case Po/Ps = 1 + g as given in Eq. (6) for the optimum feedback case. 

Substituting x from Eq. (8) in Eqs. (13) and (14), squaring and solving for Po/Ps 
and PL/Ps yields the results : 

1 -g1/2,Y' 1 - e” 
l/2 po = 

( ) 

'n 27 

7 (I.+ g)l/2 _ gl/2e-t7+Y) 

p l/2 

0 

g u2 - (l+ g) l/2 e-(T+Y) + .-Y * 
1 - e-’ 

L = 
ln 27 

5 (1 + g)m _ glj2 e-tT+Y) 

(15) 

(16) 
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Substituting (Po/Ps) l’2 from Eq. (15) in the basic energy equation [(Eq. (lO)]gives 

the normalized beam energy: 

vn = ( 1 
2T l/2 1 - e-r 

7 
(g fixed) 

. 

1 -g1j2 ey’ 
1 - emT 

h271/2; 

() I 
(I+ g)l/2- gl/2 e-tT+Y) 

-i n 
( 
1 - ’ -re-T). (17) 

The conversion efficiency 77 is giver , as previously stated, by the product of Vn 

from Eq. (17) by i n. Unlike the case with optimum feedback where -r) continues to 

approach unity as i increases, there is, for fixed bridge ratio g, a value of beam 
n 

current which results in maximum q. Moreover, for each value of in, there is a 

value of the bridge ratio g which results in the maximum values of Vn and ?7 at 
that in. Maximizing Vn in Eq. (1’7) with respect to g (holding in constant) gives 

the optimizing relationship: 

t1+ g) 
1/2 e-(T+Y) _ g1/2 = ,-Y (18) 

Equation (18) may be used to calculate the optimum design value of g for given 

values of the parameters 7, y, and in . 
When q (obtained by multiplying Vn from Eq. (17) by in) is maximized with 

respect to in, the necessary condition is found to be: 

i 1 = 
ntVmax) -7 2 (l-e ) 

g l/2 .-Y 
7 

/2,-(T+y)] [IL _ (’ -;-‘i] * (I’) 

When 7 and y are small, Eq. (19) reduces to the simple expression: 

i 
“b-l-x) 

Substituting the condition given by Eq. (19) in the equation for rj yields the expres- 
sion for maximum conversion efficiency: 

1 
II = max 

+ gl1/2 _ g1/2 2g1/2e-y l/2. 
-g 
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When r and y are both small, Eq. (21) reduces to the expression: 

rl 1 
max = 1 f 2g(T + y) 

l 

When i 
W =x) 

from Eq. (19) is substituted in the expression for beam 

energy[Eq. (l?)] the result is 

l/2 

( ) I 
1 _ e-T 

2 V 
‘n 

no = 7 =- 
Wmax) (1 + g)1/2 _ g1/2 e-tT+Y) 2 

(22) 

(23) 

where Vno is the no-load energy which can be obtained by setting in = 0 in 

Eq. (17). Thus, at maximum conversion efficiency, the beam energy is reduced 
to one-half of the no-load energy as in the case of the simple single feed accelerator 

without feedback. 8 From the form of Eq. (17), it is clear that Vn decreases lin- 

early as the beam current increases. In general, as the beam current is varied the 
beam energy can be expressed as follows: 

When 7 and y are small, Eq. (23) becomes: 

‘n rY . (25) (qmx) 
The normalized beam energy V and the beam conversion efficiency q are 

shown versus i in Fig. 3 for 3 values of the bridge ratio g(g = 104, 105, and n 

9.08 X 105). The latter value of g calculated from Eq. (18) gives a maximum 
no-load energy for the assumed values of 7 and y . The same values of 7 and y 

have been taken as for case (b) of Fig. 2. It is noted that a large bridge ratio results 
in a high value of the no-load energy and a high value of the beam loading derivative. 

Also, for large g, the conversion efficiency peaks at a lower value of beam current 
and the maximum efficiency is less than for smaller values of g. The dashed curves 

in Fig. 3 show the values of Vn and 7j for the optimum feedback case as given by 

Eq. (11) for Vn and by Eq. (11) multiplied by in for r] . These dashed ourves are 

the envelopes of all thepossible cases of fixed g for the assumed values of 7 and y. 
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4. Power Dissipated in the TW Accelerator, Resistive Load, and Feedback Loop 

The total power dissipated in the accelerator and in the feedback loop including 

the accelerator and resistive load is just Ps(l - q), i.e. , the portion of the RF 

power which is not converted into beam power. The fraction of the RF power which 

is dissipated in the accelerator structure itself during operation at maximum effi- 
ciency can be found by setting Eq. (4) equal to Eq. (23). The result is 

?I (accel. ) = 

% 1/2 - g1/2 e(T+y) 2 1 ’ (26) t1+ f.3 ( v-x) 
When T and y are small, Eq. (26) becomes 

%(accel. ) 7 

pS 

z 

(T+y) 1 2 - 

t rlmax) 

Comparing Eqs. (25) and (27), it is noted that 

P d(acce1. ) 

pS 

=v2 
%I * max ) 

(77mx) 

(27) 

(28) 

Thus, the power dissipated in the accelerator is less (and the power transferred 

to the beam is greater) when the accelerator is designed for a high value of in 
(and a corresponding low value of Vn). 

When the accelerator is designed for a maximum no -load energy, the optimiz - 

ing relation [Eq. (18)] requires that (1/2g) = 7 + y. Inserting this relation in 

Eq. (27) yields the result 

(Optimum design 
for no -load) 

i :(accel. ) _ 
4(7 + Y) l 

S 

(29) 

Inserting the same relation in Eq. (22) gives 

(Optimum design 
for no -load) 

1 
tl = = 0.5 - max 1+7fy 

7+-h’ 

(30) 
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Thus, the maximum efficiency of an accelerator designed to give maximum no- 

load energy is 50%. A similar procedure involving Eq. (16) gives 

(Optimum design 
for no -load) 

The remaining power is lost in 

PL/Ps = 0.25 . 

the feedback loop. It is given by 

(31) 

P FB Loop Y 

pS 
= 4(T f ‘)‘) (32) 

The sum of the fractional powers given by Eqs. (29)-(32) is, as expected, 100% 

5. Filling Time of TW Accelerator with Feedback 

The power flowing in the accelerator and feedback loop may be considered as 
originating from two sources: (a) the RF power source; and (b) the electron beam. 

When the accelerator is perfectly phased, the voltages associated with these 

powers are in opposition and the net voltage at any point in the loop is equal to 

the difference of these voltages. 

The beam-induced steady state power, Pb, appearing at the output end of the 

accelerator can be shown8 to be equal to 

= i2roP ( 
-T 2 

‘b 
l-e ) 

27 
. 

Thus, the normalized power and voltage due to the beam can be written 

‘b = i2rOe (1 - ewT)” = i2 (1 - eeT) 

pS 27 n 27 

and 

(33) 

(34) 

(35) 

The voltage given by Eq. (35) is reduced by the factor e-’ in the feedback loop 

and a fraction [g/(l+g)]1’2 of the resultant voltage is then sent into the accelerator 
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arm. Thus, after one transit 

iO(beam) = in ’ - elT2 
S t2T) 

During each successive transit through the accelerator and feedback loop the voltage 

is attenuated further by the factors e” and e -’ and the fraction [g/(1 + g)]1’2 is 

added to the existing voltage entering the accelerator. Thus, the voltage entering 

the accelerator builds up according to the geometrical series 

GO(beam) = in ’ - elT2 

S (27) 

l/2 
1 + e-(T+Y) (&)l'2+ [e-(T+y)(&)1/2]2t . . . .f 

1 - e-’ 
emy 

g1/2 

= ln ‘1J2 
12T) (1 +g)1/2 _ g1/2 e;tT+Y) ’ 

(36) 

Similarly, the voltage from the power source divides with‘the fraction [l/(1 +g)]1’2 

going into the accelerator arm; i. e. , initially, 

;$PL = ( 1 : g)1’2 . 
S 

Successive transits lead to the series 

= 
t1 + gJ1/2 _ g1/2 e-tT+y) - 

Subtracting Eq. (36) from Eq. (37) gives the same result obtained earlier [Eq. (15)] 
using the power flow equation [Eq. (8)]. 

The same series is summed in obtaining both Eqs. (36) and (37). In studying the 
build-up of the fields in the accelerator, it is of interest to calculate the fraction of 

the steady state field which is reached after n transits around the loop. Let the 

- 11 - 



‘? 
” , 

series be 1 + r + r2 + . . . . . . . . , where r = e -(‘+‘)[g/(l+ g)]l’2. The sums of 
n terms and infinite terms are,respectively 

n 
sn = j+ 

and 

so0 = y+ . 

Thus, 

‘n 

%i 
= l-r”, 

The number of transits required to build up to the fraction (1 - e-l), i. e. , 
63.2% of the steady state value (S,) may then be calculated as follows: 

1 -r” = l-e -1 

or, 
n -1 r = e 

or, 
1 

n = Pn(l/r) 

or, using the definition of r, 

1 
n = 

1 
M 

1 * 
(7 +Y)+G 

(38) 

(39) 

(40) 

(41) 

Since the time for a single transit is very close to P/vg and noting that 

a/v, = @Q/~)T, the time to fill the structure to the fraction (1 - e-l) of the steady 
state fields is given by n(l/vg); i. e. , using Eq. (41), 

?I?-” , (2QI’w))T 
1 

(7 +Y)+g 
(42 ) 
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When the structure is designed for negligible beam loading, the relationship giving 

maximum efficiency [see Eq. (18)] is (1/2g) = 7 + y. Thus, the filling time for this 

case is (2Q/w) Tg = (2Q/o)[T/(T+‘)] . For heavier design loading, g is much 

smaller and (1/2g) >> ( 7 + y). Thus, the filling time for the heavy beam loading 

case approaches (&)/0)(2Tg). 

Using Eqs. (20) and (25), the filling time given by Eq. (42) may alternately 

be written 

(43) 

Thus, the filling time is reduced as the beam current giving maximum conversion 
efficiency is increased (and the corresponding beam energy decreased). As an ex- 

ample, assuming g = lo5, T = 5 x 10 -7 nepers, y=5xlO -8 nepers , Q = 10’) and 
0 = 1.79 x 10 10 rad /see (f = 2856 MHz). Then from Eqs. (20) and (25), one obtains 

lW=) 
=3.17 and V 

nt q max) 
= 0.285. Using these values in Eq. (43), the filling 

time is found to be tF NN 0.010 seconds. 

Since, as shown previously, V,i, = r] x 1 for in >> 1, it is clear that for 
in >> 1 the filling time varies as V2 

nbp=w 
(or, equivalently, as im2 

nW=W )* 
The dependence of filling time upon frequency may be determined by recalling 

that Qcco -2 and -1 at superconducting temperatures. 
2 

r bcw 0 Thus, ’ 

vn/in = V/iroI oc o. Then, from Eq. (43), tF oc CJ-~. The rapid increase of 

filling time as the frequency is decreased, together with the increasing cross section 

of the structure, will likely be the principal factors limiting the minimum frequency. 

6. Standing-Wave Superconducting Structure With Beam Loading 

For purposes of comparison, the standing-wave superconducting s true ture will 

now be examined following the results of Wilson and Schwettmann. 
2 The energy 

gain in this case in the presence of beam loading is given by2: 
l/2 Psrol l/2 

2p 
( ) %w = l+ p 2 

ro1i 
- 2(1+p) (44) 

where /I is the coupling coefficient between the transmission line and the acceler- 
ator structure. The first term on the right in Eq. (44) is the no-load energy; the 

second term is the reduction in no-load energy due to beam loading. Again, for 
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convenience, Eq. (44) will be written in normalized form as follows : 

‘n(SW) = 
($~2 in 

2u f PI (45) 

where Vn = V/(PsroQ l/2 The conversion efficiency 

is then given by 2 
and in = [ (i2r01)/P ]1’2 s ’ 

l/2 
Q=X.i.=Vi = (2p)i _ 

pS 
nn [ 1 i2 

l+p n (46) 

For a given value of in, there is a value of the coupling coefficient p which 

results in the maximum values of Vn and q at that in. Maximizing Vn in 
Eq. (45) with respect to p (holding in constant) gives the optimizing relationship: 

i2 i2 

[ ( 

i2 

)I 

l/2 

n. n 2+” 
p(vnJ?~mx = l+ 4 (47) 

4 4 - 

Equation(47) may be used to calculate the optimum design value of p for a given 

value of i n’ 
On the other hand, when q is maximized with respect to in, the necessary 

condition is found to be 

i 

trl 2x1 

= (2p)1’2 . (48) 

When the condition of Eq. (48) is satisfied, the conversion efficiency and beam 

energy become2: 

rl =-ii!- . 
max l+P (49) 

V 
(2p)“2 

%?max) 
= 2(1+ p) * (50) 

Thus, at maximum conversion efficiency, the beam energy has been reduced by 
beam loading to one half of the no-load value. In general, as in the traveling-wave 

case, the beam energy can be written as : 

(51) 
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where V o is the no-load energy and i 
rll=X 

is the beam current which results 

in ‘Imax’ 
The power dissipated in the structure at maximum conversion efficiency may 

be found by equating Eqs. (2) and (50). The result is 2: 

‘d P 

5 = (l+@2 * 
(52) 

%X3X) 

Comparing Eqs. (52) and (50) it may be noted that Pd/Ps can also be written as 

% 
-5 = 2v2 . 

noI 1 
(rlmax) 

max 
(53) 

Thus, for the same value of normalized energy Vn, twice as much power is dis- 

sipated in the standing-wave accelerator structure as in the structure of the travel- 

ing-wave accelerator with feedback [see Eq. (28)] . From the conservation of total 
power, the power reflected (P,) from the input coupler back towards the RF source 

may be found as follows2 : 

= * (54) 

Normalized values of beam energy (V,), beam current (in), beam conversion 
efficiency (q), power dissipated in accelerator structure (Pd/Ps), and reflected 
power (Pr/Ps) vs. coupling coefficient p, all at maximum conversion efficiency, 

are shown in Fig. 4. The maximum efficiency obtainable improves as /I increases. 
Other advantages of high p are the smaller fraction of the source power reflected 
and the smaller fraction of the power dissipated in the accelerator structure. A 
disadvantage of increasing p is the decreasing magnitude of Vn at ‘Imax. 

7. Filling Time of Standing-Wave Structure 

For p >> 1, most of the power is transferred to the beam and the power 

dissipated in the structure, given by Eq. (52), becomes Pd/Ps z l/p. Thus, the 
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loaded Q, QL , becomes 

Qpd . 

max ‘qmax 

Combining Eqs. (55) and (2) yields the result2 

The time to fill the structure to 1 - l/e, i. e. , to 63.2% of the magnitude of the 
steady state field, is 2QL/ti. Thus, the time to fill to this level is: 

49 ‘n(r] max) tF= . 
w h(qmax) 

. 

(55) 

(56) 

(57) 

Comparing Eqs. (43) and (57) one notes that, for equal beam energies, currents, 

lengths, and ro/Q, the filling time of the standing-wave structure is twice that of 

the traveling-wave structure with feedback. The basic reason for this result is that 
the standing-wave accelerator is filled by successive reflections in the accelerator 

structure itself, whereas the traveling-wave structure is filled by successive feed- 

back of the power through the external loop in which the transit time is negligible 
compared to the one-way transit time in the accelerator structure. 

As in the traveling-wave case, for in >> 1, the filling time varies as V2 

or, equivalently, as ii2 . Also, with other parameters fixed, %max) 

tF o( cd-2 . trl ma9 

8. Comparison of Traveling-Wave and Standing-Wave Designs 

The normalized beam energy Vn and beam conversion efficiency rl in the 

standing-wave accelerator are plotted in Fig. 5 vs. in for 3 values of the coupling 
coefficient g (p = 1, 10, and 50). Also shown in this figure with dashed lines are 
the envelopes of the Vn and rl families representing the maximum possible values 
of these variables at each value of i n’ 

The envelopes of the entire timily of g values for the traveling-wave accel- 
erator with feedback and the /3 values of the standing-wave accelerator are plotted 

together in Fig. 6. As noted above, these curves represent the maximum possible 
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values of Vn and ?j at each value of in and hence are useful in the theoretical 

comparison of the various possible designs. It is noted that the traveling-wave 

accelerator with feedback excels with respect to the maximum beam energy obtain- 

able. At light loading it also has a higher conversion efficiency than the standing- 
wave accelerator. With increasing beam loading, the energies and efficiencies of 
both of these basic types approach equality, 

The advantages relating to higher energy and higher efficiency stem solely 

from the reduced loss in the feedback loop compared to the “internal” feedback 
through the accelerator structure in the standing-wave accelerator. If 7 = y, 
i.e. , if the losses in the feedback loop are equal to the internal losses, the two 

accelerator types have the same maximum values of Vn and ?7 at all values of 
i n. However, the advantage of reduced ratio of peak to average fields for the 
traveling-wave accelerator with feedback still remains even if 7 = y. 

The practical realization of a superconducting accelerator with feedback may 
turn out to be quite complicated due to the requirement to supercool the external 

feedback loop. Also, careful attention must be given to the elimination of RF reflec- 
tions in the loop in order to prevent the build-up of a backward wave of significant 

amplitude. This backward wave builds up at the expense of the forward wave and 

hence would result in a reduction of beam energy and conversion efficiency. A tuner 

in the feedback loop might be needed to compensate for residual reflections.. Ideally, 

this tuner would be automatically controlled from a signal derived from the backward wave. 
In summary, the superconducting traveling-wave accelerator with feedback has 

the theoretical advantages of somewhat higher energies and efficiencies at light load- 
ing as noted above and also the advantage of reduced ratio of peak to average fields 

in the accelerator cavities. The latter characteristic may be a definite advantage if 
the maximum energy gradient obtainable is limited by either the critical magnetic 

field for the superconductor or by field emission. Moreover, for the same values of 

normalized energies Vn, the traveling-wave accelerator with feedback has one-half 

as much RF power dissipated in the accelerator structure as the standing-wave ac- 

celerator. Because of the high cost of providing refrigeration at superconducting 
temperatures, this is an important consideration. In addition, for equal beam energies, 

beam currents, and ro/Q, the traveling-wave accelerator with feedback has one-half 
the filling time of the standing-wave accelerator. This characteris tic may become 

important if unity duty cycle is not feasible, or if it becomes desirable to turn off 
the RF power periodically, e. g. , while the beam is being switched from one re- 

search area to another. 
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I 

FIGURE CAPTIONS 

1. Schematic diagram illustrating feedback principle. Relations shown represent 

steady state conditions with correct bridge ratio. 

2. Normalized beam energy (Vn) and beam conversion efficiency (q) for traveling- 

wave superconducting accelerator with optimum feedback versus normalized 

beam current (in). Accelerator attenuation parameter, 7 = 5 x 10 -7 nepers. 
Feedback loop attenuation parameter, y = 5 X 10 

Y = 5 x 1o-8 

-3 nepers [case (a)] and 

nepers [case (b)] . 

3. Normalized beam energy (Vn) and beam conversion efficiency (77) for traveling- 
wave superconducting accelerator with feedback versus normalized beam current (in). 

Curves are shown for 3 fixed bridge ratios. Accelerator attenuation parameter, 
T =5x10 -7 Feedback loop attenuation parameter, y = 5 X 10 -8 nepers. nepers. 

4. Normalized values of beam energy (V,), beam current (in), beam conversion 
efficiency (q), power dissipated in accelerator structure (Pd/Ps), and reflected 

power (Pr/Ps) in superconducting standing-wave accelerator versus coupling 
coefficient p, all at maximum beam conversion efficiency. 

5. Normalized beam energy (Vn) and beam conversion efficiency (77) for standing- 
wave superconducting accelerator versus normalized beam current (in). Curves 
are shown for 3 fixed values of the coupling coefficient p. 

6. Comparison of maximum values of normalized beam energy (Vn) and beam con- 
version efficiency (q) versus normalized beam current (in) for superconducting 
traveling-wave and standing-wave accelerators. For traveling-wave accelerator, 

accelerator attenuation parameter 7 = 5 x 10 -7 nepers and feedback loop atten- 
-8 

uation parameter y = 5 x 10 nepers. 
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