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ABSTRACT 

In this paper the Regge pole model is applied to 

K*(890) photoproduction. Conspiracy relations, kine- 

matic constraints, factorization, and the question of 

when to set m y = 0 are discussed. Predictions are 

obtained, in the limit of large s and small t, for 

?a , the density matrix, and the K* decay angular 

distribution. 
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I, INTRODUCTION 

Recently much interest has been shown in the application of Regge poles to 

high energy processes.’ K” (890) photoproduction is an interesting reaction to con- 

sider here; the particles all have spin, and the masses are all unequal. 

In this paper we apply the Regge pole model to the process 

Yf P -K*+ Y (1) 

where K” is the l-meson at 890 MeV, and Y is either a A or a c hyperon. 

Kinematic singularities are separated out of the helicity amplitudes, and the 

questions of conspiracy relations, kinematic constraints , fat torization, and when 

to set m 
Y 

= 0 are investigated. We investigate the values of t where constraints 

may arise and discover that the leading amplitudes for the process (1) are not 

involved in any constraint relations at t = 0 or at t = (m - mY)2. We also 
P 

discuss why the crossing matrix should yield the same conspiracy relations as 

those obtained from invariant amplitudes. ‘Predictions for the large s and small 

t behavior of -!$, the density matrix P, and the I(* decay angular distribution 
J 

are obtained; no data is as yet available for comparison with these predictions. 

The plan of this paper is as follows: In Section II we define our kinematic - 

singularity-free amplitudes and find the dominant contributions in the limit of large 

s and small t . Section III discusses possible modifications due to conspiracy re- 

lations , kinematic constraints, factorization, and m -0. In Section IV we obtain 
Y 

our predictions for do dr2, the densit.y matrix; and the K” angular distribution. 
i 

II. t CHANNEL HELICITY AMPLITUDES 

In this section we shall investigate the t channel helicity amplitudes associ- 

ated with K” (890) photoproduction. We shall construct t ch.annel helicity ampli- 

tudes that are free of kinematical singularities; these will then be Reggeized. In 
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separating out the kinematic singularities we shall follow the method of Wang’; 

possible modifications will be discussed in Section III. 

Each t channel helicity amplitude fLd ab contains factors of 
; 

sin (6 t/2) and 

cos (6,/z) arising from a partial wave expansion in terms of d functions; these 

are separated out according to 

fLdiab = (sin $y ‘lt’ (cos 3’“:“’ 7idiab ; (2) 

,t* 
where A = a - b and p = c - d. f is then defined by 

-9 cd;ab 
f ft 

-c -d ;ab = c&ab ( t ) ‘;;;,b (t, s) , (3) , 

where z contains the kinematic singularities. Tt is the kinematic-singularity- 

free amplitude which is Reggized according to 

T;d;ab ttf ‘) - Y( t, 

where M = maxi Ihl,lpl}. The factor M would absent in the spinless cas’e; 

in the case with spin it arises because some of the powers of s are absorbed by 

separating out the sin (Ot/2) and cos (Ot/2) factors before keggeization. The 

rest of the powers of s are assumed to contribute full strength in our unequal 

mass case (i.e. , we are assuming the a.ction of daughter trajectories 
3 

when 

writing s a(t)-M 
)* 

We note that for small t and a given o!(t), the highest power of s occurs --__ 

when M = 0. (The sin Ot/2 and cos et/2 factors do not contribute any powers 

of s here, since we are dealing with an unequal mass case - my f mK* . ) 

Applying parity conservation4 to the yK* -Reggi:on vertex and expanding in partial 
I 

waves, we find that exchange of natural parity trajectories (P = (-l)J) can contribute 

but not to -t- f h=p=O - Thus the amplitudes we shall need are those 
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- t- 
ft amplitudes having h =p = 0. 

5 
Using parity4 to reduce the number of inde- 

pendent amplitudes, we are.left with the following amplitudes at large s and 

small t: 

where 

Tt’ 1 1.l.L’ y@) ‘22 (‘&$y)($” ’ (6) 

and kl 1 
;2 2(t) 

is a kinematical factor. Using the prescription given by Wang for 

the unequal mass case (and setting m Y 
-0 in this result), we find that 

,+ hl l.ll(t) = t 
'2 2 

- (mp + my?] -1’2 [t - -:*I” . (7) 

Actually, some caution is needed with respect to this form of ?, and before 

proceeding further, we shall discuss possible modifications of the factor I(+ due 

to conspiracy relations, kinematic constraints, factorization, and the question of 

when to set m = 0. 
Y 

III. CONSPIRACY RELATIONS KINEMATIC CONSTRAINTS, 
FACTORXATION, AND &I -0. 

Y 

There are several points to be discussed in connection with the factor z l+1.~~6). 

2 
'2 2 

The general form of I( has been derived by Wang, who examined the singularities 

in the crossing matrix relating s and t channel helicity amplitudes. In addition, 

however, the questions of conspiracy relations, kinematic constraints, factoriza- 

tion, and how to treat m - 0 may af-ise. Consideration of these points could 
Y 

lead to a modified z. 

l _ 
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One can ask at which points to expect special conditions on the t channel 

helicity amplitudes. In EN scattering angular momentum conservation applied 

. at cos 8 = * 1 6 leads to conspiracy relations, but in the unequal mass case 

(i.e., m 
i+ 

mEi*) there are no such relations at cos OS = f 1. (This has been 

shown by Hiigaasen and Salin; 7 the proof depends on the fact that for unequal masses, 

c0se = 
S 

l 1 implies cos Bt = *l. Angular momentum conservation then says 

t that each fh+p must vanish at cos es = f 1, and no relations between ftrs arise. ) 

Conspiracy relations can still arise at t = 0 when all the masses are unequal,- I 

but no such relations occur for h = 0 or ~1 = 0 ,8 which is the case of interest here. 

In general we might also expect special relations between helicity amplitudes 

to arise at those points where the helicity becomes undefined. 9 
One can define the 

helicity four-vector n3(pi) for a two-particle state by the conditions n3. n3 = - 1 

and (in the C.M. system) ?$. Ti > 0:’ 

n‘J(Pi) = - m. 

i 

rn; P - (pi - ‘)Pi 

$ 
[ 
t -(ml+mZ)2 

1 

1 ‘2[ 
t - (ml - m2)2 

lli2 i / 
, 

where P = p1 + p2. It is evident that troubles arise when. t is at a threshold or 

pseudothreshold t = (ml* m2)2, and constraint conditions can occur between t 

channel amplitudes at precisely these points. Another wayof seeing that constraint 

conditions arise at t = (mif mj)2 has been discussed by Jackson and Hite, 10 who 

note that in a special basis systemccrtainamplitudes vanish atprecisely these points. 

Having thus discussed where one can expect constraint conditions, we next 

turn to the question of constructing them. One way of deriving constraint condi- 

tions is to express the invariant scalar amplitudes for the process in terms of 

linear combinations of t channel helicity amplitudes. Since the scalar amplitudes 

have no poles in t, one then derives certain conditions on linear combinations of 

t channel helicity amplitudes. These are the conspiracy relations. The point to 

be noted is that the only property of the scalar amplitudes that is used is that 
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they have no poles in t . Thus one could have started with any other complete set 

of s channel amplitudes having no poles in t, and the results would have been 

exactly the same. Hence it is equally valid to start with f” amplitudes. Since these 

are related to the t 
f ‘s by crossing, one can thus obtain the conspiracy relations 

by examining the crossing matrix at the values of t in question. This approach has 

been investigzted in detail by Cohen-Tannoudji et al.’ -- 

We now turn to explicit construction of the desired constraint relations for K” 

pho toproduc tion. We need those relations which involve h = ,u = 0 helicity ampli- 

tudes (these are the relevant amplitudes for large s, as noted in Section II); the 

point of interest is t = to = (m 
P 

- my)2. The other three threshold or psuedo- 

threshold points for this reaction involve much larger values of t and are thus not 

needed for a study of the behavior at small t. Following the method involving the 

crossing matrix’ as illustrated by Hb’gaasen and Salin, 6 we discover that there are 

indeed constraint relations between several t channel helicity amplitudes at t = to, 

but none of these relations involves -it i- -P 
cc;aa --c-c;aa amplitudes, I, e. , those 

amplitudes which contain the leading s behavior (as discussed above) are not 

involved in any conspiracy or constraint relations, 

Thus result can be partially understood in the following way: The FJcaaa +-?L_,.,,‘s 
> 2‘ 

cannot be linearly rel.ated to other jtls whose leading s behavior is also governed 

by natural parity (P = i-1)‘) exchanges at t = to, since the leading powers of s 

would be different. On the other hand, T:c;aa + ‘4, -C;aa can not be related to a 

polynomial in s times other Ttts, since none of the Ttrs has any kinematic si.n- 

gularities in s . 

Thus in finding the kinematical faqtor zi,-aa we can completely avoid the 
> 

question of possible extra factors clue to conspiracy or constraint relations. We 

next note that factorization of residue functions will. also not yield any new 
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information. The residue factors Ii factor automatically at thresholds and 

pseudothresholds, and for our unequal mass A = ~1 = 0 helicity amplitudes there 

are no factors of t in K for the relevant processes, so factorization with respect 

to these pieces is automatically satisfied. 

To find the kinematical factors, we thus gain no new information from con- 

straint conditions or from factorization. The only remaining uncertainty in finding 

--f 
K cc;aa arises from the question when to put m 

Y 
= 0. One could put m 

Y =. 
0 . 

in Wang’s general prescription2 for 3Zzc .aa, or one could put m = 0 in the cross- 
, Y 

.ing matrix and derive a modified prescription for KLciaa . 11 The end result for 

the two cases can in general differ in the net power to which (t - mk,) should be 

raised. Since for small t this factor is smooth, the exact power need not concern 

us, and we will simply use Wang’s prescription and set m - 0 at the end. We 
Y 

This result for the kinematic factor k can be checked by means of simple 

12 angular momentum and parity arguments. As an example of the method, consider 

the point t = (mp + IvI~)~. Setting 7 (orbital angular momentum) for the NY 

system equal to zero, the possible NI’ states have J P = O- or l- . Since the 

NY system is coupled to a P = (-1)J Reggion in our model, J P is restricted to 

1-. Now expand the h&city amplitudes ir, terms of partial waves: 

Tt -t 
11.1.L + f-l-l., 1 = ‘22 3-2 

2x? F; 1.11 d;O(Cos et) * 
J* ‘2 2 

The FJ1s have the threshold behavior qQNp’ and cos Bt is proportional to l/yNy . <. 
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Hence we deduce the behavior: 

FJ d;O(cos et) oc (I& (l/~&)~ = (qN# , 

i.e. ,near t = (mp+ mY)2 the kinematic factor z+(t) goes as qNY 
-1 

cc t -(mp+my) c 
2 -l/2 
3 , 

in agreement with (7). For t near the other threshold or pseudothreshold points, 

analogous arguments go through (the ? is treated as having positive parity at 
* 

t =(m p - mY)2 ) , and one obtains exactly the Wang kinematic factor (7). 

IV. CROSS SECTION, DENSITY MATRIX, AND 
K” DECAY ANGULAR DISTRIBUTION 

The differential cross section in the c. mi frame can be written 

do Pf 
m= $C Iplz , 

47? spi 

where the sum goes over the s-channel helicity amplitudes. Orthogonality of the 

crossing matrix 
13 then gives 

da pf 
im = 47r2s pi 

$c lft12 , 

where the sum is now over all t-channel helicity amplitudes. We take the limit of 

large s and use the results (5), (6), and (7) of the-preceding sections. Thus 

do 
large s pf 

iii? 
-- 

c. m. small t 16 r2 spi I t - (mp + my) 2i’[L-n&]4 

l&e 
-i no i(t) 

x4 Yi(t) -- 
S 

( ) 

aitt) 
2 

X sin 7rcri(t) x 
. 

i 
(9) 

The sum is taken over the K* (l-; 890) and KV(2+; 1420) trajectories. 
I 

14 

We make the followmg choices for the residue functions and Regge trajectories: 

y1 (t) is jssumed roughly constant, while y 2+ @J is put proportional to 0 
2+ 

(t) in 

order to cancel the pole in 

1-t e 
-ixa2+(t) 

sin 7ioqA(t) 
ii’ 

‘_ 
8 



I 

at a,+(t) = 0 (Chew ghost-killing mechanism15) . Thus we set 

Yp = yl- (t) 

(10) 
yz+U) = T2+F) a2+ F) 2 

where the 7’s are assumed slowly varying in t . The K*(l- ) and K*(2’) 

trajectory functions are taken parallel to those of the p and A2. We takeI 

(Y,(t) s t+ .57 and aA2(t) s t + .5; thus 

\ 

crlp g t + .37 

a,+(t) 2 t-t- .02 
(11) 

To determine the Tits appearing in the residue functions yi , we first examine 

A2 and p exchange in p* photoproduction; then we obtain the corresponding 

residues in K* photoproduc tion. 

Since a photon does not couple to two PO’s by C invariance, only the A.2 &on- 

tribution tieed be studied. Maheshwari l7 has used universality and vector dominance 

to estimate the A2 contribution to p* photoproduction. Evaluating his results at 

t z 0, we find that 

TA2 z - - 2” Ll YP -POP l 

Thus for p” photoproduction 7 = 0 and TA2 2 - 2n . Using univer: L 
P 

sality 18 

in to relate yp and yA2 to y and y 3+ for K* photoproduction, we obta 
1- u 

+ 
I yp -K*O 

c 
0 

kf- 7 =Z--..c! 
2f 4fl 

yp.-K*+ L\’ . 

(12) 
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We mte that gK*,-CN and 
gK;-hN are small”, so that y 

1- 
is probably 

small even though K* exchange is not prohibited by C invariance. - 

Thus we obtain the prediction (using (9), (IO), (ll), and (12) and setting 

S 
0 

1 1 (BeV)2 ) : 

do large s pf 1 y/2 &) 1 + eT-i~4~~ 2 $w 

d.S2 - c. q, small 167r22s pi ] t - (mp+ m$i[t - m~.+j” sin2 na,(t) 
(13) 

where . 

a(t) = t + .02 

and 

J- 2cI y(t) = - y-- YP- K*o x+ 

The density matrix may also be found in our formalism. The density matrix 

can be expressed in terms of t channel helicity amplitudes 20 (we go to the K* rest 

frame; the z axis is taken parallel to the incident photon momentum as seen in 

this frame) : 

P mm’ 
zz - 

c ft* ft 
a,b,d ma;db m’a -db , 

a,Fc ,d li”,a:db I2 

J 

(1% 

Inserting the result (5) into this expression, we obtain the predictions (for large s 

and small t ): 

P 
11 = p_lql’ = ; ; PO0 = Pn,fm’ = 0 . (15) 
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The K* decay angular distribution has been written in terms of Pmm, by 

Gottfried and Jackson. 20,il 

3 
W(O,cp) = zn { 

PO0 cos2 0 f Pll sin2 0, - PIB1 sin2 0 cos 24, 

- fiRe Plo sin 20 cos $ 
> 

. (16) 

Hence we directly obtain the prediction (for large s and small t) 1 

3 2 
W(O,$) = 8n sin 0 , (17) 

where 0 is the angle made with the z axis in the frame described above. 

The only data on K* photoproduction is an upper limit of 0.1 to 0.05 pb22 

0* on the cross section for y + p- K 
+ 

+ 2 , so no comparison with experiment 

can be made at the present time. 
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