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I; INTRODUCTION 

In order to properly shield against high energy (Eo> 100 M&V) accelerator 

radiation, a knowledge of where the electromagnetic shower, and hence the pro- 

duction of secondary radiation occurs, is necessary. If the beam is absorbed in 

a beam dump, the source is well located; however, if a thin target (ts 0.1 radi- 

ation lengths) is inserted into a beam, the multiple scattering of the primary 

particles may cause a significant fraction of the total beam power or energy to 

attenuate in material that is located outside a normally adequate shield. 

An example of such a condition exists at SLAC where a beam clutip, which 

is shielded for beam powers in excess of 1 MW, js located 460 feet from a thin 

target location. The arca between the target and the beam dump is shielded for 

a normal electron beam power absorption of 100 W. Therefore, if 1 hnV of elec- 

tron beam power were sent to the beam dump, the allowable fraction that could 

scatter out and strike the beam transport pipe, or some similar obstacle shielded 

for 100 watts, would be 10 
-4 

. For a greater fraction to be deposited, extra 

shielding would be required, provided that the area of deposition, and the fraction 

absorbed, were known. 

This problem is common to those machines where the drift length is suffi- 

ciently long to allow a large fraction of the beam to escape, and to high intcnsit3 

accelerators Lvhere even a small fraction can constitute a major radiation hazard. 

The SLAC 20-GeV electron accelerator is an example of both cases. 

II. SCATTERING CALCULATIONS 

A. Fermi-Evgcs Scattwin< 

One method of calculating the fraction of electrons that escape ,a given 

solid angle is to assume that the scattering is strictly Gaussian. From the 



which leads to 

g(t )=e 
-C2,‘4Ao 

(5) 

This is plotted as the dashed line in Fig, 1 for the case of a 0.07 r. 1. copper tar- 

get and an incident electron energy of 1 GeV. No single (or plural) scattering has 

been included. 

B. Molisre-NSW Scatteri= 

A more accurate description of multiple scattiering was given by hlolike, 
4 

and improved by Nigam, et al.’ (NSW). A simplification of the NSW theory was 

recently published by hIarion and Zimmerman. 
6 The latter give the differential 

distribution function as 

1 1 
Fo+% F1+2B2 F2 (6) 

where 

F. = 2e 
-X2 

J 

r 
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F2 = i-c 
-u2 /4 
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(8) 

(9) 

(10) 

B-QnB = b (11) 

Tile essential variable of the theory is the rccluced angle, X, definecl 1)~~ 

x = e/x, J%- (13) 
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where 2 = 0.1569 Z(Z -I- 1)t 
C I 1 A (P@ )2 

(14) 

A = atom.ic weight 

Z = atomic number 

p = momentum, MeV/c 

For relativistic particles, the parameter B depencls mainly on the foil thickness, 

-2 
t, in g-cm . 

Marion and Zimmerman have solved the above integrals numerically and 

have published a set of tables representing a family of %niversall’ angular dis- 

tribution curves, F(X), which depend on the single parameter B. In order to 

calculate g(t,6) from Eq. (3), P(B)dO must be determined from the differential 

distribution F(X) using 

P(e)de = 2cBXF(X)dX (1% 

Thus, co 

J- X F(X)dX 

gtts~) = 
X 

00 = gtt,w (16) 

$ 
X F(X)dX 

0 

A polynomial least-square fit to the F(X) data of Marion and Zimmerman was 

macle in order to perform the above integrals in Eq, (16). The Marion and 

Zimmerman tables include values of F(X) for only relatively small values of X, 

whereas fairly large values often are required for shielding purposes. At large 

X values (and consequently, large O*) ,Rutherford single scattering dominates, 

which may be described by K,/sin4(O/2) = K/X4 where K is a constant determined 

by normalizing to the last data point given by Marion and Zimmerman. A similar 

normalization to the Fermi-Eyges theory could have been made, but has not been 

included in this paper since Eq. (1)) and hence Eq. (5)) are of the form generally 

used to estimate beam scattering around accelerators. 

Figure 2 gives g(t, X) versus X for various values of B. Table I gives the 

values of B and Xc fito use for various target materials and thicknesses, and 
* 

Note: 8 is still small enough, however, to make the approximation sin Or 8 . 
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for an electron energy of 1 GeV. The parameter- B depends only on the target 

material and thickness through Eqs. (11) and (la), whereas Xc fi also depends 

on energy through Eq. (14). Thus, the value of Xc fi can be scaled by dividing 

by the electron energy in GeV. 

III. DISCUSSION 

Table I and Fig. 2 are sufficient for determining the fraction of electrons 

that scatter out of a cone with a given space angle, 0, for m,any commonly used 

target materials. Given a target mat.erial and thjckness in radiation lengths, 

values for B and Xc fi are found in Table I. The B value determines which B 

curve to use in Fig. 2. The abscissa, X, may be converted to 8, (in mradinns 

by Eq. (13). 

If in a particular shieldin g situation, the space angle, 9, as defined by a 

collimator, entrance flange, etc. , is critical, a family of curves may be con-’ 

strutted for different target thicknesses showing the change in g(t,o) with changes 

in incident beam energy. Figure 3 shows such a set of curves for 0 = 4.17 mradians 

with four different thicknesses of copper. 

For comparison, both the Fermi-ESges derived expression, (Eq. S), and the 

fraction that escapes as determined by Moli&re theory, (Eq. 16), using Tablo I 

and Fig. 2, are plotted in Fig. 1 for a given target thickness and energy. It is 

apparent that the Fermi-Eygcs expression overestimates the scattering at small 

angles (by as much as a factor of two) while seriously underestimating scattering at 

larger angles. The relative shapes of the MoliEre and Fermi-Eyges curves are 

independent of energy. That is, the point of intersection of the two curves will 

have the same value of g(t,e) for a given target thickness irrcspcctive of energy 
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(as energy changes, the abscissa, 6, changes but the shapes remain the same). 

Also, this crossover value, where g(t,o) is the same for both curves, yaries 

only a small amount with changes in target thickness (see Fig. 4). Thus, for 

example, if a g(t,f?) value of 4 X10 
-2 or greater is acceptable from a shielding 

standpoint, one could use the Fermi-Eyges expression, Eq. (5), to determine 8 

out to g(t,0) = 4x1o-2, and be conservative. If a value of g(t,e) = 4 X10 
-2 

is 

too large in terms of prospective radiation hazards, then the more exact scat- 

tering theory (Fig. 2 and Table I) must be used. 

The above arguments all assume that the incident beam has no size or angular 

distribution (i. e. , may. be described by a delta function). In practice, this often 

is not the case; not only may the beam have dimension, but it also may be diverging. 

We yecently measured the differential scattering from a 0.1 radiation length copper 

target and for a 10 GeV incident positron beam (differen.ces in electron scattering 

and positron scaiiering arc sma117, and should not be noticeable in the measure- 

ments). Figure 5 shows the differential distribution, F(X), as measured, and as 

would be calculated (normalized to unity at X = 0). As can be seen, there is a 

large disparity between curves. Glass slides inserted first at the target position 

and later downstream showed a considerable beam divergence with no target 

inserted. Because of the limited range of the glass slides, it was impossible to 

determine if the divergence were described by a Gaussian, or if it were already 

multiple scattered by some obstacle upstream. 

Finite beam conditions must be folded into any determination of F(X), which also 

changes the shape of g(t,X). Any spread in beam size, or any divergence, should act 

in the direction of increasing F(X). If the divergence is Gaussian, as might be the 

case in the bunching of particles during acceleration, the effect will be seen mainly in 

the region of multiple or plural scattering (where each B curve may be thought of as having 
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three distinct parts--a region of multiple scattering described adequately by a 

Gaussian, a long tail caused by single scattering and a region joining the two 

that is called plural scattering). There will be only a small effect at large 

values of X where single scattering dominates. However, if the beam has already 

undergone some scattering prior to multiple scattering in the target, the effect will 

be felt both in the regions of plural and single scattering, i. e. , at large values of X. 

Consider a beam with an angular distribution, I@+), incident upon a target. It 

can be shown that8 

(17) 

where F’(X) = multiple scattering distribution with incident beam distribution 

included 

F(Xa) = multiple scattering distribution according to Eq. (6) 

I@+) = angular distribution of the incident beam 

and where the azimuthal angle of integration, P , and the reduced angles X, Xa and 

X$ are related by8 

x2=x2+x2 + -2xX 
+ 

cos P (18) 

For the case of an input beam distribution in the form of a delta function, this should 

reduce to F(Xar) . This can be shown as follows. 

Let the incident beam distribution be a delta function of the form 

so that 

(19) 

(20) 
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Substitution into Eq. (17) gives 

F’(X) = F(X,,. 

Figure 6 compares Eq. (17) with the experimental results shown in Fig. 5, 

where the incident angular distribution, 1(X 
@ 

), is represented by a delta function, 

a Gaussian, and a multiple scattered shape. The values for the latter two were 

determined from the glass plate exposures. As can be seen, predicting a scatter- 

ing source upstream comes closer to explaining the measurements at relatively 

small values of X than does the use of a Gaussian input. For values of X 

greater than 5, where the effect of the single scattering normalization dominates, 

neither input satisfactorily predicts the measurements. This does not necessarily 

imply that the single scattering addition is inadequate, since the glass plates did 

not provide any information as to the shape of the input distribution at large values 

of X. The positron beams at SLAC, as compared to the electron beams, have an 

inherently large phase space due to the method of production, which results in a 

relatively large angular distribution. The uncertainty in input beam shape may 

explain the above disagreement. 

Even though this particular experiment using a positron beam did not agree 

well with calculation, we have used the curves of Fig. 2 and Table I many times 

to predict radiation levels from high energy electron beams, and have found good 

agreement with measurements. 
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TABLE1 

VALUESOF B AND Xc~FORDIFFERENTMATERL4LS. 

(VALUESOF Xc&AREINMRADIANSFOR Eo=lGeV;t INRADIATIONLENGTHS) 

Aluminum 

t x,6 

.0035 .8489 

,004 .9072 

,005 1.0143 

.006 1.1111 

.007 1.2001 

.008 1.2829 

.0084 1.3944 

.009 1.4433 

.Ol 1.5214 

. 02 2.1515 

.0204 2.2923 

.03 2.7776 

.04 3.2073 

.05 3.5859 
-- -- 

-- -- 

.0503 3.7704 

.OG 4.1199 

.07 4.4500 

.08 4.7572 

.09 5.0458 

.1 5.3187 

Beryllium 

t xc6 

.0018 .5731 

.002 .6064 

.003 .7427 

.004 .8576 
-- -- 

-- -- 

.0043 .9414 

,005 1.0169 

. OOG 1.1140 

.007 1.2033 

.008 1.2863 

,009 1.3644 

.Ol 1.4382 

,0104 1.5476 

,02 2.1439 
-- -- 

-- -- 

-- -- 

-- -- 

-- -- 

,0256 2.5454 

,03 2.7539 

04 3.1799 

,05 3.5552 

806 3.8946 
-- -- 

Copper 

t Xc6 

.0055 1.1092 

.006 1.1578 

,007 1.2506 

,008 1.3369 

.009 1.4180 

.Ol 1.4947 

.013 1.8220 

.02 2.2421 

.03 2.7460 
-- -- 

-- -- 

-- -- 

-- -- 

.032 2.9952 

.04 3.3423 

.05 3.7368 

.06 4.0935 

.07 4.4215 

-- -- 

-- -- 

.079 4.9265 

.08 4.9575 

.09 5.2582 

1. 1 5.5426 
-- -- 

-- --. 

Hydrogen 

t' Xc& 

.0008 .3610 

,002 .5593 

-- -- 

-- -- 

.002 .5593 

,003 -7265 

.004 .8389 
-- -- 

-- -- 

.0049 .9749 

.005 .9887 

. OOG 1.0831 

.007 1.1698 

.008 1.250G 

,009 1.3x5 

.Ol 1.3982 

.012 1.6035 

.02 2.0739 
-- -- 

-- -- 

__- 

Iron 

t xc6 

.005 1.0695 

.006 1.1471 

.007 1.2390 

-008 1.3246 

.009 1.4049 

.Ol 1.4809 

.0125 1.7569 

.02 2.2214 

.03 2.7206 
-- -- 

-- -- 

-- -- 

-- -- 

.0304 2.8881 

.04 3.3114 

.05 3.7023 

. OG 4.0557 

-07 4.38OG 

-- -- 

-- -- 

-075 4.7504 

.08 4.9117 

.09 5.2096 

0.1 5.4914 
-- -- 

-- -- 



FIGURE CAPTIONS 

1. The fraction of electrons, g(t,8), that escapes a cone with a. space angle 8, 

for a 0.07 radiation length copper target and with an incident electron energy, 

E. =‘l GeV. 

a. Dashed line from Eq. (5). 

b. Solid line from Eq. (16) using Fig. 2 and Table I. 

2. The fraction of electrons, g(t,X), that escapes a cone with a space angle 

X= e/Xc ,fB, versus X, for values of B from 7 through 12. 

3. The fraction of el.ectrons, g(t,e), that escapes a cone with a spac.e angle, 

t9 = 4.17 mradians, versus the electron energy, Eo, for several copper 

target thicknesses. 

4. The value of g(t, 0) where Eq. (5) equals Eq. (16) versus the target thickness 

(copper) in radiation lengths. 

5. Comparison of the measured and theoretical differential distribution function, 

F(X), for a 10 GeV positron beam incident upon a 0.1 radiation length copper 

target. The solid line is the theoretical calculation of Marion and Zimmerman; 

the dashed line was drawn through the data by eye. 

6. The effect of a finite input beam on the differential distribution function, F(X), 

where F’(X) is given by Eq. (17). Curve A - Delta function input. Curve B - 

Gaussian input. Curve C - Multiple scattered input. X - Data points for a 

10 GeV positron beam incident upon a 0.1 radiation length copper target. 
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