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ABSTRACT 

Diffractive phenomena have been shown to play an important role in 

?‘r-p elastic scattering even down to energies below 1 GeV/c where reso- 

nant effects are dominant. With this in mind, we attempt to fit the dif- 

ferential cross section with a model incorporating both resonant and dif- 

fractive effects. At these energies the diffractive term is taken from the 

experimental data to be exponential in the invariant momentum transfer, 

although at higher energies we plan to allow more structure. The reso- 

nant amplitudes were parameterized as Breit Wigner line shapes. A fit 

is made to the observed cross sections by varying, as parameters, the 

masses, widths, and elasticities of the resonances, as well as the para- 

meters associated with the diffraction structure. In this way values are 

obtained for these parameters and a satisfactory fit to the cross section 

data is obtained. 

(Talk given by W. A. Ross at the Spring meeting of the American Physical 
Society, Washington D. C., April 22-25, 1968) 

*Work supported by the U. S. Atomic Energy Commission 



I. INTRODUCTION 

In a recent paper by Levi-Setti et al. , 1 a model incorporating both resonant 

and diffractive effects was used to fit K-P elastic scattering at energies near 1 

GeV/c. We are using a similar approach to fit pion-nucleon scattering. The re- 

sults given here are to be treated as a progress report on work which is now con- 

tinuing . 

In section II we present some motivation for our model. In section III we 

give our parameterization of the transition amplitudes. In sections IV and V we 

give the results and conclusions of the explicit application of this model to r-p 

elastic scattering near 1 GeV/c. This is the work which is presently being re- 

ported. We also point out in section V some other applications of this model 

which are now being made. 

Il. MOTIVATION FOR THE MODEL 

In an attempt to construct a model of the pion-nucleon scattering amplitude 

we shall attempt to benefit from an examination of the differential cross section. 

First let us specify the energy region with which we shall deal. This is given by 

925 MeV/c spLAB- < 1180MeV/c and is indicated on a plot of the total and total 

elastic r-p cross section in Fig. 1. The differential cross sections for this ener- 

gy region can be seen in Fig. 3. The main two features observed in these cross 

sections are: 

1. A large diffraction, or forward, peak; 

2. Somenon-forward, energy-dependent structure. 

The second of these features is believed to be due to resonance structure 

much of which is well established by previous work. 
2 

-2- 



The first of these observations (the diffraction peak) will be partly due to 

resonances (which are known to have a large forward peak), but it is clear from 
3 

the higher energy data that there is more. In fact since we know that the pion- 

nucleon inelastic cross sections are rising rapidly above 600 MeV (725 MeV/c), 

we can anticipate from an understanding of the optical theorem that there should 

be a forward peak due to diffraction. 

Another feature of diffraction scattering is that it is due to a predominantly 

imaginary amplitude. To see how true this is for our case we proceed somewhat 

indirectly. For the forward direction we can evaluate the imaginary part of the 

amplitude from the total cross sections via the optical theorem and the real part 

via dispersion relations. The result of these calculations is that the ratio of real 

to imaginary parts of the forward scattering amplitude is less than 25 % throughout 

the energy region of interest to us. 4 

Suppose that we temporarily regard this to be ample evidence for the existence 

of some diffraction scattering. Then we proceed by choosing our scattering amp- 

litude to be a sum of two terms: 

A = ARESONANCE + ABACKGROUND 

where we shall make the assumption that the background amplitude is purely dif- 

fractive, i.e., 

A=A RESONANCE + ADIFFRACTION 

One can go farther and claim that this sort of parameterization of the ampli- 

tude is very natural for the simple reason that it reflects the two dominant features 

seen in the differential cross section data. Thus, on this basis we could believe 
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this model for pion-nucleon scattering from 900 MeV/c up to 3 or 4 GeV/c and 

also for EN scattering above 800 MeV/c. Indeed, this model was first presented 

by Levi-Setti, Predazzi, and Lasinski for K-P elastic scattering between .85 

GeV/c and 1.2 GeV/c. 1 

HI. TRANSITION AMPLITUDES 

A. General Conventions 

First we shall define the transition amplitudes quite generally. 

For a given isospin state the scattering amplitude matrix is given by: 

A1 (k,6) = f1 (k,B) + i c. g g1 (k,8) 

Here k and 0 are the center-of-mass momentum and scattering angle. f1 and g1 

are respectively the spin-non-flip and spin-flip amplitudes for isospin I. A 
R is the 

normal to the scattering plane. 

For a particular process the physical scattering amplitude is 

A (k,O) =& A1 (k,O) 

I 
where CI is the appropriate isospin coupling factor. 

Next, writing 

A (k,0) = f (k,0) + iz* i g (k,8) 

one can easily get: 

$$ (ke) = If (ke)i2 + lg (k,e)j2 
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and 

p (ke) g (he) = 2Im 1 f (k,e) g* (k,e)] 

Here P is the polarization and -$ the differential cross section. We can then 

perform the usual partial wave decomposition to get 

fI(k,e)=~&I!+l)a~++Pa~- 
I I 

pm (case) 

g1 (ke) =&$+ - ai-1 Pi(cose) 

where 

dP w 
Pi(x) =CF d; 

B. Resonant Amplitude 

The resonant contributions will of course appear only in the specific resonance 

channels whereas the diffraction term will spill over into all 1 values. 

The resonant term will be given by: 

fiEs (ke) =$ c( 
IRes Res 

keRES 

(a + 1) aI+ +la’ d- I 
p1 fc0se) 

I 
gREs tks 6) = 6 c 

I 

Res 
a:+ 

Res 
- ai- 

‘=‘RES 
I 

Pi (case) 

where the sum is over all resonant partial waves. Such resonant partial wave 

amplitudes can be taken to have a Breit-Wigner form: 

aRes- x 
E- i 
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I 

where x = relastic (k)/T(k) is the elasticity of the resonance. 

ERES andr(k) are the energy and (energy-dependent) width of the resonance. 

For our purposes we take 5 

l-(k) = 
k vi &W 

kRES v. CXRESR) rR 

Here vI (x) is the appropriate barrier penetration factor given by Blatt and * 

Weisskopf. 6 R is the interaction radius. 

C. Diffraction Amplitude 

This completes the specification of the resonant amplitude; next we must 

consider the diffraction amplitude. This we choose to determine phenomonologically. 

Thus, to obtain the form of the diffraction amplitude, we observe the near-forward 

differential cross section. 

For our purposes we fit the near-forward cross sections emperically by the 

form 7 

$$ (8) = f& I ebt 
e= 0 

where t = - 2k2(1 - cos 8 ) is the invariant momentum transfer. 

While this dependence can be explained by various models, we shall take 

it as an emperical fit. Next, working specifically with 7r-P elastic data we can 

examinethe energy dependence of b. This is shown in Fig, 2. h doing so we observe: 

1) b has some structure showing peaks at particular values of k. 

A closer examination shows a distinct correlation between these peaks and 

the positions of TN resonances. 
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2) b may well level out approaching a constant at high energies far from 

where resonances are dominant. 

Thus, one may hope that, ignoring resonant contributions, b = constant and we 

bt shall take our diffraction amplitude to give a cross section a(k) e with b 

constant. Next we examine a(k) = %I,=, 2 (“:$ )“. Note that we choose 

to use the optical cross section here since we want to’treat a(k) as a diffraction 

term. 

As a function of k this is observed to vary quite strongly with peaks at 

resonance values. The procedure we use to extract a diffraction term from this 

is as follows. First we ignore the resonance bumps and fit the smoothed result 

with a simple polynomial in k. Next we acknowledge that even this smooth result 

will be in part due to resonances, so we choose our diffractive amplitude to be 

ADIFF =iCJa(k)e l/2 bt 

where a(k) is fixed by the fit described above. C and b are two constant parameters 

which will be varied to fit the cross sections. Note that 

I I 2 2 
ADIFF = c a@) e 

bt 

So we now take our diffraction amplitudes to be: 

fT. DIFF (k,8 ) = F1 (k) e1’2 bit 

I 
gDIFF (k e) = sin 8 G1 (k) e1’2 blt 

We have forced the spin-flip term to approach 0 like sin 0 as we know it must. 

For this reason we shall ignore this term and set G’(k) = 0. This is mainly done 

in order to make a simple first approximation to the cross section. Such a term 

may later be found necessary, but for now we shall try to do without it. Note 
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that such a term will not make itself felt in th.e differential cross section (which 

we are now fitting) nearly as much as in the polarization data. 

Before proceeding further, let us note the following important feature. We 

have explicitly used e bt as the shape of the diffraction term. However, if one 

observes a different angular dependence on the forward peak, one can simply 

change ebt to some new function which reflects the observed structure. Thus 

higher energies where secondary maxima are observed can be accomodated by 

altering the form of the diffraction term. 

IV. APPLICATION TO r- P ELASTIC SCATTERING 

Now let us deal specifically with r- P --* rr- P differential cross sections. 

We take our amplitudes to be: 

f(k,e) = i C & e1’2bt + 2/3 [I = l/2 Resonance terms] 

+ l/3 [I = 3/2 resonance terms] 

g(k, ,y) = 2/3 [I = l/2 Resonance terms] + 1/3 [I = 3/2 Resonance terms] 

Note that we have collapsed the two isospin diffraction terms into a single term. 

This makes the interpretation of a(k) more natural. 

As an attempt to test our model we started to use data around 1 GeV/c 

where we believed that the resonance structure was known. By choosing only 

data in the region 900 MeV/c < p _< 1200 MeV/c we could confine ourselves 

to a particular set of resonances as seen from the Rosenfeld tables of one year 
8 ago. Any attempt to fit the data using only those resonances was a failure. 

The reason for these failures is simply that the resonant structure was not 

then fully understood. In attempts to show that no further resonances were 
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needed we found that the opposite was true. Specifically a Pll resonance was 

the addition most necessary for improving the fit. We found soon after that the 

latest round of phase shift analyses2 had indeed made such predictions. 

Now let us present some of the characteristics of our best fit. 

DATA USED.’ Differential cross section data of Duke et al. , Helland et al. , -- 

Grard et al. , and Wood et al --* 925 MeV/c IP 21180 MeV/c. 

NUMBER OF DATA POINTS 207 

NUMBER OF FITTING PARAMETERS 35 

NUMBER OF DEGREES OF FREEDOM 172 

NUMBER OF RESONANCES USED (of these three were fixed)” 10 
2 

uFIT - uEXP 

I 
= 

* oEXP 
385 

X2 was minimized by the program MINFUN.10 

NOTE: e is a normalization factor. 12 

First we shall comment on the rather large value of X2 which, if taken at 

face value would correspond to a confidence level of about 10 -3 or 10 -4 . We are 

using data from four different experimental groups ’ so that the relative compatibility 

may be slightly questionable. Probably a more important feature is the fact that 

specific points may be slightly questionable. To be specific, 7 of the 207 data 

points contribute 100 of the 385 units of X2. In fact in terms of confidence levels, 

the removal of about 10 points could achieve a confidence level above 10 percent 

(X2Z 250). 

In any case the quality of the fit can be seen by observing the graphs in Fig. 3. 

Next let us present the results in terms of the resonances. The low energy 

resonances used, P11(1470), D13(1518), and Sll (1550) had their resonance 
11 

parameters fixed. Others used had their resonance parameters varied to fit 

the data; the results are shown in Fig. 4. 
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Note that the D15 and F15 resonances are well determined. Note also 

that these are the only resonances in their particular partial waves. Next 

observe that the S-wave resonance parameters are rather poorly determined; 

we believe that this is due to some mixing of the three resonances all with the 

same quantum numbers. Next we come to the PI1 resonance which we found 

necessary in order to obtain a good fit. The fact that its resonance energy as 

determined by our MINFUN best fit is so high is not to be regarded as a serious 

objection. We have used no data above 1770 MeV (c. m. energy) and only one 

experiment above 1720 MeV so that there are no constraints on the amplitude 

above this energy. Since we are only then seeing the lower energy part of this 

resonance, it is quite possible that a strong wide resonance at 2 GeV (as found 

by MINFUN) is equivalent to a weaker narrower resonance at 1750MeV (as 

predicted by Lovelace). The difference between these two resonances is the 

energy dependence of the amplitude outside the range of our data so that we cannot 

distinguish between the two cases. Attempts were also made with the Pll 

artificially constrained to lie near 1751 MeV and finally ignoring it altogether. 

The results are: 

with PI1 constrained X 2 = 435 ERES = 1820 

with no PI1 X2 = 560. 

The introduction of the P33 and D33 resonances causes a reduction of 20 

or 30 units in X2 for each resonance. 

Next let us see what results were obtained for the other parameters of 

out fit. These are shown in Fig. 5. 

For the diffraction slope B we would expect the result to be Bs 7(GeV/c)-2 

because this is the “asymptotic value” and some of this should be due to resonances. 

The result, B = 2.54 (GeV/c)2 is consistent with this expectation. 
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The constant C corresponds to that part of the forward amplitude due to the 

diffraction term. Thus, wewould expect C to be less than 1. The result, 

C = 0.293 is reasonable. An attempt was made to make C complex (equivalent 

to giving the diffraction term a real part). The results of this attempt were that 

C remains real with only a 2 percent imaginary part (corresponding to the diffraction 
n 

amplitude remaining imaginary) and that the fit is not improved. (XZ drops by 

only 3 units. ) 

The interaction radius was found to be R = 0.95 FM which is a reasonable 

value. 

The normalization of the experiments was also found to be quite acceptable. 

V. CONCLUSIONS AND FUTURE APPLICATIONS 

We regard these results as follows. We feel we have strong evidence for 

the existence of a PI1 resonance with mass greater than 1750 MeV. Its elasticity is 

not small ( 2 30 percent) an d it is probably a fairly wide resonance but until 

we extend the energy range of our analysis, we can say no. more. 

We also claim that this constitutes weak evidence for P33 and D33 

resonances in the energy range ,suggested by phase shift analyses. 
2 We claim 

that these resonances are quite inelastic but beyond that we do not determine 

their resonant paramaters very well. 

We also have very strong evidence for the other well-established resonances 

as would be expected. 

We have also tried adding extra resonances in every partial wave. This 

resulted in no improvement in any case and all such resonances “went away” 

i.e., their resonant parameters varied in such a way that the extra resonances 

made no contribution to the amplitude in the region of study. 
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With respect to future applications we feel that this can be a fruitful 

approach to obtaining some knowledge about resonant amplitudes. With this 

in mind we are, at present, making attempts to apply this model to energies 

above 2 GeV/c where the resonant structure is quite poorly determined. 

We are also making attempts to fit n’ p elastic scattering in the 1 GeV/c 

energy range and will shortly include charge exchange and polarization data 

as well. 
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FIGURE CAPTIONS 

1. K-P total and total elastic cross sections as a function of energy. The hatched 

region indicates the energy range with which this analysis deals. 

2. Behaviour of the diffraction slope B as a function of energy. B is obtained from 

fits to the near forward differential cross section of the form 

3. ?r-P differential cross sections from 0.925 GeV/c to 1.180 GeV/c. The ex- 

perimental points are taken from reference 10; the solid curves represent the 

best fit of our model. 

(a) p = 925, 975, 1000 MeV/c 

(b) p = 1003, 1016, 1030 MeV/c 

(c) p = 1055, 1080, 1120 MeV/c 

(d) p = 1151, 1180 MeV/c 

4. Resonant parameters corresponding to our best fit. These are labelled 

“ROSS, Leith”. Also included for a comparison are the resonance parameters 

listed in Reference 3 and/or Reference 9. These are labelled “Other Reference”. 

5. A list of the non-resonance parameters of our best fit;for an explanation of the 

symbols see text. 
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DIFFRACTION SLOPE B vs MOMENTUM P 
FOR n-P ELASTIC SCATTERING 
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RESONANCE 

D15 OTHER REFERENCE 0.40 1675 155 

ROSS, LEITH 0.41 1682 118 

s31 OTHER REFERENCE 0.35 1655 180 

ROSS, LEITH 0.84 1679 76 

F15 OTHERREFERENCE 0.65 1689 120 

ROSS, LEITH 0.61 1685 174 

sll OTHERREFERENCE 0.85 1705 270 

ROSS, LEITH 0.35 1696 213 

pll OTHERREFERENCE 0.32 1751 330 

ROSS, LEITH 0.81 2021 413 

p33 OTHERREFERENCE 0.10 1688 280 

ROSS, LEITH 0.26 1729 72 

D33 OTHER REFERENCE 0.15 1691 280 

ROSS, LEITH 0.24 1803 246 

Fig. 4 



B = 2.54(GeV/~)-~ 

c = 0.293 

R = 0.95 Fm. 

c = 1.00, 1.01, 1.04, 

1.01, 1.02, 1.06, 

1.06, 1.06, 0.91, 

0.97, 0.99 

Fig. 5 


