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PROTON FORM FACTORS 

Over the past decade there have been a progression of 

beautiful experiments on elastic electron proton scattering starting with 

the work of Hofstadter and collaborators and extending to broad new 

rang-es of higher energies and momentum transfers in the recently 

reported results from the Stanford Linear Accelerator Center. From 

these the proton electromagnetic form factors have been deduced up to 

momentum transfers of t = q2 - 25 (GeV/c)2. 

The original measurements in the very beginning showed 

that the proton was a rather fat, diffuse charge and current distribution 

with a root mean square radius of N 0.8f. Nambu first recognized the 
0 need for the existence of an isoscalar vector meson resonance, the w , 

and Frazer and Fulco subsequently showed in detail the case for the 

isovector p 0 in order to provide a theoretical basis for the form factor 

behavior. Indeed the early form factor work led to predictions that there 

existed vector mesons of sub-nucleonic mass, and from this grew the generally 

very successful vector dominance model. 

However, as discussed by Wilson in a recent Comments 

(Vol. 1, NO. 3, May 1967), a p” dominant model for the isovector form 

factor is inadequate to fit the data accurately- -and in particular it fails 

for the large t behavior which shows the form factor GMp (see Wilson) 

falling at least as fast as L 1 - 
t2 

-. 
q4 

To see this we turn to the canonical 

(Comments on Nuclear and Particle Physicsr 2, 36-40 (mrch-April 1968)) 
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starting point of dispersion theory which expresses form factors as a 

sum of Yukawa-like terms [q2 > 0 for scattering measurements] 

Qo G(s2) = / 
s(cr2)do2 

4mr2 
c2+q2 

(1) 

The spectral amplitude s(a2)*describes the exchange of one or of a few of 

the neutral vector mesons or resonant enhancements from the electromagnetic 

current to the proton line in Fig. 1. Each resonance contributes a bump to 

s (a 2 ) at its mass CT 2= Mr2, and evidently a cancellation between several 

resonances must be contrived in order to give 

J dD2&J2) = z sr(Mrs) = 0 
r 

(2) 

and lead to an asymptotic behavior decreasing as 
4 

l/q or faster. Thus p 
0 

dominance alone in the isovector channel will not suffice. Also, such 

cancellations artificially arranged to accommodate data but without an under- 

lying theoretical principle or dynamical raison d’etre are but faint beacons 

toward deeper understanding. 

. 

One very direct way to achieve a l/q4 fall off is to construct 

a theoretical argument which orders you to multiply a Yukawa form for the 

vector meson propagator by a similar form vanishing as q2 - 03 for the 

form factor describing the vector coupling to the nucleon line (see Fig. 2). 

Toward this end we can appeal to dispersion theory language 

or to a Lagrangian formalism. The assumption that the entire 
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hadronic electromagnetic current operator is identical to the ve.ctor meson 

field amplitude (the current-field identity) provides an explicit statement 

of what vector dominance means in a Lagrangian field theory. From 

either of these approaches we can derive the relation 

Gy (q2) = 
m2 

mv;+ q2 Gv(q2) 

where Gv is the vector meson-nucleon form factor and when subjected to 

a dispersion analysis would be treated as in Eq. (2). Gv(q2) contains 

contributions from all but the vector meson pole itself at - q2 =m v2 and 

a priori there is no reason for its value at large q2 to decrease as l/q2. 

In fact, the general dispersion approach has a very severe 

limitation when applied to a study of the behavior at large q2. This is 

because the dispersion integral converges only very slowly and all 

contributions are essentially equally weighted in Eq. (1) up to large masses 

CT2 - q2. In contrast, a mean square radius calculation 

<R2> = 6 1 +stf”do2 (4) 

has a l/o4 convergence factor to enhance the low lying resonance terms. 

It may be reasonable to assume that only a few low lying resonance contribu- 

tions dominate in Eq. (4) for < R2 > but it is certainly an extravagant 

optimism to extend that same assumption to calculating Eq. (1) for large 

values of q2 2 10 BeV2. In other words, the p” dominant model may be 

fine when applied to processes involving real photons or virtual electromagnetic 

currents transferring q2 5 l(GeV/c)‘. However, for extrapolations to distant 

q2 regions it is (not surprisingly) inadequate. 
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Experience has proved that theorists often find a very useful 

guiding light when most desperately needed by returning to what Gell-Mann 

has referred to as our theoretical laboratory of the Schrodinger equation. 

In this spirit we may compose an apologue of how it might have been had 

our experimental colleagues constructed the GeV electron accelerator 

twenty years earlier in the 1930’s. Theorists would have been much less 

sophisticated back then and without the big apparatus of local quantum field 

theory and dispersion relations at our disposal, we would have fallen back 

quite naturally upon the Schrodinger equation to provide the formal basis 

of our conjectures. Being familiar then with the model of a nuclear atom 

and accepting the concept that a nuclear force field responsible for binding 

neutrons and protons to each other in a nucleus could give rise to a spatial 

distribution for the nucleon’s electromagnetic structure, a bright graduate 

student might have argued as follows. The proton’s electromagnetic form 

factor is the fourier transform of the charge distribution (neglecting spin 

and magnetic effects), 

W2) = / 
. 

p (r) e’q’r d3r 

For a point proton the charge density is a delta function, p (r) = 6 3@) 
2 and F(q ) = F(0) = 1 is a constant independent of momentum transfer, 

Any structure in p (r) introduces a q dependence and I?(q2) generally 

decreases with increasing q2 since the scattered waves do not all add 

coherently upon scattering from different points. Evidently as q - 00 in 

(5) 
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Eq. (5), the behavior of p(r), at the origin r - 0 controls the behavior of 

F(q2). In fact, upon integrating over all momentum transfers, 

00 

/ 

d3q F(q2) = JdSrp(r) / d3qeilSr = (2r)3p (0) 

/ q2 Fts2)dq Ot P(O) 
0 

Now this student would have known, or perhaps quickly 

recalled upon opening the Pauli or Kramers treatise on quantum mechanics 

(or whichever text he had been nourished on in the 1930’s) that p (0) is finite 

or zero for any but pathological potentials- -which means for any binding 

potentials less strongly attractive than l/r2 as r - 0. For example, 

p(O) = I$ (0)12 a r2’, B = 0, 1, . . . . . . for solutions of a bound state 

in a l/r potential as r - 0. This says that it is “natural” for the integral 

in Eq; (6) to exist so that F(q2) decreases more rapidly than l/q3, and 

loosely F(q2) CC l/q4 asq- m. 

There is a moral to this tale: There is something very simple 

about this particular feature of the rapid decrease of F(q2) with increasing 

q2 that is not apparent and which does not shine to the fore in a dispersion 

approach. Let us return to the relativistic form of Eq. (1) and compute 

in the center of mass frame so that the invariant momentum transfer q2 

is purely a spatial momentum transfer. The condition of a finite charge 

(6) 
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density at the origin again is seen to lead to the superconvergence condition 

of Eq. (2) 

oa 
*-- 

Viz. e’q” G(q2)d3q = p(r) = 2n 2 2 e--O’ s(c2)da 7 

or 

p (r - 0, - l/r [ ss(c “)Q”] 

result 
Does this/mean we must accept the bootstrap idea of the democratic proton 

built as a compound system as opposed to its being knighted as an elementary 

aristocrat? Does it mean that the proton is more appropriately viewed as 

a bound structure of quarks ? 



GENERAL REFERENCES 

1. Murray Gell-Mann and Fredrik Zachariasen, Phys. Rev. 124, 953 

(1961). 

2. Norman M. Kroll, T. D. Lee, and Bruno Zumino, Phys. Rev. 157, 

1376 (1967). 

3. Proceedings of the 1967 International Symposium on Electron and 

Photon Interactions at High Energies, Stanford Linear Accelerator 

Center, 1967. 






