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ABSTRACT 

We use the expression of a Toeplitz determinant as an 

average over the unitary group of the same dimension,to exhibit 

its asymptotic behaviour, recovering an expression first derived 

by Sz ego and Kac . Further related problems are suggested. 
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I 

Toeplitz determinants arise in various problems of physics, a famous ex- 

ample being the computation of the correlation function in the two-dimensional 

Ising model. It turns out that such determinants can be expressed as averages 

over the unitary group of the same dimension. We shall make use of this remark 

to derive a number of their properties. The asymptotic behaviour of these de- 

terminants was first established rigourously by Szegb;’ in the case of positive 

definiteness of the corresponding matrix,using the theory of orthogonal polynomials 

with which Toeplitz determinants are intimately connected. Alternatively Kac2 

used combinatorial analysis and probability theory to derive the result in the 

general case. We shall see that it emerges quite naturally in the present context. 

II 

Let ao, al, am13 a2, am2 . . . , be an infinite sequence of complex numbers to 

which we attach the formal generating function: 

+cO 
f (z) = 

c 
n 

anz (1) 
-00 

The m-th Toeplitz determinant of f (z), which we denote by D,(f), is defined as: 

I D,(f)=det 1 a,_,;Orp, qsm-I . 

It is clear that as long as we let m vary on a finite range, say m <_ N, we can 

limit the series (1) by dropping all terms with ) n 1 larger than N, in which case I 
it reduces to a finite Laurent series. 

We now recall the introduction of an invariant integration over the group 

um of unitary m x m matrices. 3 Each such unitary matrix U can be diagonalized 
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in the form: 

u= vd ) V unitary, 6 = . 

the order of the eigenvalues being immaterial. In the general case,when the eigen- 

values are all distinct, V is arbitrary to the extent of multiplication on the right 

by a permutation matrix (a discrete set of operations) and by a diagonal unitary 

matrix. These matrices form a group equal to the direct product of m unitary 
m 

groups in one dimension @ UI . The invariant measure on Urn can then be 

factorized as: 

dU=dVd: . (4) 
d 

m 
Here dV is a measure on the quotient space Urn/ ~3 UI, and d8 is a measure 

on the classes of Urn . Up to a constant factor, d6 can be written as: 

d6=--& . 
d@i 

n - 
O<i<m-1 27r . 
-- 

stands for the Vandermonde determinant: 

1 1 . . . . 1 

i4jo 
e @l 

i@m 1 e . . . . e - 

iQo 
e 

%Q i2@m-1 
e . . . . e 

’ i(m-1) e. W-1) $1 i(m-1) @,J 
e e . . . . e 

(5) 

( 
w = n elop-e q > . osq<psm-1 

-2- 



If g(U) is a scalar function defined on Urn, its mean value <g>, is defined to be: 

<g >m= j&J -y g(u) dV * 

[ I um m 

(6) 

The index m reminds that the average is taken on the group Urn . In particular 

if g is a class function: g(U) = g(U,UU~l ), it is a symmetric function of the 

roots e % of U and one has : 

<g>, = s g(6) ds = m’ la fn’$) ( A(;‘k)/2 n d’i 
O&m-l 2n ’ 

0 

(7) 

since: 

]*‘m’ /A cei%)12 o<iCg-, 2 = m! . 
-- 

IV 

We return to the series (1) and assume the coefficients an to be interpreted as 

the Fourier coefficients of f (z) for Iz 1 = 1 : 

2n 

a = 
/ 

!A& 
n 2n emin f (eiG) . 

0 
(8) 

In the computation of D,(f) one can use that fact that a determinant is a linear 

function of each of its rows, so that: 

. . . . ..e 

2 n(m) 

D,(f) = 
s 

n [% f (;+kj _j;l 

-iGo -i(m-1) I$~ 
e 

O,<kSm-1 27r 
0 

t . . . . . . Li’yp, 

. . . 

i(m-1) 4m-1 
e . . . . . . 1 
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The determinant in the integrand is equal to 

i c 
Osngm-1 n@n 

e 

We can further replace this expression by its average over all permutations of the 

dummy variables @k , Since under such a permutation 
i@k 

4 ) e is left in- 

variant except for the signature factor (-l)‘of the permutation we obtain : 

1 
ii? c (-1)’ ei C . P O<ncm-1 

n @P ) 
n 

A (eiQk) = /a(eiGk)12 . 
-- 

Finally: 

‘2% P-4 
D,(f) = & . / O<kln,-1 % f (ei’k) ( A (ei9)12 1 . 

0 

(9) 

We can use the series (1) to define on Urn the matrix valued function: 

F(U)=z anUn , (10) 

with the same properties of convergence as f (z) had. It is then recognized that: 

n 
OS.k<m-1 

f (ei8”) = det F(6) = det F(V8V-l) . 

Comparing equations (7) and (9) we have: 

D,(f) = <det F(v)>, . (11) 

One observes some immediate consequences. If f(z) for 1 z 1 = 1 is real 

positive,then Dm(f ) > 0. Furthermore, if a < f (eie) C A then a < “JD,cf,< A, 

hence the quantities “Jm have at least one limit point. 
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V 

Another series of remarks stems from the fact that one knows on the unitary 

group Urn a complete set of class functions, namely the characters of its ir- 

reducible representations (complete means for instance complete in the LZ- 

sense). Equation (1) can be considered as the scalar product of det F(U) with 

the identity character. Let X Q , where Q. < Ql < . . . < Qm 1 is an increasing 
i t 

sequence of integers, be the character of the corresponding irreducible repre- 

sentation of Urn :3 

A(ei9k) xi-e/ (:‘O, , . , , rib_,) = c (-1)’ ei o&im-l Qn ‘Pn (12) 
P 

In this expression P stands for a permutation of the integrers { 0, 1, . . . , m-l 1 . 

We can generalize the Toeplitz determinants by defining: 

Df (f) = <xjQI(U)det F(U)> = det aQP ; Osp, qsm-1 I 
m -q I 

(13) 

The last equality is obtained by essentially reversing the steps which led to Eq. (11). 

If det F(U) is square integrable one then has the expansion : 

which yields in particular: 

I I D,(f) 2 I Dm(jq2 ). 

By using similar arguments one can easily show that given a non-negative function 

f (e”) on the unit circle, the m-th orthonormalized polynomial in z with respect 
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to the measure f (eie) $!& , is equal to: 

P,(z) = Dm(f ) Dm+l tf ) 1 -l/2 < det (z-u) f,(U)>m , (15) 

so that the study of these polynomials is very similar to the study of Toeplitz de- 

terminants. 

VI 

In this section we compute D,(f) explicitely in the case where f(z) enjoys the 

following properties: 

(i) f (ele) is the inverse of a finite trigonometric polynomial (we shall call the 

rfdegree” of such a polynomial Cxn eine the largest n 2 0 such that 

lxn12 + I&l2 iJ 0). 
(ii) Once a choice of branch has been made at a given point,log f(e”) is a 

bounded and periodic function of 0 . 

Property (ii) is crucial for the asymptotic property of Dm(f ) in general. If 

f (ele) has this property so does 1 

f(eie) ’ 
We need the following three lemmas: 

Lemma 1 : 
-t-n 

Let g(e@) be a trigonometric polynomial g(ele) = & gkc ik0 satisfying 

property (ii). There exist two polynomials in z of degree at most equal to n, 

g,(z) and g,(z) taking the value 1 at z = 0,and nonvanishing inside the closed 

unit circle 1 z 1 5 1, such that 

g(eie) = exp[ p g(eie)] gl(eie) g2(emie) . 

This is an easy extension of a classical result of Fejer and Riesz. 
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Lemma 2 : (Cauchy) 

det I 1 4X,? ““XN) NY1’...9YN) 
1-xy ’ 

P4 n 
la, q5N 

(1 - xp Ys) 

= 4x1, ...s$$ AtYl’-~-~YN) c,,, X~Q~txl~“‘~xN)x~~)(Yl”~~~YN) 

O<Qo<Ql. .<Q N-l 
(17) 

For a proof of this we refer for instance to Ref. (3). 

The next lemma combines the previous two and gives D,(f) for an f (e”) 

satisfying conditions (i) and (ii) when m is larger than the degree of the trigo- 

nometric polynomial g(el’) = 1 

f (eie) 
. In view of lemma 1, we can write: 

i 

f (z) = e hO 1 

O<k;-1 (1-xkz) (1-ykz-‘) 

{ Ixk\<’ ’ Iykl<’ 

( ho=expp log f(eie)) 

(18) 

The quantities { xk} and ( ykl are the inverse of the roots of the polynomials 

g,(z) and g,(z); some of them may vanish. 

Lemma 3 With f given by (18) and m 2 n : 

mh 
Dm(f)=e ’ n 

1 

0 aup-1 (1 - XpYql - (19) 

mh 
The proof is straightforward. First we dispose of the factor e ’ by observing 

that D,(Af) = hmDm(f) . Next we can clearly assume m = n by adding factors 

with x k Or yk = 0 in (18). So that it is sufficient to study Dm( f ) for 

f (z) = 1 

OSklm-1 (1-xkz) (l-y&) 
; lxkj ’ lY(i( <’ ’ Let 6 be a diagonal 
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matrix as in (3). By applying lemma 2 : 

detF(@= 17 
1 

%Px LOn-1 (l-xpei4q) (1-ype -i+q ) 

= c . X~Q~(x)xIQ\(~) x{Q t)(y) x{Qtl(8s1) * 
OIL,< Qp .< &ml 
OSQb<Qi. .< Q&-l 

The characters are orthonormal by integration on Urn, so that we reach the de- 

sired result: 

D,(f) = c ’ OsQo<Ql. .< Qm 1 x{QfX) x{Qi@’ = o<p grnvl P-;Y~) - ’ 

We are now in position to state the main identity of this section. Let f (z) satisfy 

the hypothesis (i) and (ii). We write it in the form (18). We can set ho = 0 since 

the multiplicative factor e InO is easily taken care of in Dm(f) . 

One defines : 

Z-Y 
$(z;x,y) = n ~ = 

( ) 
P 

O<p<n-1 ‘- “$ 
c @Q tx’ YjzQ ; (20) 
OSQ -- 

$,(x, y) can be expressed in terms of the elementary symmetric functions of {x) 

and {YI . 

Theorem The following identity holds: 

D,(f) = I7 
1 

Osp, q<n-1 (l-xpys) 

ip,(x,y) 0. . . . . . 0 

$p,Y) @,(X’Y) l l 0 

. 

. 

e ix, Y) * l l @,(w 

n-m-l 

i,(Y) 4 G(Y) xl* * . $ b-r 

0 $,(y, x). . . .- . . . 
. 
. 

If n 5 m the determinant on the right hand side is replaced by 1. 
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In the case n ,< m this is the result of lemma 3. The idea of the proof for 

n > m is simply to reduce it to the previous case by using properties of symmetric 

functions. We have no space to give the argument here. 

The whole point of the remarkable identity (21) is to establish the departure 

of Dm(f) from the simple-expression pyq (l-xfyd . This is fully 

answered by the theorem as long as we deal with functions with properties (i) 

and (ii). However, the restriction that f (eie) be the inverse of a trigonometric 

polynomial is too severe. In the last part we shall indicate heuristically an 

avenue to a direct proof without providing,however , a careful analysis of the 

convergence of our process. 

We should have remarked,when dealing with the functions f (ei’) of section 

VI,that writing: 

log f (eis) = h (ei”) = x hkeikt , 
-oo<k<+co 

one has : 

h(eie) = ho - log n (1 - xpe 
O_<psn-1 

ie) (l-ype-ipe ) 

k 
= ho+ c 3!- 

ilk k 
-ike 

+e z‘ 
O<p<n-1 -- 

(22) 

So that, according to lemma 3, for m>_n : 

mh 
Dm(f) = e ’ 

mho+ l$k k hk h-k 

O<p,<sn-1 (l-x;ycI) = e - (23) 

The theorem of Szego and Kac states that this is in fact the correct asymptotic ex- 

pression for an Ifarbitrary,, function f (ele). We now present a direct hint of this 

result. Assuming again f (ele) = e h(eie) where h(e i0 ) is “sufficiently regular”, 

we introduce the matrix function H(U) = c hkUk on Urn and write,using 
k 
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det eA = e trA 

c hp tr Up 

Dm(f) = < etr H(q >,m zz <e-oo<p~+co 
>m 

Now it is very tempting to proceed as in statistical mechanics to define the 

,,cumulants,, gtm) rl,..., 
P ( 

rp) of the unitary group Urn through the follow- 

ing algorithm: 

c hp tr Up 

<e 
-ccKp<+cc 

>m = e c 
1CP 

(rl, . . . ,rdhri. .hr (24) 
P I 

This relation can be thought as a generating function for the cumulants, which can 

however be computed through finite algebraic manipulations. We set : 

C’p”‘(h) = c g-4 
P ( ‘1, . ..) rh h 

-40x1<. . .srp<cc P) rl”’ rp (25) 

Then: 

Cy’ 01) = <tr WU)>m 
cirn) (h) = i <[tr H(U)] 2>m - +[<tr HUJl>m]2 
Cp’ 01) = i <[tr H(U)] >3m -$<trH(U)>m<[trH(U)]2>m+i <trH(U)>L 

. . . . 

and so on. 

i 

One readily finds that: 

Cim)(h) = m ho 

c~m+h~ = l<T<m p hp hwp + c m hq h-q (26) 

-- rn+ls q 

cim)(h) = 2-l c 
O< q, r<bo 

Mh { O,q, r, q+r-m, m t (hqhrh-q-r + h-qh-rhq+r) 

. . . . 
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Clearly @?plrl, r2, . . . rJ vanishes unless r1 +. . .+rp = 0 . The function 

W,r> = Min{ Qw,4+r-m,m\ enjoys nice symmetry properties and is repre- 

sented in the following diagram: 

It vanishes for q+r < m . This is a general property,since it follows from the 

previous section that for p > 2: 

%P 
tm) (rl ,...rp) = 0 if 

I I 
rl -t...+ rp <2m 

I I 

Hence, if hn decreases fast enough for n+oc one has for p > 2 lim C 
m--o0 

r)(h) = 0 . 

If it can be established that this limit is uniform in p for p > 2 one will have the 

Szegb’-Kac result: 

lim D,(F) c k%h-k 
Ilk 

m-cc mh, = e e 
(27) 

VIII 

The approach that has been sketched above raises a number of interesting 

questions and suggests a few other problems: (i) to obtain a closed form for the 

cumulants of the unitary group and study their properties; (ii) to provide under 

suitable regularity conditions on the function h(ele) the uniformity on p of 

lim Ctm) p (h) ; (iii) to generalize the Toeplitz determinants to averages over 
m-,cc 
other symmetric functions of F(U) apart from the determinant. (iv) to study 

similar problems when the sequence of unitary groups is replaced by another se- 

quence of groups, the orthogonal ones for instance. 
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There are various possible ramifications,including contact with the theory of 

continuous integrals, which show how much interest can stem from such an ap- 

parently simple looking object as a Toeplitz determinant. In the opening re- 

marks of his treatise on orthogonal polynomials4 Szegij seems to imply that 

the determinantal form of orthogonal polynomials is of little practical use. 

The preceding note was an attempt to challenge this point of view. 

In conclusion it is a pleasure to pay a friendly tribute to J. F. Renardy 

with whom some part of this work has been done. 
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