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ABSTRACT

A statistical model for high energy reactions is constructed
using the internal symmetry invariance properties of the scattering
amplitudes which yields simple predictions for average branching ratios.
The model is so constructed as tc be valid no matter what invariance
group or reaction one considers and also to be independent of the channel
throtgh which one views the reaction. Branching ratioc predictions are
made for reactions of the type baryon + meson - baryon + meson and

photon + baryon -+ meson + baryon.



The statistical model for nuclear reactions which arose from
Bohr'st original suggestion of a compound nucleus picture has been
extensively studied both experimentally and theoretically and its validity
in certain experimental regimes well established®, In recent years
further confirmation of its applicability in these situations has been
found in the observation of the statistical fluctuations, predicted by
Ericson3, which are an essential concomitant of any statistical phenomenon.
The use of statistical concepts in the analysis of high energy collisions
between elementary particles seems to have originated with Fermih, but in
spite of a long period of development, the applicability of such concepts
to reactions at accelerator energies has always been in some doubt.
Particular interest was recently stimulated in such models by the obser-
vations of Cocconi et al.”? on large angle elastic proton-proton scattering
which seemed to show an energy dependence such as would be expected on the
basis of a statistical model. Valid questions conceraning such an inter-
pretation have been raised6, however, and a further shadow over this inter-
pretation results from the failure to observe the Eriecson flucturationsT.

The role which might be played by internal symmetries in a
statistical model of reactions does not appear to have been raised in a
general way until very recently. Drell, Speiser, and WéyersB have pointed
out that internal symmetries such as charge-irdependence (isospin or
SU2 invariance) or charge symmetry in nuclear phenomena and SU, (isospin),
SU3 (eightfold w@y) or possible higher symmetries in elementary particle
phenomena, could play a decisive role in the determinaticn of average
branching ratios for reactions. The statistical assumptions which they

chose to introduce for the purpose of implementing this observation can



be subjected to some criticism, and it is this question which is
examined in the present paper; it is a question with considerable intrinsic
interest even apart from any pragmatic guestions as to the applicability
of the statistical model to any particular situation.

The approach of DSW consists in observing that in the presence
of an internal symmetry group G, the ingoing and outgoing particles in
e resction are each a member of a multiplet (or supermultipiet) of
particles which is associated with some irreducible representation of
the symmetry group. The amplitude for going from the ingoing to the
outgoing state received contributions from many possible "paths" where
each such "path" can be considered to be associated with or correspond to
a "compound state" which carries among its labels those appropriate to
an irreducible representation of the symmetry group G. The sum of the
amplitudes arising from compound states belonging to any one irreducible
representation of G is the "reduced amplitude" associated with the
particular irreducible representation. The desired amplitude is then
given as a linear combination of these reduced amplitudes, one associated
with each irreducible representation which is common to the reduction of
the product representations formed of the ingoing and outgoing particle
representations, respectively. The coefficients in this linear combin-
ation are just products of Clebsch-Cordan coefficients associated with
these reductions. To illustrate, consider a reaction in which two

particles go into two particles. We write the reaction as
a(A) + v(B) » c{c) + a(D) (1)

where A and B represent the irreducible representations (multiplets) to

which the incoming particles belong and a and b designate the particular



member of the multiplet. Similarly C and D represent the multiplets
and ¢ and d the members corresponding to the outgoing particles. The
kinematic variables as, for example, the momenta and helicities of each
of the particles, are presumed fixed. The amplitude for the reaction

(1) which we represent as <Cch|MS|AaBb>,can then be written as®

<CeDd|M_|AaBb> = ] <CeDa|X(E)x> 5,(¥8) <x(£)x|aaBb>. (2)
MY
XEEx
Here <X(£)x|AaBb> is the Clebsch-Gordan coefficient associated with the
reduction of the product of the representations A and.B into irreducible
representations X, with x representing the member of the multiplet X and
£ is a symbol used to designate and distinguish the same irreducible
representation X if it occurs more than once in the reduction. Similarly
<CeDd|X(g)x> is the (conjugate)Clebsch-Gordan coefficient associated with
the reduction of the product of the representations C and D into irre-
ducible representations X distinguished, if occurring multiply, by the
symbol %. The quantities sx(gg) are the reduced amplitudes referred to
above and are associated with those irreducible representations which are
common to the reduction of the products of representations associated
with the ingoing and outgoing particles, respectively. The Clebsch-
Gordan coefficients are in principle completely determined by purely
mathematical considerations once the invariance group G and its irre-
ducible representations are specified. All considerations of dynamics
are contained iﬁ the reduced amplitudes SX(Eﬁ).
Now, apart from purely kinematical coefficients, the cross section

for the reaction (1) is determined by the absolute square of the amplitude

(2) and is therefore a linear combination of products of the reduced



L

amplitudes and their complex conjugates:

o(abred) « [ I F_lx(¥e)x(Ee):ceparait] (3a)
Y N
2

Sp0 (E78") 8,(8E)]

where the functions FS are sums of products of four Clebsch-Gordan

coefficients:

FS{X'(E'g')x(%g):CchAaBb] = ¥ <cepa|xt (¥)x'> <cedd|X(¥)x>
x'x (3b)
<x'(g')x'|AaBb>*<x(g)x|AaBb>

These results are completely general and depend only on the validity of
the internal symmetry group as an invariance group; no statistical
considerations have entered so far. If the reduced amplitudes SX(EE)
are known, the branching ratios corresponding to decays into different
members ¢,d of the final multiplets C,D are fixed. - It is in the absence
of such information that one might hope to employ statistical assumptions
about these amplitudes to gain statistical information about branching
ratios.

One manner in which statistical features may enter into these
considerations is in the instance that each of the reduced amplitudes
SX(Eg) can be considered to arise as the sum of contributions corres-
ponding to many compound states each belonging to the same irreducible
representation X of the symmetry group. If the statistical properties
of these contributions could be correctly characterized, it would be
possible to calculate not only relative average cross sections for
different branchings of a reaction but also the fluctuations about

these averages. A complete characterization of these statistical



properties would in general require an appropriate statistical
ensemble to be specified. The calculaticn of average branching ratios,
however, requires only that one be able to assign statistically averaged

* \
values to products of the form S (£'e£')s.(¥e), which may be an easier
X! X

task.

Let us examine first what kind of information must be known in
order to make any reasonable guess as to an "average" value like
<SXT (E'E')SX(E£)>° Now the Clebsch-Gordan coefficients such as
<X(£)x|AaBb> which occur in the "definition" of the reduced amplitudes

v

SX(EE)

<X(%)les|X(E)x> depend in general on a choice of the overall
phase of the set of states |X(£)x>; that is, on an overall phase factor
in the selection of & basis in that invariant subspace of the product
space A@Bassociated with the irreducible representation X. Since the
choice of this overall phase is completely arbitrary,. it would appear
that one would have to have complete information. about this choice
before one could hazard a guess as to the value of an average of the
kind required above. One could argue, however, that there exists a
statistical assumption which is consistent with any choice of these

phases, namely the assumptionlo

<SXf (Ere)s, (Be)> = B6,' 08, Ser ¢
L, ¢ (L)

whereAgX depends (for given A,/B, C, D)ll on the irreducible repre-
sentation X but not on X', &, g'yo0r %‘. Indeed, there seems to be no
reasonable alternative to this statistical assumptiona12 On the basis
of it, the statistical average of Eq. (3) yields

<g(ab + cd)> = Z:?i (X)/éx (5a)
X



where
- o # Y *
G}ﬁ (x)= } 3} [<x{gix' |aaBb> <CcDd|X(E)x'> .
S X'z (5b}
o5 «X{£)x|heBbs <CeDd|x(¥) x> ]
and
g = @ & ® ("Ul‘ ! f’}‘ \} )
A, 5, (£2)s leel> . (5¢)

The cémplete solution of the average branching ratioc problem reguires
then the determination of the dependence of the weighﬁsﬂfy on the
irreducible representationg X; or more specifically, the dependence of
the relative weights;ﬁx:/ﬁﬁx, where Z and X' are both irreducible repre-
sentations of the same group G. This is the more difficult part of the
problem.

Before attempting a solution, one can ask what form an answer
might take. If we ask that we give an alogarithm for the ratesxﬁxzéx,
valid for every irreducible represeantation of evary compact group G,
it is clear that the result must be a function ¢f such numbers as can
be asscciated with every irreducible representaticn of svery compact
group. We have bzen able tc think of only one such universal number
which is of any reascnable wvalue to us - the dimensionslity of the
)

irreducible representation. This suggests that L “JXY = P{A,):f{A

X X'
where AX is the dimensionality of the irreducible representation X.
In fact, the result which we shall obtain has this form with £ a

C
) = =

X T A

universal function independent <f the ITOUp G, nameliy: f‘aﬁ
T o

where C is a conghant independent «f X.
We have sought a basis on which to find or define reasonable

statistical ensembles that in some way determine the relative weights to

ot

be given to different irreducible representations of the same group. The



only approach which provided a definite result was one based on an idea
which we now describe.

The decomposition of reaction amplitudes into contributions
assocliated with compound states belonging to particular irreducible
representations of the invariance group G; that iz, the reduced amplitudes,
is not the only decomposition along group theoretical lines which is
pessible. It is also possible to decompose such amplitudes into contri-
butions which can be considered to arise from the exchange of systems
between the two interacting systems, and the exchanged systems can also
be classified according to irreducible representations of the invariance
group to which they are associated. The procedure has been outlined in

. 13 4 o . . ; . .
previous papers and will be discussed at length in a forthcoming publi-
N L S i ( ] o . .
cation™ . We remark simply that the reduced amplitudes which are desig-

,l" o
nated SX(gi) in the case already discusszed are replaced by reduced ampli-
N N .
tudes TY(nn) and Uz(zc) in the case of the two types of exchange (t-
. . L T "
exchange and u-exchange). If again we assume that Ty (n'n') TY(nn)>

LY | N . . R

and <UZ, (z'zY) UZ\c;)> shall be independent of the phases invelved in

the definition of the Clebsch-Gordan coefficients then the analog of

Eq. (5a) would be

]
E

<glab + cd)> = ;%ttjr (6a)
T G
= %fuééz (61}

where

;Hl
1]
Bl

- 3 ; == ¥ Bh *
7 {<Yin)y']AaCC> <Bde[Y(:)y'>
n

n

'y nn

<¥(n)y|aale> <Bbpa|y(niy>]



and

*
[<Z(g)z' |paDd>  <CoTB|z(¥)z'>

'z A
c - —— 3 .

Z(z)z|AeDd> <CcEb|z(r)z>] .
Here |Cc», for example, represents the conjugate state to |[Ce> and
deseribes the antiparticle c.

The Weightﬁ,g ’iTY andf&é are not independent. Consider speci-—

fically the u-channel representation for the cross section in Eq. {6b).

The s-and u-channel reduced amplitudes are related bylu
N o . N m
8, (88) = % Qy, (EEiTT) U,lcT) (1)
444
where the s- to u-channel crossing matrix Q (%5%%2) is defined by
4] Ny 4 b "\:
Qup(EElTT) = (1/8y) ] ) [z(Z}z>
xz ab (8)
cd

<Z(z)z|ad> <ab{X({E)x>] .

Thus, multiplying Eq. (7) for s.(¥£) by its complex conjugate and then
e v

taking the ensemble average (az defined earlier) of the product, we find

that
A5 8 =, (Ban) s (Eon
©x1xbn Y ik X Sx\ e
a‘g P:,»., (9)
- * » iy LY
== 3 ! SEARESS Frirry
;/_‘ QX'Z ( 5 l‘:{az QXZ((,C,Ls}ZZZ
Ty

where, by assumpﬁion,iéz depends only on the dimensionality, AZn From
the orthogonalitj propertiss of the Clebsch-Gordan coefficients in
terms of which the crossing matrices(@)are defined, it is easy to
verify that these matrices must satisfy the property;

*
Xz

oy
(g

-
AK 4]

WYY

.m,> = A



Using Eq. (10), Eq. (9) becomes

(a4 () 1651y 6, 8

(11)
_ N L =1 e e oy LAJH (8)]) .
= z Qy, (Eeifr) agy, (epig'e") “72727 72
iAds

As it stands, Eg. {11)

o
n

5 not sufficient to determine the relative

G

dependence of either&fx cmf&% n their respective dimensicnalities. We
need to know at least how the dependences ofAﬁx andf%% arc related. We
shall assume that the depandence of&fx on AX is the same as the dependence
of §, on A5 that is,

L () =8

7,3

—~
(=]
N

~—

From a purely pragmatic point of view, this is the simplest assumption
one can make for it treats the s-and u-channels equally. But also it
seems appropriate that a statistical assumption should not depend on the
channel through which cne views & reaction because in many gitustions

- 0 0 - . A N - .

(nm 7m elastic scatiering, for example) the various channel reactions are
indistinguishable. With this assumption Eq. (11) yields, for a given
invariance group and set of the representations A, B, C and D, a linear

set of equations for the weights&f In general, these eguations do not

<
have a unigque solution. It is clear, however, thax&gx = C/AX, where C

is a constant independent of X, is always a possible solution of this set
of equations. Also, in some particular situations, 1t is possible to
prove that this is the only solutionlsu Thus, although Egs. (11) do not
generally admit a unique solutian,ﬁgx = CfAX is the only solution which is

universally walid no matter what invariance group or reaction one cengiders

and is independent of through which channel one views the reaction. The
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DSW assumption which in our notation amounts to takingAZX'=ZZX = const.,

is not channel independent.

TakingAIX = C/AX, the average branching ratios become

X
<g(ab -+ cd)> ;.#s(ab*cd) {l/AX}
<glab > c'd')> " (13}

%js(ab—»c'd' ) [1/AX' ]

where the functionséfg are sums of products of Clebsch-Gordan coefficients
which can be calculated once an invariance group is chosen.

Thus far we have concentrated on calculating average branching
ratios. But the same arguments can be applied to any ratio of average cross
sectioné for which corresponding particles in the two reactions belong to

the same internal symmetry multiplet. That is, under the same assumptions

as above, we also have

X
[1/a,]
<o(ab +» cd)  _ ;Z;fs(ab-ﬂ:d) X
colele’ > etdll> = (18)

%?Z‘s(a'b'-»c'd') {l/“x']

so long as a and a' belong tco the same multiplet of the invariance group,
b and b' to the same multiplet, ¢ and ¢' to the same multiplet and d and d'
to the same multiplet.

In order to calculate average branching ratios using Eq. (13) we
have to choose an invariance group. At present there are several choices
which one can make; Do the calculated average branching ratiocs depend on
this choice? The answer is that they do. To see this, let us use Eq. (13)

to calculate the average branching ratio for the processes

T p>T P (15a)
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and

T p-> 7 n (15b)
under both SU2 and SU3. Assuming the interaction is-invariant under SUQ,
two reduced amplitudes result in the s- and u-channels labeled by the

total isospins I = 1/2 and I = 3/2. The average branching ratic obtained

from Eq. (13) for these reactions is,

<o(n’p > 17p)> _

3/2 (16)

<o(n p > 7°n)>

If, on the other hand, we had assumed SU3 invariance where the pion and
nucleon both belong to octets, seven reduced amplitudes would result in
the s~ and u~channels; Ss(ss), 88(sa),'88(as), SB(aa), S,0> 57 end 827
in the s-channel with a similar set of u-channel amplitudesl6. In this

case the average branching ratio calculated from Eq. (13) is,

<g{n p > 7 p)>

37/24 (17)

<o(m p + n°n)>

At first sight the fact that the SU, and SU, results differ

2 3

(even slightly) is a bit surprising because 8U, is a subgroup of SU3 and
one usually expects any results which hold for SU2 to also hold for SU3.
The reason for the difference can be traced back to Eq. (4) which expresses

the statistical independence of the reduced amplitudes S This independence

X
was basic to the argument that followed. But because of the restrictions
placed on the reduced amplitudes by group invariance, assuming invariance
under a particular group G (SU3 in this case) requires correlations between

certain reduced amplitudes which correspond to irreducible representations

of invariance groups which are subgroups of G. As an example of this type
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of behavior, consider again our calculation of the'SU2 and SU3 average

branching ratios for the processes in Egs. (15). Since SU2 is a subgroup

multiplet will generally contain several SU

of SU3, each SU submultiplets.

3 2
The two 10-dimensional representations in the 3& 8 decomposition, for
example, contain I = 3]2, I=1,I=1/2and I =0 SU2 submultiplets.
Under SU3 invariance, amplitudes connecting different states in the
lO—dimensional representation must be equal. In particular, amplitudes
connecting states within the I = 1/2 submultiplet of the 10-dimension SU3
multiplet must equal amplitudes connecting states within the I = 3/2
submultiplet. Thus, if SU3 is the assumed invariance group and if the
SU3 reduced amplitudes are assumed to be independent, the corresponding

and S

SU, reduced amplitudes (SI - in the  above example) cannot

2 1/2 I=3/2

all be statistically independent; in fact, some of them must be equal. It

is because of this incompatibility of statistical independence for SU2 and

SU3 that the branching ratios in Eqs. (16) and (17) differ.

These arguments can easily be generalized to any compact group and

its subgroups. Thus, if one assumes statistical independence of all the

reduced amplitudes corresponding to irreducible representations of a

compact group G, then no similar assumption can be made for any group

which is a subgroup of G.

In a sense, this means that we cannot test our statistical sssumption
unless we know the "true" internal symmetry group. However, there are
"approximate" intefnal symmetry groups which appear to be fairly well
satisfied. At present, the internal symmetry group which has met with the

17

most success in high energy physics is the Gell-Mann - Ne'eman form™ of

SU3. This is not an exact symmetry group because of the mass splitting
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within the multiplets. However, at the high energies we are considering
[s>>(mass)2], we should hope this splitting to represent only a small
correction to the exact SU3 predictions.

Following DSW, we shall calculate average branching ratios for

reactions of the form,

meson + baryon —r meson + baryon (18)

and

photon + baryon —_— meson + baryon. (19)

We shall assume that the interactions are invariant under SU3 and that the

mesons and baryons belong to octet representations of 8U We shall

3"
further assume that within SU3, the electromagnetic current transforms

like a pure octet and U-spin scala.r17 (which conserves chafge). For com-
putational purposes, this is equivalent to assuming that the photon belongs

to a U=0 state of an octetlB. Labeling the states in SU

5 by [YIIZ>
(f = hypercharge, I = total isospin and IZ = projection of I along the
axis of quantization), a U-spin scalar is given bylg,
lu = 0> = |y> = /3/2 |o10> - 1/2 |o00> . (20)

In carrying out the calculations of the average branching ratios we
have used the tables of Clebsch-Gordan coefficients for SU3 compiled by
McNamee and Chiltonzo. The results of these calculations are summarized in
Tables 1 through 6. For comparison we have also listed the results obtained
with the DSW assumpfion2l. One notices that although the predicted branching
ratios for our assumption differ from those for the DSW assumption in each

table except Table 1; this difference is for the most part small. The princi-

pal differences appear in Tables L and 6. Whether or not one can use these



1k

differences to distinguish experimentally (when experimental data is
available) between the two assumptions is an open question. Note that the
average cross sections in each table is normalized to unity.

In order to compare the average branching ratios in Tables 1 through
6 with experiment, some experimental interpretation must be given to the
average in Egs. {13) and (14). The only reasonable experimental interﬁre—
tation is an average over some range of energies and scattering ang1e322
DSW argue that if such a statistical behavior occurs at all in the high energy
realm, it is most likely to occur in central collisions where there is
the possibility of forming a large number of compound states. Thus one can
hope to test the validity of the assumed statistical behavior of the
amplitudes for high energy reactions by comparing the calculated average
branching ratios in Tables 1 through 6 with the corresponding experimental
branching ratios averaged over energy and momentum transfer intervals large
compared with the mass splittings within the individual multiplets.
Unfortunately, there is not yet enough high energy, large angle data

available to make such a comparison.
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TABLE 1

Branching Ratios for i (8) + p(8) -~ M{8) + B(8) Processes Under gU,

Process Branching Ratio
DSW Ours
5p > Tp 0.500 | 0.500

- K I 0.5C0 0.500




Branching Ratios 7 (8) + p(8) - M(8) + B(8) Processes Under SU

TABLE 2

Process Branching Ratio
DSW Qurs
Tp>TD 0.21k4 0.218
+ -
+K &I 0.21k4 0.218
+ 7°N 0.152 0.1k1
+ 1%° 0.152 0.141
+ KA 0.13k 0.1k
+n N 0.134 0.1k1

3

16



*
Branching Ratios for n(8) + p(8) > M(8) + B (10) Processes Under

TABLE 3

SU

Process Branching Ratio
DSW Qurs
+ + _*4
np-+mw N 0.188 0.216
+ ¥4
- KY 0.188 0.216
0, ¥4+
TN 0.281 0,32k
¥t
+n N 0.34h 0.243

17



- *
Branching Ratios for = (8) + p(8) - M(8) + B (10) Processes Under SU4

TABLE 4

Process Branching Ratio
DSW Qurs
- +_ ¥
Tp>TN 0.210 0.337
o ¥o
- 1 N 0.153 0.202
- ¥4
-7 N 0.221 0.180
+_ ¥
- K'Y 0.110 0.112
*
> K% ° 0.145 0.101
*0
> N 0.160 0.067

18



TABLE 5

Branching Ratios for y + p(8) + M(8) + B(8) Processes Under 8U,

Process Branching Ratio
DSW Qurs
Yp > 7 0.246 0.250
+ % 0.227 0.211
+
> K Lo 0.227 0.211
+
K A 0.151 0.16L
np 0.151 0.16L

19-



TABLE 6
. #
Branching Ratios for y + p(8) » M(8) + B (10} Processes Under SU3
Process Branching Ratioc
DSW Ours
+ ¥g
Yyp > 7 N 0.231 0.219
*
> 1N T 0.089 0.131
- ¥ .
> N 0.209 0.263
#
+ K'Y ° 0.167 0.131
o, %+
-+ K'Y 0.070 0008'8
* e \ -
+ nN 0.234 0,168

20
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Many of the results in DSW are expressed in turns of a parameter a,
which specifies the transformation from the symmetric-anti-
symmetric set of octets to the baryon octet plus another octet.
Therefore, o is explicitl& basis dependent and, in fact, represenés
the transformation from one set of Clebsch-Gordan coefficients to
another. This factor has not been included here because we have
specifically required that our statistical model results not depend
on our choice of Clebscﬁ-Gordan coefficients.

It should be pointed out that if we interpret the averages in

Egs. (13) and (1b4) as representing averages over a range of energies
and momentum transfers which are physical in the s-channel then the
corresponding u-channel averages will be over an unphysical range of
energies and momentum transfers. This, however, does not alter the
argument because all we have used is the fact that one can define a
set of weightsZLZ for each set of weightsAfX (and this is guaranteed
by crossing symmetry) independent of whether or not the set%z is

physical.



