
I i 

~~0-3829-23 
SLAC-~~~-418 
March 1968 

A STATISTICAL MODEL FOR HIGH ENERGY REACTIONS* 

L. L. Foldy 
Department of Physics 

Case Western Reserve University, Cleveland, Ohio 

H. Kottler f 
Department of Physics 

Case Western Reserve University, Cleveland, Ohio 

Department of Physics 
University of Pittsburgh, Pittsburgh, Penna. 

D. R. Speiser 
Centre de Physique Nucleaire 

Universite de Louvain, Louvain, Belgium 

J. Weyersj+ 
Stanford Linear Accelerator Center 

Stanford University, California 

f Present address: University of Pittsburgh. 

ff On leave of absence from the Universite de Louvain, Louvain, Belgium. 

*Supported in part by the United States Atomic Energy Commission 
under Contracts AT-11-l-1573 and AT-30-l-3829. 



AC!K!IOWLEDGEMENT:, 

Three of the authors (L.L.F., D.S. and J.W.)would like to express 

their gratitude to the Summer Institute for Theoretical Physics at the 

University of Washington for their hospitality during the summer of 1965 

when some of the ideas in this paper were discussed. We are also grateful 

to Prof. P. Kantor for many helpful discussions and Prof. F. Gilman for 

his critical reading of the manuscript. 



ABSTRACT 

A statistical model for high energy reactions is constructed 

using the internal symmetry invariance properties of the scattering 

amplitudes which yields simple predictions for average branching ratios. 

The model is so constructed as to be valid no matter what invariance 

group or reaction one considers and also to be independent of the channel 

through which one views the reaction. Branching ratio predictions are 

made for reactions of the type basyon + meson + baryon + meson and 

photon + baryon -+ meson + baryon. 
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The statistical model for nuclear reactions which arose from 

Bohr's1 original suggestion of a compound nucleus picture has been 

extensively studied both experimentally and theoretically and its validity 

in certain experimental regimes well establlshed2. In recent years 

further confirmation -of its applicability in these situations has been 

found in the observation of the statistical fluctuations, predicted by 

Ericson3, which are an essential concomitant of any statistical phenomenon. 

The use of statistical concepts in the analysis of high energy collisions 

between elementary particles seems to have origfnated with Fermi", but in 

spite of a long period of development, the applicability of such concepts 

to reactions at accelerator energies has always been in some doubt. 

Particular interest was recently stimulated in such models by the obser- 

vations of Cocconi et al. 5 on large angle elastic proton-proton scattering 

which seemed to show an energy dependence such as would be expected on the 

basis of a statistical model. Valid questions concerning such an inter- 

pretation have been raised6, however, and a further shadow over this inter- 

pretation results from the failure to observe the Ericson flucturations7. 

The role which might be played by internal qymmetries in a 

statistical model of reactions does not appear to have been raised in a 

general way until very recently. Drell, Speiser, and Weyers8 have pointed 

out that internal symmetries such as charge-independence (isospin or 

SU2 invariance) or charge symmetry in nuclear phenomena and SU2 (isospin), 

SU3 (eightfold way) or possible higher symmetries in elementary particle 

phenomena, could play a decisive role in the determinaticn of average 

branching ratios for reactions. The statisticai assumptions which they 

chose to introduce for the purpose of implementing this observation can 
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be subjected to some criticism, and it is this question which is 

examined in the present paper; it is a question with consfderable intrinsic 

interest even apart from any pragmatic questions as to the applicability 

of the statistical model to any particular situation. 

The approach of DSW consists in observzing that in the presence 

of an internal symmetry group G, the ingoing and outgoing particles in 

a reaction are each a member of a multiplet (or supermultiplet) of- 

particles which is associated with some irreducible representation of 

the symmetry group. The amplitude for going from the ingoing to the 

outgoing state received contributions from many possible "paths" where 

each such "path" @an be considered to be associated with or correspond to 

a lTcompound state" which carries among its labels those appropriate to 

an irreducible representation of the symmetry group G. The sum of the 

amplitudes arising from compound states belonging to any one irreducible 

representation of G is the 'reduced am$itude" associated with the 

particular irreducible representation. The desired amplitude is then 

given as a linear combination of these reduced amplitudes,.one associated 

with each irreducible representa,, +qon which is common to the reduction of 

the product representations formed of the ingoing and outgoing particle 

representations, respectively. The coefficients in th?s linear combin- 

ation are just products of Clebsch-Gordan coefficients asaocfated with 

these reductions. To illustrate,consider a reaction in which two 

particles go into two particles. We write the reactPon as 

a(A) * b(B) -+ c(C) + d(D) (1) 

where A and 3 represent the irreducible representations (multipiets) to 

which the incoming particles belong and a and b designate the particular 
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member of the multiplet. Similarly C and D represent the multiplets 

and c and d the members corresponding to the outgoing particles. The 

kinematic variables as, for example, the momenta and helfcities of each 

of the particles, are presumed fixed. The amplitude for the reaction 

(1) which we represe-nt as <CcDdIM,IAaBb>,can then be written as 9 

<CcDdIMsIAaBb> = 1 <CcDdlX(?)x> Sx(?Cl) <X(S)xIAaBb>* 

x&x 

-(2) 

Here <X(S)xlAaBb> is the Clebsch-Gordan coefficient associated with the 

reduction of the product of the representations A and.B into irreducible 

representations X, with x representing the member of the multiplet X and 

< is a symbol used to designate and distinguish the same irreducible 

representation X if it occurs more than once in the reduction. Similarly 

<CcDdlX(S)x> is the (conjugate)Clebsch-Gordan coefficient associated with 

the reduction of the product of the representations C,and D into irre- 

ducible representations X distinguished, if occurring multiply, by the 

symbol 2. The quantities Sx(t&) are the reduced amplitudes referred to 

above and are associated with those irreducible representations which are 

common to the reduction of the products of representations associated 

with the ingoing and outgoing particles, respectively. The Clebsch- 

Gordan coefficients are in principle completely determined by purely 

mathematical considerations once the invariance group G and its irre- 

ducible representations are specified. All considerations of dynamics 

are contained in the reduced amplitudes Sx(t(). 

Now, apart from purely kinematical coefficients, the cross section 

for the reaction (1) is determined by the absolute square of the amplitude 

(2) and is therefore a linear combination of products of the reduced 



amplitudes and their complex conjugates: 

(3a) 

where the functions Fs are sums of products of four Clebsch-Gordan 

coefficients: 

Fs-[X'(?'Et)X(?S):CcDdAaBb] = 1 <CcDdlX'(t')x'>*<CcDdlX(x)x> 

x'x 

<X'({')x' \AaBb>'<X(c)xjAaBb> 
(3b) 

These results are completely general and depend only on the validity of 

the internal symmetry group as an invariance group; no statistical 

considerations 

are known, the 

members c,d of 

have entered so far. If the reduced amplitudes Sx(zE) 

branching ratios corresponding to decays into different 

the final multiplets C,D are fixed.. It is in the absence 

of such information that one might hope to employ statistical assumptions 

about these amplitudes to gain statistical information about branching 

ratios. 

One manner in which statistical features may enter into these 

considerations is in the instance that each of the reduced amplitudes 

Sx(2E) can be considered to arise as the sum of contributions corres- 

ponding to many compound states each belonging to the same irreducible 

representation X of the symmetry group. If the statistical properties 

of these contributions could be correctly characterized, it would be 

possible to calculate not only relative average cross sections for 

different branchings of a reaction but also the fluctuations about 

these averages. A complete characterization of these statistical 
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properties would in general require an appropriate statistical 

ensemble to be specified. The calculation of average branching ratios, 

however, requires only that one be able $0 assign statistically averaged 

values to products of the form Sx, s &5' )sxGs~, which may be an easier 

task. 

Let us examine first what kind of rnformation must be known in 

order to make any reasonable guess as to an 'average" .value like 

-3 xt &59sx(kh Bow the Clebsch-Gordan coefficients such as 

<X(S)xiAaBb> which occur in the "def'in.ition" of the reduced amplitudes 

Sx&) - ~X(blM&Xk) x> depend in general on a choice of the overall 

phase of the set of states /x(<)x>; that is, cn an overall phase factor 

in the selection of a basis in that invariant subspace of the product 

space A@Bassociated with the irreducible representation X. Since the 

choice of this overall phase is compietel;y arbitrary,.it would appear 

that one would have to have complete information about this choice 

before one could hazard a guess as to the value of an average of the 

kind required above. One could argue, however, that there exists a 

statistical assumption which is consi.stent with any choice of these 

the assumption 10 phases, namely 

* 
G X' 

where X depends (for given A, B, C, II),, on the irreducible repre- 

sentation X but not on X', 5, SpYor 't'. Indeed, there seems to be no 

reasonable alternative to this statistical assumption. 12 On the basis 

of it, the statistical average of Eq. (3) yfelds 
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where 

and 

The complete solution of the average branci?ing ,ratio problem requires 

then the determination of the dependence of the weights. 4,. on the 

irreducible representations X; or more specifically, the dependence of 

the relative weights /ix:/d,, h w em X and X' are both irreducible repre- 

sentations of the same group G. This is the more difficult part of the 

problem. 

Before attempting a solution, one car, ask what form an answer 

might take+ If we ask that 'we give an. aiogarithm for ,the rates Ax:Jx, 

valid for every irreducible re$r esenta%ion of every compact group G, 

it is clear that the result must be a function of such numbers as can 

be associated with every 3.rredGcibl.e representatien of every compact 

group, We have been able tc think of only one such universal number 

which is of any reasenable value %o us - the dimensionaiity of the 

irreducible representation T"p11s ar;ggs;sts that++&' = .f(A,):f(A,,) 

where A X is the dimensionality of the irreducible representation X, 

In fact, the result which we shall obtain has this form with f a 

universal function independent of the group G, namely: f(AX) -D $ 
X 

where C is a cona,cant tcdepnden'z r;f X0 

We have sought a basis on w~hich to find or define reasonable 

statistical ensembles that in some way determine the relative weight,s to 

be given to different irreducible repr esentations of the same group. The 



only approach w'hich provided a definite result was one based on an idea 

which we now describe. 

The decomposition of reaction amplitudes into contributions 

associated with compound states belonging to particular irreducible 

representations of the invariance grourp G; ,that is, the reduced amplitudes, 

is not the only decomposition along group theoretical lines which is 

possible. It is also possible to decompose such amplitudes into contri- 

butions which can be considered to ar-ise from the exchange of systems 

between the two interacting systems, and the exchanged systems can aiso 

be classified according to irreducible representations of the lenvariance 

group to which they are associated. Th.e pro.. \I =dure has been outlined in 

previous papers 13 and will be discussed at length in a forthcoming publ.i- 

cation". We remark simply that the reduced camplitudes which are desig- 

nated Sx(25) in the case already discussed are replaced by reduced ampli- 

tudes TY(:nj and U,(t<] in the case of the two t-ypes of exchange (t- 

exchange and u-exchange). If again 'we assume that cTY, * G'rl') TyGlb 
8 % 

and <U z, (t;"zj') U,(yr,)> shall be independent of the phases involved in 

the definition of the Clebsch-Gordan ooeff-iei.ents then the analog of 

Eq. (5a) would be 



8 

and 

describes the antiparticle @. 

The weights ,J,, 4, andgz E*re not fndependent, Consider specf-- 

fically the u-channel representation for the cross section ?in EqO (6b). 

The s-and u-channel reduced amplitudes are related by 
24 

where the s- to u-channel crossing ma6,ri.x Q.,(~&~'<~) fs defined by 

i ts cam$Lex congugate and then 

taking the ensemble average (as defined earlier) of the product, we find 

that 

where, by assumption,%Z depends only on the dimensionality, AZ* From 

the orthogonality propetiics of ,the Clebsch-Gordan coefficients in 

terms of which the erossing matrices ;! are deffned, it is easy to 

verify that these matrices must satfsfy the property; 



9 

Using Eq. (IO), Eq. (9) becomes 

As it stands, Eqc (il) fs not sufffcIent to determine the relative 

dependence of either &fx ox I& on +,,‘ ; +ne;r respective dimensXcnalfties. We 

need to know at least how the dependences ofAx and'%$ are related. We 

shall assume that the dependence ox ‘A, on Ax fs the same as the dependence 

ofpz on AZ; that is, 

(12) 

From a purely pragmatic point of vIei, this Ts the simpI.es% assumption 

one can make for it treaea the s-and u-~channels equally, But also it 

seems appropriate that a statfstPeaL assumption should not depend on the 

channel through which one views a reaction because in many sftustfons 

(TrO 2 eiastfc scatter9ng, for example) the various channel reactions are 

indfstlnguishable. With thds assumption Eq, (1-l) yPePda, for a given 

invariance group and set of the representations A, B, C and 3, a linear 

set of equations for the weights d x': In general, these equations do not 

have a unfque solution. It Ps cleaz, however 3 thatAl, = C/A,, where c .L 

is a constant independent of X, is alw?ays a possible solution of this set 

of equations, Ais~. 3 in some part,, 7" w.lar sf.tuations 3 it is possible to 

prove that this is the only so,lution 15 D Thus, although Eqs. (IX) do not 

generally admit a unique solution3 A x = C/Ax is the only solution which is 

universally valid no matter what fnva riance ~roun O.P -reaction one considers P--L 

and is independent of through which channel one views th,e reaction" The --- 
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DSW assumption which in our notation amounts to taking,& =gx = con&., 

is not channel independent. 

TakingAX = C/Ax, the average branching ratios become 

where the 

ao(ab -t cd)> 
aa(ab -t c'd')> 

funetionsj~ are 

l.lf X 
'v s(ab+cd) b/Ax1 

sums of products of Clebsch-Gordan coefficients 

t-13 1 

which can be calculated once an invariance group is chosen. 

Thus far we have concentrated on calculating average branching 

ratios. But the same arguments can be applied to any ratio of average cross 

sections for which corresponding particles in the two reactions belong to 

the same internal symmetry multiplet. That is, under the same assumptions 

as above, we also have 

aa(ab + cd) ~3:(ab-+cd)[11nX1 
ao(a*b* + @*d')> = 

,r#"' X, s(a*b'+c*d*) b/A,, 1 

so long as a and a' belong to the same multiplet of,the invariance group, 

b and b' to the same multiplet, c4 and c' to the ssme multiplet and d and d' 

to the same multiplet. 

In order to calculate average branching ratios using Eq. (13) we 

have to choose an invariance group, At present there are several choices 

which one can make. Do the calculated average branching ratios depend on 

this choice? The answer is that they do, To see this, let us use Eq. (13) 

to calculate the average branching ratio for the processes 

lT- I, -f 'II- p (1%) 
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and 

TT- p + 51' n (15b) 

under both SU2 and SU 3 . Assuming the interaction is-invariant under SU2, 

two reduced amplitudes result in the s- and u-channels labeled by the 

total isospins I = l/2 and I = 3/2. The average branching ratio obtained 

from Eq. (13) for these reactions is, 

<&T-p + 8-D)’ 

<o(n-p + Ton>> 

If, on the other hand, 

nucleon both belong to 

the s- and u-channels; 

we had assumed SU 3 

= 3/2 (161 

invariance where the pion and 

octets, seven reduced amplitudes would result in 

S8(ss), S,(m), S,(as), S,(aa), Slo, Sm and S27 

in the s-channel with a similar set of u-channel amplitudes 
16 . In this 

case the average branching ratio calculated from Eq. (13) is, 

c&r-p -t n-p)> = 3'7/24 (17) 
<a(~-p -f non)> 

At first sight the fact that the SU2 and SU3 results differ 

(even slightly) is a bit surprising because SU2 is a subgroup of SU3 and 

one usually expects any results which hold for SU2 to also hold for SU3. 

The reason for the difference can be traced back to Eq. (4) which expresses 

the statistical independence of the reduced amplitudes SX. This independence 

was basic to the argument that followed. But because of the restrictions 

placed on the reduced amplitudes by group invariance, assuming invariance 

under a particular group G (SU 3 in this case) requires correlations between 

certain reduced amplitudes which correspond to irreducible representations 

of invariance groups which are subgroups of G. As an example of this type 
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of behavior, consider again our calculation of the SU2 and SU3 average 

branching ratios for the processes in Eqs. (15). Since SU2 is a subgroup 

of su 3, each SU3 multiplet will generally contain several SU2 submultiplets. 

The two lo-dimensional representations in the 8@8decomposition, for 

example, contain I = 3/2, I = 1, I = l/2 and I = 0 SU2 submultiplets. 

Under SU3 invariance, amplitudes connecting different states in the 

lo-dimensional representation must be equal. In particular, amplitudes 

connecting states within the I = l/2 submultiplet of the lo-dimension SU3 

multiplet must equal amplitudes connecting states within the I = 3/2 

submultiplet. Thus, if SU3 is the assumed invariance group and if the 

SU3 reduced amplitudes are assumed to be independent, the corresponding 

SU2 reduced amplitudes (SI = 1,2 and SI = 3/2 in-the-above example) cannot 

all be statistically independent; in fact, some of them must be equal. It 

is because of this incompatibility of statistical independence for SU2 and 

SU3 that the branching ratios in Eqs. (16) and (17) differ. 

These arguments can easily be generalized to any compact group and 

its subgroups. Thus, if one assumes statistical independence of all the 

reduced amplitudes corresponding to irreducible representations of a 

compact group G, then no similar assumption can be made for any group 

which is a subgroup of G. 

In a sense, this means that we cannot test our statistical sssumption 

unless we know the "true" internal symmetry group. however, there are 

"approximate" internal symmetry groups which appear to be fairly well 

satisfied. At present, the internal symmetry group which has met with the 

most success in high energy physics is the Gell-Mann - Ne'eman form l7 of 

su3. This is not an exact symmetry group because of the mass splitting 
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within the multiplets. However, at the high energies we are considering 

[s>>(mass)'], we should hope this splitting to represent only a small 

correction to the exact SU 3 predictions. 

Following DSW, we shall calculate average branching ratios for 

reactions of the form, - 

meson + baryon + meson + baryon (18) 

and 

photon + baryon + meson + baryon. (19) 

We shall assume that the interactions are invariant under SU3 and that the 

mesons and baryons belong to octet representations of SU 3 . 
We shall 

further assume that within SU3, the electromagnetic current transforms 

like a pure octet and U-spin scalar 17' (which conserves charge). For com- 

putational purposes, this is equivalent to assuming that the photon belongs 

to a U=O state of an octet 18 . Labeling the states in SU3 by (YII$ 

(Y = hypercharge, I = total isospin and Iz = projection of I along the 

axis of quantization), a U-spin scalar is given by 19 , 

Iu = 0' 2 Iy> = R/2 lOlO> - l/2 ]OOO> . (20) 

In carrying out the calculations of the average branching ratios we 

have used the tables of Clebsch-Gordan coefficients for SU3 compiled by 

McNsmee and Chilton 20 . The results of these calculations are summarized in 

Tables 1 through 6. For comparison we have also listed the results obtained 

with the DSW assumption 21 . One notices that although the predicted branching 

ratios for our assumption differ from those for the DSW assumption in each 

table except Table 1; this difference is for the most part small. The princi- 

pal differences appear in Tables 4 and 6. Whether or not one can use these 
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differences to distinguish experimentally (when experimental data is 

available) between the two assumptions is an open question. Note that the 

average cross sections in each table is normalized to unity. 

In order to compare the average branching ratios in Tables 1 through 

6 with experiment, some experimental interpretation must be given to the 

average in Eqs. (13) and (14). The only reasonable experimental interpre- 

tation is an average over some range of energies and scattering angles 22 
O 

DSW argue that if such a statistical behavior occurs at all in the high energy 

realm, it is most likely to occur in central collisions where there is 

the possibility of forming a large number of compound states0 Thus one can 

hope to test the validity of the assumed statistical behavior of the 

amplitudes for high energy reactions by comparing the calculated average 

branching ratios in Tables 1 through 6 with the corresponding experimental 

branching ratios averaged over energy and momentum transfer intervals large 

compared with the mass splittings within the individual multiplets. 

Unfortunately, there is not yet enough high energy, large angle data 

available to make such a comparison. 
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TABLE 1 

Branching Ratios for n*(8) + p(8) -t M(8) -F B(8) Processes Under SU, 

Process Branching Ratio 

DSW OUI-S 

0.500 0.500 

0.5co 0.500 



16 

TABLE 2 

Branching Ratios n-(8) + p(8) + M(8) + B(8) Processes Under SU, 

Process Ratio Branchiny 

IT p + IT-p 

DSW ours 

0.214 0.218 

I +- +KC 0.214 0.218 

I -t TON 0.152 

I -t C°Ko 0.152 

I + K"h 0.134 0.141 
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TABLE 3 

Branching Ratios for r+(8) + p(8) + M(8) + B*(lO) Processes Under SU3 

Process Branching Ratio 

DSW ours 

I 

I 
-I- Q+ 7lp-t.R +N I 0.188 0.216 I 

I + *+ 
+KY I 0.188 0.216 I I 

-f n”N *++ 0.281 0,324 

-tnN 
s++ 0.344 0.243 
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TABLE 4 

Branching Ratios for -IT-(~) + p(8) + M(8) + B*(lO) Processes Under SU 3 

Process Dsw Branchiiq Ratio ours 

+ *- n-p + IT N I 0.210 0.337 I 

*0 0.153 0,202 

-t IT-N *+ I 0.221 0,180 

+ +- +KY 0.110 0.112 

I -f K"Y *0 I 0.145 0.101 I 

0.160 0.067 
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TABLE 5 

Branching Ratios, for y + p(8) -f M(8) + B(8) Processes Under SU3 

Process Branchi 

DSW 

YP -+ T +N 

+ Tc"p 0.227 

-f K+Co I 0.227 

K+ A 

5 Ratio 

0.250 I 
0.211 I 

0.164 1 

0.164 I 
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. . .” 

TABLE 6 

Branching Ratios fey y + p(8) + ~(89 + B*[90) Processes Under SU 
3 
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